Boyle, RA, Clark, JR, Poulton, SW, Shields-Zhou, G, Canfield, DE and Lenton, TM 2013 Nitrogen cycle feedbacks as a control on euxinia in the mid-Proterozoic ocean. Nature Communications, 4. 1533. https://doi.org/10.1038/ncomms2511
Full text not available from this repository.Abstract/Summary
Geochemical evidence invokes anoxic deep oceans until the terminal Neoproterozoic similar to 0.55 Ma, despite oxygenation of Earth's atmosphere nearly 2 Gyr earlier. Marine sediments from the intervening period suggest predominantly ferruginous (anoxic Fe(II)-rich) waters, interspersed with euxinia (anoxic H2S-rich conditions) along productive continental margins. Today, sustained biotic H2S production requires NO3- depletion because denitrifiers outcompete sulphate reducers. Thus, euxinia is rare, only occurring concurrently with (steady state) organic carbon availability when N-2-fixers dominate the production in the photic zone. Here we use a simple box model of a generic Proterozoic coastal upwelling zone to show how these feedbacks caused the mid-Proterozoic ocean to exhibit a spatial/temporal separation between two states: photic zone NO3- with denitrification in lower anoxic waters, and N-2-fixation- driven production overlying euxinia. Interchange between these states likely explains the varying H2S concentration implied by existing data, which persisted until the Neoproterozoic oxygenation event gave rise to modern marine biogeochemistry.
Item Type: | Publication - Article |
---|---|
Subjects: | Chemistry Earth Sciences Marine Sciences Oceanography |
Divisions: | Plymouth Marine Laboratory > Science Areas > Marine System Modelling |
Depositing User: | James Clark |
Date made live: | 11 Feb 2014 17:31 |
Last Modified: | 13 Dec 2023 12:33 |
URI: | https://plymsea.ac.uk/id/eprint/2527 |
Actions (login required)
View Item |