Seasonal and spatial variability in the optical characteristics of DOM in a temperate shelf sea

Carr, N, Davis, CE, Blackbird, S, Daniels, LR, Preece, C, Woodward, EMS and Mahaffey, C 2019 Seasonal and spatial variability in the optical characteristics of DOM in a temperate shelf sea. Progress in Oceanography. https://doi.org/10.1016/j.pocean.2018.02.025

This is the latest version of this item.

[img]
Preview
Text
1-s2.0-S0079661117302112-main.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
Official URL: https://www.sciencedirect.com/science/article/pii/...

Abstract/Summary

The Celtic Sea is a productive temperate sea located on the Northwest European Shelf. It is an important pathway for the delivery of land-derived material to the North Atlantic Ocean, including dissolved organic matter (DOM). The aim of this study was to determine the seasonal and spatial variability in the magnitude, source and composition of DOM at three sites representing on shelf, central shelf and shelf edge regions in the Celtic Sea, using observations collected during the UK Shelf Sea Biogeochemistry (SSB) research programme (November 2014 – August 2015). The concentration of dissolved organic carbon (DOC) alongside DOM absorbance and fluorescence indices were measured and fluorescence Excitation and Emission Matrices (EEMs) combined with Parallel Factor Analysis (PARAFAC) were used to assess DOM composition and lability. The PARAFAC model identified four unique fluorescent components for autumn (November 2014), winter (March 2015), spring (April 2015) and summer (July 2015) consisting of two humic-like components attributed to terrestrial (C1) and marine sources (C2), and two protein components identified as tyrosine-like (C3) and tryptophan-like (C4) attributed to in situ production. DOC varied seasonally and there were strong cross shelf trends. The protein components (C3 and C4) exhibited large seasonal and within season variability particularly during productive periods. In contrast, there were persistent cross shelf gradients in the CDOM absorption coefficient at 305 nm (a305), the UV specific absorbance at 280 nm (SUVA280), the humification index (HIX), and the humic-like fluorescent components (C1 and C2), which were higher in the on shelf region and decreased towards the shelf edge. The humic-like components and the slope ratio (SR) were significantly correlated with salinity throughout all seasons, indicating a strong influence of terrestrially-derived organic matter in the Celtic Sea, with potentially up to 35% of DOC in the central shelf during winter originating from terrestrial inputs. Results from this study illustrate the importance of monitoring DOM quantitatively and qualitatively for a better understanding of the supply, production, cycling and export of this dynamic organic carbon pool in shelf seas.

Item Type: Publication - Article
Subjects: Marine Sciences
Oceanography
Divisions: Plymouth Marine Laboratory > Science Areas > Marine Biochemistry and Observations
Depositing User: Malcolm Woodward
Date made live: 09 Jul 2018 09:58
Last Modified: 25 Apr 2020 09:59
URI: https://plymsea.ac.uk/id/eprint/7917

Available Versions of this Item

  • Seasonal and spatial variability in the optical characteristics of DOM in a temperate shelf sea. (deposited 09 Jul 2018 09:58) [Currently Displayed]

Actions (login required)

View Item View Item