Combining Top‐Down and Bottom‐Up Approaches to Evaluate Recent Trends and Seasonal Patterns in UK N2O Emissions

Saboya, E, Manning, AJ, Levy, P, Stanley, KM, Pitts, J, Young, D, Say, D, Grant, A, Arnold, T, Rennick, C, Tomlinson, SJ, Carnell, EJ, Artioli, Y, Stavart, A, Spain, TG, O’Doherty, S, Rigby, M and Ganesan, AL 2024 Combining Top‐Down and Bottom‐Up Approaches to Evaluate Recent Trends and Seasonal Patterns in UK N2O Emissions. Journal of Geophysical Research: Atmospheres, 129 (14). 10.1029/2024JD040785

[thumbnail of JGR Atmospheres - 2024 - Saboya - Combining Top‐Down and Bottom‐Up Approaches to Evaluate Recent Trends and Seasonal.pdf]
Preview
Text
JGR Atmospheres - 2024 - Saboya - Combining Top‐Down and Bottom‐Up Approaches to Evaluate Recent Trends and Seasonal.pdf - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview
Official URL: http://dx.doi.org/10.1029/2024JD040785

Abstract/Summary

Atmospheric trace gas measurements can be used to independently assess national greenhouse gas inventories through inverse modeling. Atmospheric nitrous oxide (N2O) measurements made in the United Kingdom (UK) and Republic of Ireland are used to derive monthly N2O emissions for 2013–2022 using two different inverse methods. We find mean UK emissions of 90.5 ± 23.0 (1σ) and 111.7 ± 32.1 (1σ) Gg N2O yr− 1 for 2013–2022, and corresponding trends of − 0.68 ± 0.48 (1σ) Gg N2O yr− 2 and − 2.10 ± 0.72 (1σ) Gg N2O yr− 2 , respectively, for the two inverse methods. The UK National Atmospheric Emissions Inventory (NAEI) reported mean N2O emissions of 73.9 ± 1.7 (1σ) Gg N2O yr− 1 across this period, which is 22%–51% smaller than the emissions derived from atmospheric data. We infer a pronounced seasonal cycle in N2O emissions, with a peak occurring in the spring and a second smaller peak in the late summer for certain years. The springtime peak has a long seasonal decline that contrasts with the sharp rise and fall of N2O emissions estimated from the bottom‐up UK Emissions Model (UKEM). Bayesian inference is used to minimize the seasonal cycle mismatch between the average top‐down (atmospheric data‐based) and bottom‐up (process model and inventory‐based) seasonal emissions at a sub‐sector level. Increasing agricultural manure management and decreasing synthetic fertilizer N2O emissions reduces some of the discrepancy between the average top‐down and bottom‐up seasonal cycles. Other possibilities could also explain these discrepancies, such as missing emissions from NH3 deposition, but these require further investigation.

Item Type: Publication - Article
Divisions: Plymouth Marine Laboratory > Science Areas > Marine System Modelling
Depositing User: S Hawkins
Date made live: 25 Jul 2024 14:45
Last Modified: 13 Aug 2024 10:18
URI: https://plymsea.ac.uk/id/eprint/10260

Actions (login required)

View Item View Item