Change in Emiliania huxleyi Virus Assemblage Diversity but Not in Host Genetic Composition during an Ocean Acidification Mesocosm Experiment

Highfield, A, Joint, IR, Gilbert, JA, Crawfurd, KJ and Schroeder, DC 2017 Change in Emiliania huxleyi Virus Assemblage Diversity but Not in Host Genetic Composition during an Ocean Acidification Mesocosm Experiment. Viruses, 9 (3). 41. https://doi.org/10.3390/v9030041

[img]
Preview
Text
viruses-09-00041.pdf - Published Version
Available under License Creative Commons Attribution.

Download (5MB) | Preview
Official URL: https://doi.org/10.3390/v9030041

Abstract/Summary

Effects of elevated pCO2 on Emiliania huxleyi genetic diversity and the viruses that infect E. huxleyi (EhVs) have been investigated in large volume enclosures in a Norwegian fjord. Triplicate enclosures were bubbled with air enriched with CO2 to 760 ppmv whilst the other three enclosures were bubbled with air at ambient pCO2; phytoplankton growth was initiated by the addition of nitrate and phosphate. E. huxleyi was the dominant coccolithophore in all enclosures, but no difference in genetic diversity, based on DGGE analysis using primers specific to the calcium binding protein gene (gpa) were detected in any of the treatments. Chlorophyll concentrations and primary production were lower in the three elevated pCO2 treatments than in the ambient treatments. However, although coccolithophores numbers were reduced in two of the high-pCO2 treatments; in the third, there was no suppression of coccolithophores numbers, which were very similar to the three ambient treatments. In contrast, there was considerable variation in genetic diversity in the EhVs, as determined by analysis of the major capsid protein (mcp) gene. EhV diversity was much lower in the high-pCO2 treatment enclosure that did not show inhibition of E. huxleyi growth. Since virus infection is generally implicated as a major factor in terminating phytoplankton blooms, it is suggested that no study of the effect of ocean acidification in phytoplankton can be complete if it does not include an assessment of viruses.

Item Type: Publication - Article
Divisions: Marine Biological Association of the UK > Marine Microbiome
Depositing User: Barbara Bultmann
Date made live: 08 Mar 2017 13:58
Last Modified: 09 Feb 2024 17:09
URI: https://plymsea.ac.uk/id/eprint/7411

Actions (login required)

View Item View Item