Testing Bergmann's rule in marine copepods

Ostle, C, Wilson, WH, Johns, DG, Hosie, G, Batten, SD, Chiba, S, Coman, F, Davies, CH, Edwards, M and Eriksen et al, RS 2021 Testing Bergmann's rule in marine copepods. Ecography, 44 (9). 1283-1295. https://doi.org/10.1111/ecog.05545

106 Testing Bergmann's rule in marine copepods.pdf - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview
Official URL: https://onlinelibrary.wiley.com/doi/full/10.1111/e...


Macroecological relationships provide insights into rules that govern ecological systems. Bergmann's rule posits that members of the same clade are larger at colder temperatures. Whether temperature drives this relationship is debated because several other potential drivers covary with temperature. We conducted a near-global comparative analysis on marine copepods (97 830 samples, 388 taxa) to test Bergmann's rule, considering other potential drivers. Supporting Bergmann's rule, we found temperature better predicted size than did latitude or oxygen, with body size decreasing by 43.9% across the temperature range (-1.7 to 30ºC). Body size also decreased by 26.9% across the range in food availability. Our results provide strong support for Bergman's rule in copepods, but emphasises the importance of other drivers in modifying this pattern. As the world warms, smaller copepod species are likely to emerge as ‘winners', potentially reducing rates of fisheries production and carbon sequestration.

Item Type: Publication - Article
Additional Keywords: allometry, chlorophyll, continuous plankton recorder, ectotherms, environmental drivers, invertebrate, macroecology, statistical modelling, temperature-size rule, zooplankton
Subjects: Marine Sciences
Divisions: Marine Biological Association of the UK > Ocean Biology
Depositing User: Emily Smart
Date made live: 28 Sep 2021 14:43
Last Modified: 09 Feb 2024 15:49
URI: https://plymsea.ac.uk/id/eprint/9386

Actions (login required)

View Item View Item