Physiological And Biochemical Aspects Of The Valve Snap And Valve Closure Responses In The Giant Scallop Placopecten-Magellanicus .2. Biochemistry

Dezwaan, A, Thompson, RJ and Livingstone, DR 1980 Physiological And Biochemical Aspects Of The Valve Snap And Valve Closure Responses In The Giant Scallop Placopecten-Magellanicus .2. Biochemistry. Journal of Comparative Physiology, 137 (2). 105 - 114.

Full text not available from this repository.

Abstract/Summary

1. Catabolic processes of the phasic and catch parts of the adductor muscle ofPlacopecten magellanicus have been studied in relation to valve snap and valve closure responses. It is concluded that the snap response is powered by both parts of the adductor muscle and the valve closure response is powered exclusively by the catch part. 2. Both parts of the adductor muscle show a high glycolytic potential, reflected by high levels of glycolytic enzymes (Table 1) and high glycogen levels (Table 2). Lactate dehydrogenase could not be detected. In contrast, octopine dehydrogenase shows high activities in both parts of the adductor muscle. It is therefore concluded that a main anaerobic pathway in both tissues is the breakdown of glycogen to octopine. In the catch part, however, a considerable amount of the pyruvate formed from glycogen may also be converted into alanine (see below). The glycolytic flux in the catch part is much higher during the snap response than during valve closure. 3. The absence of phosphoenolpyruvate carboxykinase in the adductor muscle ofP. magellanicus and the observed changes in aspartate, alanine and succinate demonstrate that the energy metabolism in the catch part during valve closure shows great similarities to that which occurs only in the initial stage of anaerobiosis in the catch adductor muscle of the sea musselMytilus edulis L. 4. Arginine kinase activity and arginine phosphate content of the phasic part are much higher than those of the catch part (Tables 1 and 3). This may explain why in the phasic part during the snap response most ATP equivalents are derived from arginine phosphate, and in the catch part during both valve responses most are derived from glycolysis (Table 6). Despite the limited contribution of glycolysis in the phasic part during the snap response, the glycolytic flux increases by a factor of at least 75. 5. Evidence is obtained that octopine is neither transported from one part of the adductor muscle to the other, nor from the adductor muscle to other tissues.

Item Type: Publication - Article
Divisions: Plymouth Marine Laboratory > Other (PML)
Depositing User: EPrints Services
Date made live: 11 Feb 2014 15:54
Last Modified: 06 Jun 2017 16:03
URI: https://plymsea.ac.uk/id/eprint/2786

Actions (login required)

View Item View Item