Phytoplankton responses to changing temperature and nutrient availability are consistent across the tropical and subtropical Atlantic

Fernández-González, Christina, Tarran, GA, Schuback, N, Woodward, EMS, Aristegui, J and Maranon, E 2022 Phytoplankton responses to changing temperature and nutrient availability are consistent across the tropical and subtropical Atlantic. Communications Biology. https://doi.org/10.1038/s42003-022-03971-z

[img]
Preview
Text
Fern-ndez-Gonz-lez_et_al-2022-Communications_Biology_Published.pdf - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract/Summary

Temperature and nutrient supply interactively control phytoplankton growth and productivity, yet the role of these drivers together still has not been determined experimentally over large spatial scales in the oligotrophic ocean. We conducted four microcosm experiments in the tropical and subtropical Atlantic (29°N-27°S) in which surface plankton assemblages were exposed to all combinations of three temperatures (in situ, 3 °C warming and 3 °C cooling) and two nutrient treatments (unamended and enrichment with nitrogen and phosphorus). We found that chlorophyll a concentration and the biomass of picophytoplankton consistently increase in response to nutrient addition, whereas changes in temperature have a smaller and more variable effect. Nutrient enrichment leads to increased picoeukaryote abundance, depressed Prochlorococcus abundance, and increased contribution of small nanophytoplankton to total biomass. Warming and nutrient addition synergistically stimulate light-harvesting capacity, and accordingly the largest biomass response is observed in the warmed, nutrient-enriched treatment at the warmest and least oligotrophic location (12.7°N). While moderate nutrient increases have a much larger impact than varying temperature upon the growth and community structure of tropical phytoplankton, ocean warming may increase their ability to exploit events of enhanced nutrient availability

Item Type: Publication - Article
Subjects: Biology
Marine Sciences
Oceanography
Divisions: Plymouth Marine Laboratory > National Capability categories > Single Centre NC - CLASS
Depositing User: Malcolm Woodward
Date made live: 26 Oct 2022 13:59
Last Modified: 26 Oct 2022 13:59
URI: https://plymsea.ac.uk/id/eprint/9808

Actions (login required)

View Item View Item