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Summary

 UK and Ireland classification

EUNIS 2008 A1.3132 Fucus vesiculosus on mid eulittoral mixed substrata

JNCC 2015 LR.LLR.F.Fves.X Fucus vesiculosus on mid eulittoral mixed substrata

JNCC 2004 LR.LLR.F.Fves.X Fucus vesiculosus on mid eulittoral mixed substrata

1997 Biotope LR.SLR.FX.FvesX Fucus vesiculosus on mid eulittoral mixed substrata

 Description

Sheltered and very sheltered mid eulittoral pebbles and cobbles lying on sediment in fully marine
conditions typically characterized by the wrack Fucus vesiculosus. The wrack Ascophyllum
nodosum can occasionally be found on larger boulders while the barnacle Semibalanus
balanoides and the limpet Patella vulgata also can be present on the cobbles with the whelk Nucella
lapillus preying on the barnacles and on the mussel Mytilus edulis. Winkles, particularly Littorina
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littorea and Littorina obtusata, commonly graze the biofilm on the seaweeds, while Littorina
saxatilis can be found in crevices. Ephemeral seaweeds such as Ulva intestinalis may be present in
this biotope. The sediment between patches of hard substrata often contains the
polychaete Arenicola marina or the polychaete Lanice conchilega, while a variety of gastropods and
the crab Carcinus maenas occur on and under cobbles. Fves.X can be found below the biotope
dominated by the wrack Fucus spiralis (Fspi.X) or a community dominated by Semibalanus
balanoides, Patella vulgata and Littorina littorea (BLitX). It is found above a community dominated by
Mytilus edulis beds (Myt.Myt) or the wrack Fucus serratus (Fserr.X). Some seasonal variation in the
ephemeral seaweeds and their abundance is likely. (Information from Connor et al., 2004; JNCC,
2015).

 Depth range

-

 Additional information

No text entered

 Listed By

- none -

 Further information sources

Search on:

   JNCC

http://www.google.co.uk/search?q=iFucus+vesiculosus/i+on+mid+eulittoral+mixed+substrata
http://scholar.google.co.uk/scholar?q=iFucus+vesiculosus/i+on+mid+eulittoral+mixed+substrata
http://www.google.co.uk/search?q=LR.LLR.F.Fves.X
https://mhc.jncc.gov.uk/search/?q=LR.LLR.F.Fves.X
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Habitat review

 Ecology

Ecological and functional relationships

The luxuriance of the Fucaceae is normally a striking feature of sheltered shores in the eulittoral
zone. Areas of bedrock or large boulders may be festooned with masses of long-fronded
Ascophyllum nodosum. In such areas, Fucus vesiculosus may be the only other seaweed of note and is
as often attached to the bladders of Ascophyllum nodosum, as to the rock beneath. Ascophyllum
nodosum will germinate beneath a canopy of Fucus vesiculosus and will eventually outgrow and
displace it, although Ascophyllum nodosum does benefit from the protection offered against
desiccation by fronds of Fucus vesiculosus. However, sheltered and very sheltered mid eulittoral
pebbles and cobbles lying on sediment are typically characterized by Fucus vesiculosus rather than
Ascophyllum nodosum. The low abundance of Ascophyllum nodosum in SLR.FvesX is related to the
unsuitable anchorage which the small pebbles and cobbles provide for plants whose fronds may
grow up to 2 meters in length, and it is noticeable that any Ascophyllum nodosum on stony beaches
is typically small (Lewis, 1964).

The pebble and cobble beaches of SLR.FvesX have a poor fauna in comparison to open shore
locations on bedrock, presumably as a result of siltation, variable salinity and the instability of the
substratum. Where Fucus vesiculosus is absent there is a scattering of the barnacle Semibalanus
balanoides and occasional Patella vulgata whose abundance is limited by the availability of larger
rocks. Littorina littorea which is tolerant of both muddy/silty and brackish conditions tends to
cluster on the tops of small stones. Although Mytilus edulis is less common on cobbles and pebbles
than on larger boulders or bedrock, its beds serve to enhance the stability of the substratum.
Patchiness is a fundamental feature of rocky shore communities and although probably modified
to some extent on mixed substrata, would probably still be observable in the SLR.FvesX biotope.
For instance, Patella vulgata can play a role as a structuring agent owing to its grazing activity.
Reductions in limpet density allows the settlement of Fucus vesiculosus whose cover encourages
aggregations of mobile fauna. Semibalanus balanoides is often excluded from the larger, most stable
boulders in the biotope by Fucus vesiculosus, owing to the 'sweeping' effect that the fronds have
upon the rock. However, in extremely sheltered locations, even the smallest stones are relatively
stable but remain unoccupied by algal sporelings so barnacles settle (Lewis, 1964; Raffaelli &
Hawkins, 1996).

The characterizing species of the sediment beneath the pebbles and cobbles are infaunal. Hediste
diversicolor displays plasticity in its feeding methods. Hediste diversicolor is primarily a deposit
feeder but is able to switch to suspension feeding when conditions allow. Obligate deposit feeders
such as Arenicola marina are also numerous in the sediment (McLusky & Elliott, 1981; Nielsen et al.,
1995).

Seasonal and longer term change

The biotope occurs in extremely sheltered conditions so temporal changes associated with winter
storms are not likely. However, seasonal changes in growth and recruitment would be expected in
this biotope. In summer months, a covering of the ephemeral seaweed Ulva tends to develop on the
surface of smaller mobile pebbles.

https://www.marlin.ac.uk/species/detail/1336
https://www.marlin.ac.uk/species/detail/1330
https://www.marlin.ac.uk/species/detail/1376
https://www.marlin.ac.uk/species/detail/1376
https://www.marlin.ac.uk/species/detail/1371
https://www.marlin.ac.uk/species/detail/1328
https://www.marlin.ac.uk/species/detail/1421
https://www.marlin.ac.uk/species/detail/1426
https://www.marlin.ac.uk/species/detail/1426
https://www.marlin.ac.uk/species/detail/1402
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Habitat structure and complexity

The mixed nature of pebbles and cobbles on sand/mud creates a habitat of considerable
complexity. Larger cobbles covered in Fucus vesiculosus provide substratum and shelter for a very
wide variety of species, including the tube worm Spirorbis spirorbis, herbivorous isopods, such as
Idotea, gammarid amphipods, surface grazing snails, and provides considerable substratum for
epiphytic species. Beneath the largest cobbles and pebbles (if free of sediment) underboulder
communities may be found. The size range of the pebbles and cobbles adds extra complexity as
some will be too small and too unstable (e.g. subject to overturn) for some species to persist. The
sediment beneath is likely to be poorly sorted as currents are modified locally by the uneven
surface topography, silt content is likely to be high owing to the weak tidal flow and wave sheltered
locations where the biotope occurs, that allows particulate matter to fall out of suspension.

Productivity

Rocky shore communities are highly productive and are an important source of food and nutrients
for members of neighbouring terrestrial and marine ecosystems (Hill et al., 1998). However in the
SLR.FvesX biotope, floral and faunal species do not attain the same biomass that may be found on
stable rocky substrata on the open coast, so in comparison productivity in this biotope is likely to
be considerably less. Macroalgae, such as Fucus vesiculosus and Ascophyllum nodosum in the
SLR.AscX biotope, exude considerable amounts of dissolved organic carbon which are taken-up
readily by bacteria and may even be taken-up directly by some larger invertebrates. Dissolved
organic carbon, algal fragments and microbial film organisms are continually removed by the sea.
This may enter the food chain of local, subtidal ecosystems, or be exported further offshore. Rocky
shores make a contribution to the food of many marine species through the production of
planktonic larvae and propagules which contribute to pelagic food chains.

Recruitment processes

Many rocky shore species possess a planktonic stage: gametes, spores or larvae which float in the
plankton before settling and metamorphosing into adult form. This strategy allows species to
rapidly colonize new areas that become available, such as gaps created by grazers or abrasion.
Recruitment processes for the characteristic and abundant species in this biotope are described
below.

Fucus vesiculosus is a fast growing species (young plants have shown variation from 0.25 to
0.7 cm per week in linear growth), able to colonize patches of clear substratum rapidly.
Development of the receptacles takes three months from initiation until when gametes
are released. On British shores, receptacles are initiated around December and may be
present on the plant till late summer. Gametes may be produced from mid winter until late
summer with a peak of fertility in May and June. Plants are dioecious. Eggs and sperm are
released into the seawater and fertilised externally. Zygotes settle to the seabed and
begin development wherever they fall. The egg becomes attached to the rock within a few
hours of settlement and may adhere firmly enough to resist removal by the next returning
tide (Knight & Parke, 1950).
In contrast, Ascophyllum nodosum is a slow growing species that can live between 10-15
years, but recruitment of Ascophyllum nodosum is very poor with few germlings found on
the shore. The reason for poor recruitment is unclear, because the species invests the
same high level of energy in reproduction as other fucoids and is extremely fertile every
year (Printz, 1959). However, the reproductive period lasts about two months, much
shorter than for other fucoids.

https://www.marlin.ac.uk/species/detail/1330
https://www.marlin.ac.uk/species/detail/1330
https://www.marlin.ac.uk/species/detail/1336
https://www.marlin.ac.uk/species/detail/1330
https://www.marlin.ac.uk/species/detail/1336
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Ulva is a rapidly growing opportunistic species which can colonize bare substrate soon
after it is created. The haploid gametophytes of Ulva produce enormous numbers of
motile gametes which cluster, fuse and produce zygotes. The resulting sporophytes also
produce large numbers of motile spores. Together, zygotes and spores are termed
'swarmers' which are released as the incoming tide wets the thallus. The degree of release
peaks just before the highest tide of each neap-spring cycle (Christie & Evans, 1962)
Littorina littorea can breed throughout the year but the length and timing of the breeding
period are extremely dependent on climatic conditions. Also, estuaries provide a more
nutritious environment than the open coast (Fish, 1972). Sexes are separate, and
fertilisation is internal. Littorina littorea sheds egg capsules directly into the sea. Egg
release is synchronized with spring tides and occurs on several separate occasions. In
estuaries the population matures earlier in the year and maximum spawning occurs in
January (Fish, 1972). Fecundity value is up to 100,000 for a large female (27mm shell
height) per year. Female fecundity increases with size. Larval settling time or pelagic
phase can be up to six weeks. Males prefer to breed with larger, more fecund females
(Erlandsson & Johannesson, 1992). Parasitism by trematodes may cause sterility in
Littorina littorea.
Recruitment of Patella vulgata fluctuates from year to year and from place to place
(Bowman, 1981). Fertilization is external and the larvae are pelagic for up to two weeks
before settling on rock at a shell length of about 0.2mm. Winter breeding occurs only in
southern England, in the north of Scotland it breeds in August and in north-east England in
September.
Barnacle recruitment can be very variable because it is dependent on a suite of
environmental and biological factors, such as wind direction and success depends on
settlement being followed by a period of favourable weather. Long-term surveys have
produced clear evidence of barnacle populations responding to climatic changes. During
warm periods Chthamalus spp. Predominate, whilst Semibalanus balanoides does better
during colder spells (Hawkins et al., 1994). Release of Semibalanus balanoides larvae takes
place between February and April with peak settlement between April and June.
The infaunal polychaetes Hediste diversicolor and Arenicola marina have high fecundity and
the eggs develop lecithotrophically within the sediment or at the sediment surface. There
is no pelagic larval phase and the juveniles disperse by burrowing. Recruitment must
occur from local populations or by longer distance dispersal of postlarvae in water
currents or during periods of bedload transport. For example, Davey & George (1986),
found evidence that larvae of Hediste diversicolor were tidally dispersed within the Tamar
Estuary over a distance of 3 km, as larvae were found on an intertidal mudflat which
previously lacked a resident population of adults. Recruitment is therefore likely to be
predictable if local populations exist but patchy and sporadic otherwise.

Time for community to reach maturity

No specific information was found concerning time taken for the community to reach maturity.
However, the characterizing species of the SLR.FvesX biotope are widespread, highly fecund and
quick to grow and mature and so the community would be expected to reach maturity within 5
years.

Additional information

The time for the SLR.AscX biotope (also represented by this review) to reach maturity is likely to
be many years because Ascophyllum nodosum has very poor recruitment and is very slow growing.

https://www.marlin.ac.uk/species/detail/1328
https://www.marlin.ac.uk/species/detail/1371
https://www.marlin.ac.uk/species/detail/1376
https://www.marlin.ac.uk/species/detail/1426
https://www.marlin.ac.uk/species/detail/1402
https://www.marlin.ac.uk/species/detail/1336
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The species does not reach sexual maturity until about 5 years of age and individual fronds can live
to be up to 15 years old and whole plants for several decades. In their work on fucoid
recolonization of cleared areas at Port Erin, Knight and Parke (1950) observed that even eight
years after the original clearance there was still no sign of the establishment of an Ascophyllum
nodosum population. There is a long-recognised shortage of sporelings (David, 1943) and the
failure of the species to recolonize denuded areas for decades. However, the species is extremely
fertile every year and Printz (1959) suggested that it must be assumed that some special
combination of climatic or environmental conditions is needed for an effective recolonization. If
plants are not removed completely Ascophyllum nodosum plants cut within 10-15cm of the base
recover fully in 4-5 years (Printz, 1959).

 Preferences & Distribution

Habitat preferences

Depth Range

Water clarity preferences

Limiting Nutrients Nitrogen (nitrates)

Salinity preferences Full (30-40 psu), Variable (18-40 psu)

Physiographic preferences Enclosed coast / Embayment

Biological zone preferences Eulittoral

Substratum/habitat preferences Mixed

Tidal strength preferences Very Weak (negligible), Weak < 1 knot (<0.5 m/sec.)

Wave exposure preferences Extremely sheltered, Sheltered, Very sheltered

Other preferences

Additional Information

Nitrogen is the primary resource that limits seaweed growth and consequently variations in
seaweed growth should parallel variations in the nitrogen supply (Lobban & Harrison, 1997).

 Species composition

Species found especially in this biotope

Rare or scarce species associated with this biotope

-

Additional information

In the SLR.AscX and SLR.FserX biotopes, Ascophyllum nodosum and Fucus serratus would be the
important characterizing species respectively.

https://www.marlin.ac.uk/glossarydefinition/waterclarity
https://www.marlin.ac.uk/species/detail/1336
https://www.marlin.ac.uk/species/detail/1326
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Sensitivity review

 Sensitivity characteristics of the habitat and relevant characteristic species

This biotope is characterized by a dense canopy of Fucus vesiculosus. Beneath the fucoid canopy the
barnacle Semibalanus balanoides, the limpet Patella vulgata, and a variety of Littorinids are dominant
faunal grazers. The mussel Mytilus edulis is confined to fissures and crevices where the
environmental conditions are less severe. Carnivores within these biotopes include Nucella
lapillus and Carcinus maenus. Other species of macroalgae can be found within these biotopes but
are not as common as Fucus vesiculosus.

Fucus vesiculosus is the key structuring species of this biotope. The macroalgae forms a canopy that
provides protection from desiccation for underlying fauna. the macroalgae forms a canopy that
provides protection from desiccation for the various underlying foliose red seaweeds in addition to
providing a substratum for a diverse range of epifauna. As ecosystem engineers fucoid algal
canopies modify habitat conditions. This can facilitate the existence and survival of other intertidal
species and therefore strongly influence the structure and functioning of intertidal ecosystems
(Jenkins et al., 2008).

 Resilience and recovery rates of habitat

Since the 1940s major declines in the distribution of Fucus vesiculosus (Kautsky et al., 1986) and
even local extinctions (Nilsson et al., 2005) have been observed in the Baltic Sea where the species
dominates the shallow hard-bottom areas. The decline was likely a consequence of increased
anthropogenic stress. Large-scale disappearance of Fucus vesiculosus from an ecosystem can result
in changes in the community composition (Wikstrom & Kautsky, 2007). The canopy created
by Fucus vesiculosus forms a microclimate for the understory fauna and flora. Removal of the
canopy exposes under lying fauna and flora to environmental conditions with which they would be
intolerant of resulting in mortality events.

Fucus vesiculosus recruits readily to cleared areas of the shore and full recovery takes 1-3 years in
British waters (Hartnoll & Hawkins, 1985). Keser & Larson (1984) investigated the recovery of
Fucus vesiculosus to plots which had been scraped clean and burned with a propane torch. Fucus
vesiculosus was the first perennial alga to colonize the experimentally denuded transects, even at
sites and tidal levels that had been dominated by Ascophyllum or Chondrus crispus beforehand.
Recovery occurred at all sites between 3 to 21 months. The study found newly settled germlings
of Fucus vesiculosus in most months, indicating a broad period of reproduction. When grazers are
excluded from areas of intertidal shores fucoids have the ability to rapidly recolonize areas, they
can even be found in areas, which in a balanced ecosystem, they do not normally occur (Burrows &
Lodge, 1950, Southward & Southward, 1978). Fucoid distributions return to their recognized
zones when grazers are re-established on a shore (Burrows & Lodge, 1950, Southward &
Southward, 1978). Although intertidal shores can rapidly regain fucoids it can take considerably
longer for ecosystem function to return if grazers have also been lost (Hawkins & Southward,
1992). If the whole community is removed, recovery is likely to occur at a much lower pace. Indeed,
Hawkins & Southward (1992) found that, after the M.V. Torrey Canyon oil spill, it took between 10
and 15 years for the Fucus spp. to return to 'normal' levels of spatial and variation in cover on
moderately exposed shores. Therefore, for factors which are likely to totally destroy the biotope,
recoverability is likely to be low.

Fucus vesiculosus growth rates can vary both spatially and temporally (Lehvo et al., 2001).
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Temperature, exposure, and light availability are some of the factors which cause these changes in
growth rates (Strömgren, 1977, Knight & Parke, 1950, Middelboe et al., 2006). Strömgren (1977)
investigated the effect of short-term increases in temperature on the growth rate of Fucus
vesiculosus. It was found that the growth rate of the control sample kept at 7°C was 20 times lower
than the sample introduced to temperatures of 35 °C (Strömgren, 1977). When the effect of
temperature was investigated on the shore, relative growth rates in summer were found to be as
high as 0.7% / day in summer, compared to less than 0.3% / day in winter (Lehvo et al., 2001). For
macroalgae the trend is for shorter individuals in situations with greater wave exposure (Lewis,
1961, Stephenson & Stephenson, 1972, Hawkins et al., 1992, Jonsson et al., 2006). Fucus
vesiculosus also comply with this trend, and growth rates mirror this difference in physiology. On
Sgeir Bhuidhe, an exposed shore in Scotland, Fucus vesiculosus grew on average 0.31 cm / week. On
a sheltered Scottish shore the average increased to 0.68 cm / week (Knight & Parke, 1950).

The development of the receptacles takes three months from initiation until when gametes are
released (Knight, 1947). On British shores, receptacles are initiated around December and may be
present until late summer (Knight , 1947). The alga is dioecious, and gametes are generally
released into the seawater under calm conditions (Mann, 1972; Serrão et al., 2000) and the eggs
are fertilized externally to produce a zygote. Serrão et al. (1997) determined that the wrack had a
short-range dispersal capacity. Under calm conditions in which eggs are released, most eggs fall in
the immediate vicinity of the parent plants. The egg becomes attached to the rock within a few
hours of settlement and adhere firmly enough to resist removal by the next returning tide and
germling may be visible to the naked eye within a couple of weeks (Knight & Parke, 1950). Despite
the poor long range dispersal, the species is highly fecund often bearing more than 1000
receptacles on each plant, which may produce in excess of one million eggs. On the coast of Maine,
sampling on three separate occasions during the reproductive season revealed 100% fertilization
on both exposed and sheltered shores (Serrão et al., 2000). Fertilization is thus not considered as a
limiting factor in reproduction in this species (Serrão et al., 2000).

Mortality is extremely high in the early stages of germination up to a time when plants are 3 cm in
length and this is due mostly to mollusc predation (Knight & Parke 1950). While Fucus
vesiculosus may resist some degree of environmental stress, their long-term persistence depends
on their reproductive ability as well as the survival and growth of early life history stages
(germlings) that are generally more susceptible to natural and anthropogenic stressors than adults
(Steen, 2004; Fredersdorf et al., 2009). It is therefore necessary to include early life stage
responses in the assessment of effects of environmental changes on fucoid algae as only
considering fully developed adults specimens may lead to false conclusions (Nielsen et al., 2014).

Genetic diversity can influence the resilience of fucoids in particular when pressure persists over a
long period of time. Genetically diverse populations are generally more resilient to changes in
environmental conditions compared to genetically conserved populations. Tatarenkov et al. (2007)
determined a high level of genetic variation in Fucus vesiculosus and extensive phenotypic
variation. They suggested this might explain why the species is more successful than most fucoid
species in colonizing marginal marine environments such as low-salinity estuaries, showing a range
of morphological, physiological and ecological adaptations (Tatarenkov et al. 2005). Pressures
causing a rapid change will have a greater impact as the natural ability of the species to adapt is
compromised.

In addition to sexual reproduction, Fucus vesiculosus is also able to generate vegetative regrowth in
response to wounding. McCook & Chapman (1992) experimentally damaged Fucus vesiculosus
holdfasts to test the ability of the wrack to regenerate. The study found that vegetative sprouting
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of Fucus vesiculosus holdfasts made a significant addition to the regrowth of the canopy, even when
holdfasts were cut to less than 2 mm tissue thickness. Four months after cutting, sprouts ranged
from microscopic buds to shoots about 10 cm long with mature shoots widespread after 12
months. Vegetative regrowth in response to wounding has been suggested as an important mean
of recovery from population losses (McLachan & Chen, 1972). The importance of regeneration will
depend on the severity of damage, not only in terms of the individuals but also in terms of the scale
of canopy removal (McLachan & Chen, 1972).

Resilience assessment. If specimens of Fucus vesiculosus remain in small quantities it is likely that
re-growth will occur rapidly due to efficient fertilization rates and recruitment over short
distances. The ability of Fucus vesiculosus to re-grow from damaged holdfasts will also aid in
recolonization. Recovery is likely to occur within two years resulting in a ‘High’ resilience score.
However, if the population is removed (resistance is ‘None’) , recovery may take longer, perhaps up
to 10 years (as seen after the M.V. Torrey Canyon oil spill) so the resilience would be scored as
‘Medium’.

The resilience and the ability to recover from human induced pressures is a combination of the
environmental conditions of the site, the frequency (repeated disturbances versus a one-off event)
and the intensity of the disturbance.  Recovery of impacted populations will always be mediated by
stochastic events and processes acting over different scales including, but not limited to, local
habitat conditions, further impacts and processes such as larval-supply and recruitment between
populations. Full recovery is defined as the return to the state of the habitat that existed prior to
impact. This does not necessarily mean that every component species has returned to its prior
condition, abundance or extent but that the relevant functional components are present and the
habitat is structurally and functionally recognisable as the initial habitat of interest. It should be
noted that the recovery rates are only indicative of the recovery potential.

 Hydrological Pressures
 Resistance Resilience Sensitivity

Temperature increase
(local)

High High Not sensitive
Q: High A: High C: Medium Q: High A: High C: Medium Q: High A: High C: Medium

In the north east Atlantic Fucus vesiculosus occurs from Northern Russia to Morocco (Powell,
1963). Within this range Fucus vesiculosus can survive in a wide variety of temperatures. Fucus
vesiculosus is able to tolerate temperatures as high as 30 °C (Lüning,1990) and did not show any
sign of damage during the extremely hot UK summer of 1983, when average temperatures were 8
°C hotter than normal (Hawkins & Hartnoll, 1985). Fucus vesiculosus also tolerates extended
periods of freezing in the northern part of its range.

Sensitivity assessment. Both Fucus spiralis and Fucus vesiculosus are found in the middle of their
natural temperature range in the British Isles and will therefore not be affected by an increase in 5
°C for one month or an increase of 2 °C for one year. Both resistance and resilience are thus
assessed as ‘High’ (no impact to recover from). The biotope is ‘Not Sensitive’ to this pressure at the
pressure benchmark. 

Temperature decrease
(local)

High High Not sensitive
Q: High A: High C: Medium Q: High A: Medium C: High Q: High A: High C: Medium

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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In the north east Atlantic Fucus vesiculosus occurs from Northern Russia to Morocco (Powell,
1963). Within this range Fucus vesiculosus can survive in a wide variety of temperatures. Fucus
vesiculosus is able to tolerate temperatures as high as 30 °C (Lüning,1990) and did not show any
sign of damage during the extremely hot UK summer of 1983, when average temperatures were 8
°C hotter than normal (Hawkins & Hartnoll, 1985). Fucus vesiculosus also tolerates extended
periods of freezing in the northern part of its range.

Sensitivity assessment. Both Fucus spiralis and Fucus vesiculosus are found in the middle of their
natural temperature range in the British Isles and will therefore not be affected by a decrease in 5
°C for one month or a decrease of 2 °C for one year. Both resistance and resilience are thus
assessed as ‘High’ (no impact to recover from). The biotope is ‘Not Sensitive’ to this pressure at the
pressure benchmark. 

Salinity increase (local) Medium Medium Medium
Q: High A: High C: Medium Q: High A: High C: Medium Q: High A: High C: Medium

Fucus vesiculosus is well adapted to cope with varying salinities and can grow in full saline to
brackish conditions. Indeed Fucus vesiculosus is the dominant large perennial seaweed in the Baltic
Sea growing in salinities down to 4 psu (Kautsky, 1992). Bäck et al. (1992) compared Fucus
vesiculosus individuals from Atlantic and the Baltic populations. Both populations were able to
withstand wide range of salinities in laboratory cultures, yet some differences were recorded. The
Atlantic population showed better growth in higher salinities and virtually no growth at 5 ppt.
Those individuals kept at 5 ppt mortality occurred after 7 weeks. In contrast the Baltic wracks
grew better in conditions with lower salinities. Growth was negligible at the highest tested salinity
(45 ppt). Back et al., (1992) demonstrate that sensitivity of Fucus vesiculosus to changes in salinity
differ between populations.

Serrao et al. (1996a) found that lower salinities can negatively affect both the fertilization rates
and recruitment success of Fucus vesiculosus. Serrao et al. (1996a) also concluded that the osmotic
tolerances of Fucus vesiculosus gametes limit the species distribution in the Baltic Sea. These
studies show that low salinities limit the recruitment and fertilization success of fucoids. There is
also evidence suggesting that reduced salinities can influence the rate of receptacle maturation in
fucoids (Munda, 1964). Rate of fructification in both Ascophylum nodosum and Fucus vesiculosus has
been measured to increase in diluted seawater (Munda, 1964).

Sensitivity assessment. An increase in salinity for this biotope would mean salinity levels would
become hyper-saline. Fucus vesiculosus is not adapted for these conditions and a change in this
pressure at this benchmark would cause some mortality. Other species within this biotope may be
able to tolerate an increase in salinity, however the loss of Fucus vesiculosus would lead to a change
in the biotope. Both resistance and resilience are thus assessed as ‘Medium’. The biotope has a
‘Medium’ sensitivity to this pressure at the pressure benchmark. 

Salinity decrease (local) High High Not sensitive
Q: High A: High C: Medium Q: High A: High C: Medium Q: High A: High C: Medium

Fucus vesiculosus is well adapted to cope with varying salinities and can grow in full saline to
brackish conditions. Indeed Fucus vesiculosus is the dominant large perennial seaweed in the Baltic
Sea growing in salinities down to 4 psu (Kautsky, 1992). Bäck et al. (1992) compared Fucus
vesiculosus individuals from Atlantic and the Baltic populations. Both populations were able to
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withstand wide range of salinities in laboratory cultures, yet some differences were recorded. The
Atlantic population showed better growth in higher salinities and virtually no growth at 5 ppt.
Those individuals kept at 5 ppt mortality occurred after 7 weeks. In contrast the Baltic wracks
grew better in conditions with lower salinities. Growth was negligible at the highest tested salinity
(45 ppt). Back et al., (1992) demonstrate that sensitivity of Fucus vesiculosus to changes in salinity
differ between populations.

Serrao et al. (1996a) found that lower salinities can negatively affect both the fertilization rates
and recruitment success of Fucus vesiculosus. Serrao et al. (1996a) also concluded that the osmotic
tolerances of Fucus vesiculosus gametes limit the species distribution in the Baltic Sea. These
studies show that low salinities limit the recruitment and fertilization success of fucoids. However,
there is also some evidence suggesting that reduced salinities can influence the rate of receptacle
maturation in fucoids (Munda, 1964). Rate of fructification in both Ascophylum nodosum and Fucus
vesiculosus has been measured to increase in diluted seawater (Munda, 1964).

Sensitivity assessment. Fucus vesiculosus found in the middle of its natural range in the UK will not
be affected by a decrease in one MNCR salinity category. Both resistance and resilience are thus
assessed as ‘High’ (no impact to recover from). The biotope is ‘Not Sensitive’ to this pressure at the
pressure benchmark.

Water flow (tidal
current) changes (local)

High High Not sensitive
Q: Medium A: Medium C: Medium Q: High A: High C: Medium Q: Medium A: Medium C: Medium

Water motion is a key determinant of marine macroalgal ecology, influencing physiological rates
and community structure (Hurd, 2000). Higher water flow rates increase mechanical stress on
macroalgae by increasing drag. This can result in individuals being torn off the substratum. Once
removed, the attachment cannot be reformed causing the death of the algae. Any sessile organism
attached to the algae will also be lost.  Fucoids are however highly flexible and are able to re-
orientate their position in the water column to become more streamlined. This ability allows
fucoids to reduce the relative velocity between algae and the surrounding water, thereby reducing
drag and lift (Denny et al., 1998).

Jonsson et al. (2006) found that flow speed of 7-8 m/s completely dislodged Fucus
vesiculosus individuals larger than 10 cm. Smaller individuals are likely to better withstand
increased water flow as they experience less drag. The risk of dislodgement is greater where algae
are attached to pebbles instead of bedrock. Indeed if sediment type is small and the substratum is
less stable, individuals may eventually reach a critical size when the drag force exceeds gravity and
the plant will be moved together with its substratum (Malm, 1999).  This risk is increased during
the late phase of reproduction when Fucus vesiculosus receptacles become swollen and gas-filled
increasing the uplifting force of water flow (Isaeus, 2004).

Propagule dispersal, fertilization, settlement, and recruitment are also influenced by water
movement (Pearson & Brawley, 1996). In addition, increased water flow increases scour through
increased sediment movement. Small life stages of macroalgae are likely to be affected by
removing new recruits from the substratum and hence reducing successful recruitment (Devinny
& Volse, 1978) (see ‘siltation’ pressures).  Changes in water motion can thus strongly influence
local distribution patterns of Fucus spp. (Ladah et al., 2008).

On the other hand, a reduction in water flow can cause a thicker boundary layer resulting in lower
absorption of nutrients and CO2 by the macroalgae. Slower water movement can also cause
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oxygen deficiency directly impacting the fitness of algae (Olsenz, 2011).

This Fucus vesiculosus biotope is recorded in moderately exposed to very sheltered wave
exposures. The water flows experienced by this biotope range from negligible - 1.5 m/s (Connor et
al., 2004). The water flows which are created by wave movement in moderately exposed locations
will exceed the water flows which are characteristic of this biotope.

Sensitivity assessment. This biotope is characteristic of moderately exposed to very sheltered
conditions. In those examples of this biotope which are found in moderately exposed conditions
water movement from wave action will exceed the strength of any tidal flow. This suggests that an
increase in water flow of 0.2m/s would not have a negative effect on this biotope as it can tolerate
greater water movement caused by waves. Based on the available evidence the characterizing
species Fucus vesiculosus can adapt to high flow rates and the biotope is therefore considered to be
'Not sensitive' to an increase in water flow. A decrease in water flow may have some effects on
recruitment and growth, but this is not considered to be lethal at the pressure benchmark and
resistance is therefore assessed as 'High' and resilience as 'High' by default, so that the biotope is
considered to be 'Not sensitive'.

Emergence regime
changes

None Medium Medium
Q: High A: Medium C: Medium Q: High A: High C: Medium Q: High A: Medium C: Medium

Emergence regime is a key factor structuring intertidal biotopes.  Increased emergence may
reduce habitat suitability for the characterizing species. Changes in emergence can lead to; greater
exposure to desiccation, reduced levels of time for nutrient uptake and photosynthesising
opportunities for the characterizing species.

During the initial stages of drying, when alga are exposed to air, photosynthetic rates increase due
to the higher diffusion rate of CO2 in air relative to water (Johnson et al., 1974).  However this peak
in photosynthesis is usually followed by a gradual decline in the rate of photosynthesis as the
surface of the alga dries, thereby preventing further dissolution and uptake of CO2 (Beer &
Kautsky 1992). Photosynthesis eventually ceases at a critical state of dehydration when the low
water content of the thallus disrupts the functioning of the photosynthetic apparatus (Quadir et al.
1979). Fucus vesiculosus can tolerate desiccation until the water content is reduced to ~ 30%. If
desiccation occurs beyond this level, irreversible damage occurs. Individuals at the top of the shore
probably live at the upper limit of their physiological tolerance and are therefore likely to be
unable to tolerate increased desiccation and would be displaced by more physiologically tolerant
species. Tolerance to this pressure is likely to vary on a geographical scale. Gylle et al. (2009) found
that Fucus vesiculosus populations naturally occurring in fully saline conditions had a higher
emersion stress tolerance compared to brackish populations. Early life history stages are more
susceptible to this pressure compared to adults (Henry & Van Alstyne, 2004). Germlings are
however protected from desiccation by the canopy of adults. A study by Brawley & Jonhnson
(1991) showed that germling survival under adult canopy was close to 100% whereas survival on
adjacent bare rock was close to 0% during exposure to aerial conditions. The Fucus canopy is also
likely to protect other underlying species to a great extent. Mortalities of other component of the
community will however occur if the canopy is removed (see ‘abrasion’ pressure). Fucus spiralis is
more tolerant of desiccation stress than Fucus vesiculosus, and is the characterizing species for a
very similar biotope to this one which is found further up the shore. An increase in emergence may
cause the biotope to change to one more typical of an upper shore location. Alternatively if levels
of emergence were to increase then Fucus vesiculosus may be out-competed by a faster growing
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algae species such as Fucus serratus, an algae species which is found in a number of biotopes which
characterize lower shore zones.

Fucoid dominated biotopes are found in the eulittoral zone and are subjected to cyclical immersion
and emersion caused by the tides. During the initial stages of drying, when alga are exposed to air,
photosynthetic rates increase due to the higher diffusion rate of CO2 in air relative to water
(Johnson et al., 1974).  However this peak in photosynthesis is usually followed by a gradual decline
in the rate of photosynthesis as the surface of the alga dries, thereby preventing further
dissolution and uptake of CO2 (Beer & Kautsky 1992). Photosynthesis eventually ceases at a
critical state of dehydration when the low water content of the thallus disrupts the functioning of
the photosynthetic apparatus (Quadir et al. 1979).

Fucus vesiculosus can tolerate desiccation until the water content is reduced to ~ 30%. If
desiccation occurs beyond this level, irreversible damage occurs. Individuals at the top of the shore
probably live at the upper limit of their physiological tolerance and are therefore likely to be
unable to tolerate increased desiccation and would be displaced by more physiologically tolerant
species. Tolerance to this pressure is likely to vary on a geographical scale. Gylle et al. (2009) found
that Fucus vesiculosus populations naturally occurring in fully saline conditions had a higher
emersion stress tolerance compared to brackish populations.

Early life history stages are more susceptible to this pressure compared to adults (Henry & Van
Alstyne, 2004). Germlings are however protected from desiccation by the canopy of adults. A
study by Brawley & Jonhnson (1991) showed that germling survival under adult canopy was close
to 100% whereas survival on adjacent bare rock was close to 0% during exposure to aerial
conditions. The Fucus canopy is also likely to protect other underlying species to a great extent.
Mortalities of other component of the community will however occur if the canopy is removed (see
‘abrasion’ pressure).

Sensitivity assessment.  Desiccation and the associated osmotic stress, especially when combined
with high temperatures can cause mortalities (Pearson et al., 2009). The sensitivity of Fucus
vesiculosus to emersion pressure will depend on individual populations as well as the life stage, with
germlings being most vulnerable. A change in emergence is likely to cause a change in biotope. 
Resistance has been assessed as ‘None’ and resilience is assessed as ‘Low’. Overall the biotope has
a ‘Medium’ sensitivity to changes in emergence regime at the pressure benchmark.

Wave exposure changes
(local)

Medium Medium Medium
Q: High A: Medium C: Medium Q: High A: High C: Medium Q: High A: Medium C: Medium

An increase in wave exposure generally leads to a decrease in macroalgae abundance and size
(Lewis, 1961, Stephenson & Stephenson, 1972, Hawkins et al., 1992, Jonsson et al., 2006).  Fucoids
are highly flexible but not physically robust and an increase in wave exposure can cause
mechanical damage, breaking fronds or even dislodging whole algae from the substratum. Fucoids
are permanently attached to the substratum and would not be able to re-attach if removed.
Organisms living on the fronds and holdfasts will be washed away with the algae whereas free-
living community components could find new habitat in surrounding areas. Wave exposure has
been shown to limit size of fucoids (Blanchette, 1997) as smaller individuals create less resistance
to waves.

As exposure increases the fucoid population will become dominated by small juvenile algae, and
dwarf forms of macroalgaes which are more resistant to this pressure. An increase in wave action
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beyond this would lead to a further increase in the abundance of robust fucoids and red seaweeds,
such as Corallina officinalis (Connor et al,. 2004).

A recent study investigated the combined impacts of wave action and grazing on macroalgae
distribution (Jonsson et al., 2006). It suggested that recruitment and survival of juvenile Fucus
vesiculosus is controlled indirectly by wave exposure, through higher limpet densities at exposed
locations (Jonsson et al,, 2006). Fucus vesiculosus have shown to adapt their morphology to wave
exposure to help cope with the stress. For instance Bäck (1993) observed shorter individuals with
narrow fronds on exposed shores lacking bladders to reduce drag. An alternative coping strategy
for wave induced forces is thallus toughening. In the north and the Baltic Sea, thalli from exposed
Fucus vesiculosus were 30% more resistant to tear and breakage compared to conspecifics from
more sheltered sites (Nietsch, 2009). Furthermore, Fucus vesiculosus is able to regenerate from
holdfasts (Malm & Kautsky, 2003).

This biotope occurs in moderately exposed to extremely sheltered conditions. Therefore an
example of this biotope found in the middle of the wave exposure range would tolerate either an
increase or decrease in significant wave height at the pressure benchmark. Examples of this
biotope where they are on the limit of wave exposure are more likely to be sensitive to an increase
in significant wave height, which could cause a shift in the character of the biotope. The mixed
sediment composition within this biotope means that an increase in wave exposure could increase
the effects of scour.  No direct evidence can be found for how an increase at the benchmark might
impact this biotope. A decrease in wave exposure is unlikely to have an impact on this biotope as it
already appears in extremely wave sheltered conditions. An example of this biotope found in
moderately exposed conditions may be affected by an increase in wave exposure and could
potentially change to an alternative biotope. Fucus vesiculosus biotopes found in situations with
greater wave include a greater quantity of barnacles and limpets, LR.MLR.BF.FvesB is an example
of which. Other fucoid biotopes in greater wave exposure tend to shift away from Fucus vesiculosus
and become more dominated by Fucus serratus and occasionally Fucuc spiralis.

Sensitivity assessment. Although no direct evidence can be found for a change in wave exposure
at the benchmark of this pressure, Fucus vesiculosus is sensitive to a change in wave action and
consequently has the capacity to alter the biotope type. Increased exposure at the limits of
physical tolerance of this biotope could result in a change of biomass and species richness.
Resistance and resilience are both assessed as ‘Medium’. Recovery will depend on the extent of
loss and could potentially be faster depending on the extent of Fucus vesiculosus loss. Overall this
biotope scores a ‘Medium’ sensitivity to this pressure at the pressure benchmark.

 Chemical Pressures
 Resistance Resilience Sensitivity

Transition elements &
organo-metal
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

Hydrocarbon & PAH
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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This pressure is Not assessed but evidence is presented where available.

Synthetic compound
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

Radionuclide
contamination

No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence.

Introduction of other
substances

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed.

De-oxygenation High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Cole et al. (1999) suggest possible adverse effects on marine species below oxygen levels of 4 mg/l
and probable adverse effects below 2 mg/l. Sustained reduction of dissolved oxygen can lead to
hypoxic (reduced dissolved oxygen) and anoxic (extremely low or no dissolved oxygen) conditions.
Sustained or repeated episodes of reduced dissolved oxygen have the potential to severely
degrade an ecosystem (Cole et al., 1999). Reduced oxygen concentrations have been shown to
inhibit both photosynthesis and respiration in macroalgae (Kinne, 1977). Despite this, macroalgae
are thought to buffer the environmental conditions of low oxygen, thereby acting as a refuge for
organisms in oxygen depleted regions especially if the oxygen depletion is short-term (Frieder et
al., 2012). If levels do drop below 4 mg/l negative effects on these organisms can be expected with
adverse effects occurring below 2mg/l (Cole et al., 1999). Reduced oxygen levels are likely to
inhibit photosynthesis and respiration but not cause a loss of the macroalgae population directly. 
However, small invertebrate epifauna may be lost, causing a reduction in species richness.

Josefson & Widbom (1988) investigated the response of benthic macro and meiofauna to reduced
dissolved oxygen levels in the bottom waters of a fjord. At dissolved oxygen concentrations of 0.21
mg/l, the macrofaunal community was eradicated and was not fully re-established 18 months after
the hypoxic event. Meiofauna seemed, however, unaffected by de-oxygenation. Kinne (1970)
reported that reduced oxygen concentrations inhibit both algal photosynthesis and respiration.

Sensitivity assessment. The characterizing species Fucus vesiculosus, as well as the other species
within this biotope, may be negatively impacted by reduced dissolved oxygen level at the level of
the benchmark (2 mg/l for 1 week). A reduction in oxygen levels at the benchmark for this pressure
could result in mortalities.

 

 The very sheltered to moderately exposed locations where this biotope is found means that there
will be water mixing created by tidal streams, currents and waves in examples of this biotope
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which are in more exposed locations. Therefore a reduction in oxygen may have more of a negative
impact on examples of this biotope in more sheltered locations, as there will be less water mixing.
However, the biotope occurs in the mid eulittoral and consequently a proportion of time will be
spent in the air where oxygen is not limited so the metabolic processes of photosynthesis and
respiration can take place. Emergence will mitigate the effects of hypoxic surface waters, as will
aeration of the water column due to the exposure to wave action and water flow. Therefore,
resistance is assessed as ‘High’. Hence, resilience is assessed as ‘High’, and the biotope as 'Not
sensitive'.

 

Nutrient enrichment High High Not sensitive
Q: High A: Medium C: Medium Q: High A: High C: Medium Q: High A: Medium C: Medium

The nutrient enrichment of a marine environment leads to organisms no longer being limited by
the availability of certain nutrients. The consequent changes in ecosystem functions can lead to
the progression of eutrophic symptoms (Bricker et al., 2008), changes in species diversity and
evenness (Johnston & Roberts, 2009) decreases in dissolved oxygen and uncharacteristic
microalgae blooms (Bricker et al., 1999, 2008).

Johnston & Roberts (2009) undertook a review and meta-analysis of the effect of contaminants on
species richness and evenness in the marine environment. Of the 47 papers reviewed relating to
nutrients as a contaminant, over 75% found that it had a negative impact on species diversity, <5%
found increased diversity, and the remaining papers finding no detectable effect. Not all of the 47
papers considered the impact of nutrients on intertidal rocky shores. Yet this finding is still
relevant as the meta-analysis revealed that the effect of marine pollutants on species diversity was
‘remarkably consistent’ between habitats (Johnston & Roberts, 2009). It was found that any single
pollutant reduced species richness by 30-50% within any of the marine habitats considered
(Johnston & Roberts, 2009). Throughout their investigation, there were only a few examples
where species richness was increased due to the anthropogenic introduction of a contaminant.
These examples were almost entirely from the introduction of nutrients, either from aquaculture
or sewage outfalls. However research into the impacts of nutrient enrichment from these sources
on intertidal rocky shores often lead to shores lacking species diversity and the domination by
algae with fast growth rates (Abou-Aisha et al., 1995, Archambault et al., 2001, Arévalo et al., 2007,
Diez et al., 2003, Littler & Murray, 1975).

Major declines of Fucus vesiculosus have been reported from all over the Baltic Sea. These declines
have been associated to eutrophication from nutrient enrichment (Kautsky et al., 1986). Nutrient
enrichment alters the selective environment by favouring fast growing, ephemeral species such
as Ulva lactuca and Ulva intestinalis (Berger et al., 2004, Kraufvelin, 2007). Rohde et al., (2008) found
that both free growing filamentous algae and epiphytic microalgae can increase in abundance with
nutrient enrichment. This stimulation of annual ephemerals may accentuate the competition for
light and space and hinder perennial species development or harm their recruitment (Berger et al.,
2003; Kraufvelin et al., 2007). Nutrient enrichment can also enhance fouling of Fucus fronds by
biofilms (Olsenz, 2011). Nutrient enriched environments can not only increase algae abundance
but the abundance of grazing species (Kraufvelin, 2007). High nutrient levels may directly inhibit
spore settlement and hinder the initial development of Fucus vesiculosus (Bergström et al., 2003).

Changes in community composition on intertidal rocky shores can happen rapidly, and fast
growing ephemeral species can become established quickly in the presence of higher
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concentrations of nutrients. The establishment and growth of these species are not controlled by
wave exposure (Kraufvelin, 2007). However, even though these fast growing ephemeral species
can become well established quickly, healthy communities on intertidal rocky shores can survive
long periods of time, and maintain ecological function after these species have become established
(Bokn et al., 2002, 2003, Karez et al.,2004, Kraufvelin, 2007, Kraufvelin et al., 2006b).

Sensitivity assessment. A slight increase in nutrients may enhance growth rates but high nutrient
concentrations could lead to the overgrowth of the algae by ephemeral green algae and an
increase in the number of grazers. However, if the biotope is well established and in a healthy state
the biotope could have the potential to persist. The effect of an increase in this pressure to the
benchmark level should not have a negative impact on the biotope. Therefore the resistance has
been assessed as ‘High’. As the resistance is high, as there will be nothing for the biotope to recover
from therefore the resilience is also ‘High’. These two rankings give an overall sensitivity of ‘Not
Sensitive’.

Organic enrichment Medium Medium Medium
Q: High A: Medium C: Medium Q: High A: High C: Medium Q: High A: Medium C: Medium

The organic enrichment of a marine environment at this pressure benchmark leads to organisms
no longer being limited by the availability of organic carbon. The consequent changes in ecosystem
functions can lead to the progression of eutrophic symptoms (Bricker et al., 2008), changes in
species diversity and evenness (Johnston & Roberts, 2009) and decreases in dissolved oxygen and
uncharacteristic microalgae blooms (Bricker et al., 1999, 2008).

Johnston & Roberts (2009) undertook a review and meta-analysis of the effect of contaminants on
species richness and evenness in the marine environment. Of the 49 papers reviewed relating to
sewage as a contaminant, over 70% found that it had a negative impact on species diversity, <5%
found increased diversity, and the remaining papers finding no detectable effect. Not all of the 49
papers considered the impact of sewage on intertidal rocky shores. Yet this finding is still relevant
as the meta-analysis revealed that the effect of marine pollutants on species diversity was
‘remarkably consistent’ between habitats (Johnston & Roberts, 2009). It was found that any single
pollutant reduced species richness by 30-50% within any of the marine habitats considered
(Johnston & Roberts, 2009). Throughout their investigation, there were only a few examples
where species richness was increased due to the anthropogenic introduction of a contaminant.
These examples were almost entirely from the introduction of nutrients, either from aquaculture
or sewage outfalls. However research into the impacts of organic enrichment from these sources
on intertidal rocky shores often lead to shores laScking species diversity and the domination by
algae with fast growth rates (Abou-Aisha et al., 1995, Archambault et al., 2001, Arévalo et al., 2007,
Diez et al., 2003, Littler & Murray, 1975).

Major declines of Fucus vesiculosus have been reported from all over the Baltic Sea. These declines
have been associated to eutrophication from nutrient enrichment (Kautsky et al., 1986). Nutrient
enrichment alters the selective environment by favouring fast growing, ephemeral species such
as Ulva lactuca and Ulva intestinalis (Berger et al., 2004, Kraufvelin, 2007). Rohde et al., (2008) found
that both free growing filamentous algae and epiphytic microalgae can increase in abundance with
nutrient enrichment. This stimulation of annual ephemerals may accentuate the competition for
light and space and hinder perennial species development or harm their recruitment (Berger et al.,
2003; Kraufvelin et al., 2007). Nutrient enrichment can also enhance fouling of Fucus fronds by
biofilms (Olsenz, 2011). Nutrient enriched environments can not only increase algae abundance
but the abundance of grazing species (Kraufvelin, 2007). High nutrient levels may directly inhibit
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spore settlement and hinder the initial development of Fucus vesiculosus (Bergström et al., 2003).
Bellgrove et al. (2010) found that coralline turfs out-competed fucoids at a site associated with
organic enrichment caused by an ocean sewage outfall.

Changes in community composition on intertidal rocky shores can happen rapidly, and fast
growing ephemeral species can become established quickly in the presence of higher
concentrations of nutrients. The establishment and growth of these species are not controlled by
wave exposure (Kraufvelin, 2007). However, even though these fast growing ephemeral species
can become well established quickly, healthy communities on intertidal rocky shores can survive
long periods of time, and maintain ecological function after these species have become established
(Bokn et al., 2002, 2003, Karez et al.,2004, Kraufvelin, 2007, Kraufvelin et al., 2006b).

Sensitivity assessment. Little empirical evidence was found to support an assessment of this
biotope at this benchmark. The effect of a deposit of 100 gC/m2/yr will have different impacts
depending if the deposition was chronic or acute. If the deposition is chronic growth rates may be
enhanced and not create any significant negative effects on the biotope. The acute introduction of
levels of organic carbon at the benchmark could lead to the overgrowth of the algae by ephemeral
green algae and an increase in the number of grazers within a short period of time.  Due to the
negative impacts that can be experienced with the introduction of excess organic carbon both
resistance and resilience have been assessed as ‘Medium’. This gives an overall sensitivity score of
‘Medium’.

 Physical Pressures
 Resistance Resilience Sensitivity

Physical loss (to land or
freshwater habitat)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this
pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’). 
Sensitivity within the direct spatial footprint of this pressure is, therefore ‘High’.  Although no
specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible
nature of this pressure.  

Physical change (to
another seabed type)

Low Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

This biotope occurs on neither sedimentary rock nor soft rock substrata.  Any substratum other
than the mixed sediment on which this biotope is found would lead to a change in the biotope.
 Consequently, the resistance is assessed as Low, resilience is Very low (the pressure is a
permanent change) and sensitivity is assessed as High. Although no specific evidence is described
confidence in this assessment is ‘High’, due to the incontrovertible nature of this pressure.  

Physical change (to
another sediment type)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

This biotope occurs on mixed substrata where the characterizing species, Fucus vesiculosus, and
other stable reef species are found on larger sediment fractions.  A soft sedimentary habitat or
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mobile coarse sediment such as gravel or shingle would be unsuitable for these species.  Increased
sediment instability would also be likely to reduce habitat suitability for littorinids.  In sites with
mobile cobbles and boulders increased scour results in lower densities of Littorina spp. compared
with other, local sites with stable substratum (Carlson et al., 2006).  A change to a sedimentary
biotope without suitable attachment surfaces would lead to the development of a biological
assemblage more typical of the changed conditions.

Sensitivity assessment. A change to a fine or coarse sedimentary habitat would reduce habitat
suitability for this biotope, resistance is assessed as ‘None’ and resilience as ‘Very Low’ as the
change is considered to be permanent. Sensitivity is therefore assessed as 'High'.

Habitat structure
changes - removal of
substratum (extraction)

Low Low High

Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

The biological community within this biotope occurs either on or within the mixed sediment.  If the
top 30 cm of this biotope were to be removed the biological component of this biotope would have
been almost entirely removed.  Resistance and resilience are ‘Low’. Sensitivity to this pressure at
the benchmark is ‘High’. 

Abrasion/disturbance of
the surface of the
substratum or seabed

Low Medium Medium

Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

This biotope is found on the mid intertidal shore. An area easily accessible by humans especially at
low tide. Individual Fucus specimens are very flexible but not physically robust. Fucoids are
intolerant of abrasion from human trampling, which has been shown to reduce the cover of
seaweeds on a shore (Holt et al., 1997).

Araujo et al. (2009) found that trampling negatively affected Fucus vesiculosus abundance and
reduced understorey species while promoting the colonisation by ephemeral green algae.
However, within a year of the disturbance event, Fucus vesiculosus recovered and greatly increased
in cover becoming the dominant canopy forming species, replacing a pre-disturbance Ascophyllum
nodosum community. The replacement of Ascophyllum nodosum with Fucus vesiculosus may have
been due to the poor recovery rate of Ascophyllum nodosum. The increase in abundance suggests
the competitive superiority of Fucus vesiculosus individuals in occupying newly available space in
the disturbed patches. Similar results were found by Cervin et al. (2005) and Araujo et al. (2012)
with Fucus vesiculosus outcompeting Ascophyllum nodosum after small-scale disturbances.

Brosnan (1993) investigated the effect of trampling on a number of algal species, including Fucus
vesiculosus, on an intertidal rocky shore in Oregon. The effects of 250 tramples per plot, once a
month for a year were recorded. Abundances of algae in each plot were reduced from 80% to 35%
within a month of the introduction of the pressure and remained low for the remainder of the
experiment.

As few as 20 steps / m2 on stations on an intertidal rocky shore in the north east of England were
sufficient to reduce the abundance of fucoids (Fletcher & Frid, 1996). This reduction in the
complexity of the algae community, in turn, reduced the microhabitat available for epiphytic
species. Trampling pressure can thus result in an increase in the area of bare rock on the shore
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(Hill et al., 1998). Chronic trampling can affect community structure with shores becoming
dominated by algal turf or crusts (Tyler-Walters, 2005).

Pinn & Rodgers (2005) compared the biological communities found on two intertidal rocky shore
ledges in Dorset. They found that the ledge which had a higher number of visitors had few
branching algal species, including fucoids, but had greater abundances of crustose and ephemeral
species (Pinn & Rodgers, 2005).

The densities of fucoids were recorded from the intertidal rocky shore at Wembury, Devon in
1930 (Colman, 1933) and 1973 (Boalch et al., 1974). Boalch et al. (1974) found a reduction in
fucoids on the shore at Wembury and that the average frond length of Ascophyllum nodosum, Fucus
vesiculosus and Fucus serratus was smaller.

Fucus vesiculosus is able to generate vegetative regrowth in response to wounding from physical
disturbance.  McCook & Chapman (1992) experimentally tested the recovery of damaged Fucus
vesiculosus. The study found that vegetative sprouting of Fucus vesiculosus holdfasts made a
significant addition to the regrowth of the canopy, even when holdfasts were cut to less than 2 mm
tissue thickness. Four months after cutting, sprouts ranged from microscopic buds to shoots about
10 cm long with mature shoots widespread after 12 months. Vegetative regrowth in response to
wounding has been suggested as an important mean of recovery from population losses
(McLachan & Chen, 1972).

Sensitivity assessment. Abrasion of the substratum will cause a reduction in Fucus abundance
resulting in ‘Low’ resistance. Several studies, however, found that the seaweed is able to quickly
recolonize disturbed area, out-competing other macroalgae such as Ascophyllum nodosum.
Although Fucus vesiculosus may return quickly, equilibrium in the ecosystem may not have been
reached, therefore resistance is ‘Medium’. Overall the biotope has a ‘Medium’ sensitivity to the
pressure. 

Penetration or
disturbance of the
substratum subsurface

Low Medium Medium

Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

The mixed substrata found within this biotope can be penetrated, but the impact of this pressure
depends on the depth and footprint of the disturbance.  There is a lack of evidence to assess the
pressure. However, subsurface disturbance will also disrupt the surface layer of this biotope
where the majority of the biological community is found. Therefore, the assessment of the
'penetration' pressure is the same as that given to the abrasion/disturbance pressure. 

Changes in suspended
solids (water clarity)

Medium Medium Medium
Q: Medium A: Medium C: Medium Q: High A: High C: Medium Q: Medium A: Medium C: Medium

Light is an essential resource for all photoautotrophic organisms and Fucus vesiculosus distribution
along a depth gradient strongly correlates with light penetration. In areas with low sedimentation
Fucus vesiculosus can survive down to 9-10 m depth (Eriksson & Bergstrom, 2005). Changes in
suspended solids affecting water clarity will have a direct impact on the photosynthesising
capabilities of Fucus vesiculosus. Irradiance below light compensation point of photosynthetic
species can compromise carbon accumulation (Middelboe et al., 2006). Kõuts et al. (2006) found
decreases in light intensity in the vicinity of the dredging site resulted in the net decline of Fucus
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vesiculosus biomass. A decrease in light penetration in the Kiel Fjord caused by an increase in
phytoplankton density and shading from filamentous algae has caused an upwards shift of the
lower depth limit of Fucus vesiculosus (Rohde et al., 2008).

Increased suspended sediment can also cover the frond surface of Fucus vesiculosus with a layer of
sediment further reducing photosynthesis and growth rate. Sediment deposition can also interfere
with attachment of microscopic stages of seaweeds reducing recruitment. Berger et al. (2003)
demonstrated that both interference with sediment during settlement, and burial after
attachment, were significant causes of mortality for Fucus vesiculosus germlings (see ‘siltation’
pressures).

Other characterizing species will also be adversely affected. In particular filter feeding organisms
will have their feeding apparatus clogged with suspended particles leading to a reduction in total
ingestion and a reduced scope for growth especially since cleaning the feeding apparatus is likely
to be energetically expensive.

Sensitivity assessment. Changes in suspended solids reducing water clarity will have adverse
effects on the biotope hindering photosynthesis and growth as well as reducing species richness.
Resistance is thus assessed as ‘Medium’. Once conditions return to 'normal' algae are likely to
rapidly regain photosynthesising capabilities as well as growth rate. Associated communities will
also recover as most of the intolerant species produce planktonic larvae and are therefore likely to
be able to recolonize quickly from surrounding areas. Resilience is assessed as ‘Medium’. Overall
this biotope has a ‘Medium’ sensitivity to this pressure at the given benchmark.

Smothering and siltation
rate changes (light)

Medium Medium Medium
Q: High A: Medium C: Medium Q: High A: High C: Medium Q: High A: Medium C: Medium

Sedimentation can directly affect assemblages inhabiting rocky shores in different ways,
particularly by the burial/smothering and scour or abrasion of organisms. Fucus
vesiculosus attaches to the substratum by a holdfast and is consequently not able to relocate in
response to increased sedimentation. Eriksson & Johansson (2003) found that sedimentation had a
significant negative effect on the recruitment success of Fucus vesiculosus. Sediment deposition is
assumed to reduce macroalgal recruitment by (1) reducing the amount of substratum available for
attachment of propagules; (2) scour, removing attached juveniles and (3) burial, altering the light
and/or the chemical microenvironment (Devinny & Volse, 1978, Eriksson & Johansson, 2003).
Berger et al. (2003) demonstrated that both interference with sediment during settlement, and
burial after attachment, were significant causes of mortality for Fucus vesiculosus germlings.

The state of the tide will determine the extent of the impact. If smothering occurs at low tide when
the algae are lying flat on the substratum, then most of the organism as well as the associated
community will be covered by the deposition of fine material at the level of the benchmark.
Smothering will prevent photosynthesis resulting in reduced growth and eventually death. If
however smothering occurs whilst the alga is submerged standing upright then the photosynthetic
surfaces of adult plants will be left uncovered. The resistance of this biotope to the given pressure
may vary with time of day. Germlings, however, are likely to be smothered and killed in both
scenarios and are inherently most susceptible to this pressure. Indeed early life stages are smaller
in size than adults and are thus most vulnerable to this pressure as even a small load of added
sediment will lead to the complete burial.

Smothering will cause direct mortalities in the associated community, particularly in filter feeding
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sessile organisms unable to relocate. Low densities of herbivores on rocky shores have frequently
been related with areas affected by sedimentation, the presence of herbivores is reduced since
their feeding activity and movements might be limited (Airoldi & Hawkins, 2007; Schiel et al., 2006)

This biotope occurs in moderately exposed to very sheltered conditions. In areas with greater
water flow or wave action, excess sediments will be removed from the rock surface within a few
tidal cycles, reducing the time of exposure to this pressure.

Sensitivity assessment. Burial will lower survival and germination rates of spores and cause some
mortality in early life stages of Fucus vesiculosus. Adults are more resistant but will experience a
decrease in growth and photosynthetic rates. This pressure will have different impacts on different
examples of this biotope depending where on certain environmental gradients they are found.
Wave exposure is especially important for this pressure as it is wave energy which will be able to
remove sediment from the shore. Examples of this biotope within areas which are moderately
exposed to waves will not be as negatively affected by this pressure as sediment will be removed
by wave action relatively quickly. Examples of this biotope which are in sheltered or very sheltered
conditions sediment will be retained for longer, allowing greater negative effects to occur.
Resistance and resilience have both been assessed as ‘Medium’. Overall the biotope has a
‘Medium’ sensitivity to smothering at the level of the benchmark.

Smothering and siltation
rate changes (heavy)

Low Medium Medium
Q: High A: Medium C: Medium Q: High A: High C: Medium Q: High A: Medium C: Medium

Several studies found that increasing the vertical sediment burden negatively impact fucoids
survival and associated communities. At the level of the benchmark (30 cm of fine material added
to the seabed in a single event) smothering is likely to result in mortalities of understorey algae,
invertebrate grazers and young (germling) fucoids. Resistance is assessed as ‘Low’ as all individuals
exposed to siltation at the benchmark level are predicted to die. Once conditions return to normal,
recovery will be enabled by vegetative growth from remaining Fucus tissue, resulting in a ‘Medium’
resilience. Overall the biotope has a ‘Medium’ sensitivity to siltation at the pressure benchmark.  

Litter Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not evidence.

Electromagnetic changes No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence. 

Underwater noise
changes

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Species characterizing this biotope do not have hearing perception but vibrations may cause an
impact, however, no studies exist to support an assessment. 
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Introduction of light or
shading

No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Increased levels of diffuse irradiation correlate with increased growth in macroalgae (Aguilaria et
al., 1999). Levels of diffuse irradiation increase in summer, and with a decrease in latitude. As Fucus
vesiculosus is found in the middle its natural range in the British Isles an increase in the level of
diffuse irradiation will not cause a negative impact on the species or the biotope. However, it is not
clear how these findings may reflect changes in light levels from artificial sources, and whether
observable changes would occur at the population level as a result. There is, therefore, 'No
evidence' on which to base an assessment.

Barrier to species
movement

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is considered applicable to mobile species, e.g. fish and marine mammals rather than
seabed habitats. Physical and hydrographic barriers may limit propagule dispersal.  But propagule
dispersal is not considered under the pressure definition and benchmark.

Death or injury by
collision

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant to seabed habitats. Collision by grounding vessels is addressed under ‘surface
abrasion’. 

Visual disturbance Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant.

 Biological Pressures
 Resistance Resilience Sensitivity

Genetic modification &
translocation of
indigenous species

Not relevant (NR) Not relevant (NR) Not relevant (NR)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Key characterizing species within this biotope are not cultivated or translocated. This pressure is
therefore considered ‘Not relevant’ to this biotope group.

Introduction or spread of
invasive non-indigenous
species

Medium Medium Medium

Q: High A: Medium C: Medium Q: High A: High C: Medium Q: High A: Medium C: Medium

Thompson & Schiel (2012) found that native fucoids show high resistance to invasions by the
Japanese kelp Undaria pinnatifida. However cover of Fucus vesiculosus was inversely correlated
with the cover of the invasive Sargassum muticum indicating competitive interaction between the

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking


Date: 2015-10-13 Fucus vesiculosus on mid eulittoral mixed substrata - Marine Life Information Network

https://www.marlin.ac.uk/habitats/detail/329 26

two species (Stæhr et al., 2000). Stæhr et al. (2000) determined that the invasion of Sargassum
muticum could affect local algal communities through competition mainly for light and space.

Hammann et al., (2013) found that in the Baltic Sea Gracilaria vermiculophylla could impact Fucus
vesiculosus through direct competition for recourses, decreasing the half-life of germlings, and
increasing the level of grazing pressure. To date Gracilaria vermiculophylla has only been recorded
in Northern Ireland, and not on mainland Britain. The introduction of this species to intertidal
rocky shores around the British Isles could have negative impacts on native fucoids, and could
become relevant to this specific biotope.

Sensitivity assessment. Although evidence often indicates that invasive non-native species (INNS)
can have a negative impact native species, no evidence can be found on the impacts of INNS on the
characterizing species of this biotope. Evidence regarding other fucoids indicate that some
mortality of characterizing species can occur through direct and indirect consequences of INNS
being present. Due to the current lack of INNS which could cause a negative impact on this biotope
resistance has been assessed as ‘High’ since invasive species have the potential to alter the
recognizable biotope. Resilience has also been assessed as ‘High’. This assessment naturally leads
to the conclusion that the biotope is ‘Not Sensitive’ to this pressure.  However, return to ‘normal’
conditions is highly unlikely if an invasive species came to dominate the biotope. Indeed recovery
would only be possible if the majority of the NIS were removed (through either natural or
unnatural process) to allow the re-establishment of other species. Therefore actual resilience will
be much lower (‘Low’ to ‘Very Low’).

Introduction of microbial
pathogens

No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence.

Removal of target
species

Low Medium Medium
Q: Medium A: Medium C: Medium Q: High A: High C: Medium Q: Medium A: Medium C: Medium

Fucus vesiculosus is one of several harvested and exploited algal species. Seaweeds were collected
from the middle of the 16th century for the iodine industry. Nowadays seaweeds are harvested for
their alginates, which are used in the cosmetic and pharmaceutical industries, for agricultural
supply, water treatment, and for human food and health supplements (Bixler & Porse, 2010). There
is little information on the collection of Fucus spiralis. However if there is collection of this
characteristic species the effects are likely to be very similar to that caused by the removal
of Fucus vesiculosus.

The commercial harvest removes seaweed canopies which will have important effects on the wider
ecosystem. Stagnol et al. (2013) investigated the effects of commercial harvesting of intertidal
fucoids on ecosystem biodiversity and functioning. The study found that the removal of the
macroalgae canopy affected the metabolic flux of the area. Flows from primary production and
community respiration were lower on the impacted area as the removal of the canopy caused
changes in temperature and humidity conditions. Suspension feeders were the most affected by
the canopy removal as canopy-forming algae are crucial habitats for these species, most of them
being sessile organisms. Other studies confirm that loss of canopy had both short and long-term
consequences for benthic communities in terms of diversity resulting in shifts in community
composition and a loss of ecosystem functioning such as primary productivity (Lilley & Schiel,
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2006; Gollety et al., 2008). Due to the intolerance of macroalgae communities to human
exploitation, the European Union put in place a framework to regulate the exploitation of algae
establishing an organic label that implies that ‘harvest shall not cause any impact on ecosystems’
(no. 710/2009 and 834/2007).

Sensitivity assessment. The removal of Fucus vesiculosus canopy will significantly change the
community composition of the biotope. The quantity of biomass removed from the shore and the
regularity of removal will all affect how quickly the biotope will be able to recover. Fucus
vesiculosus has a ‘Low’ resistance to removal as both of them are easy to locate and have no escape
strategy. Resilience is ‘Medium’, however recovery will only be able to start when the pressure is
removed from the shore i.e. harvesting is no longer occurring. A sensitivity of ‘Medium’ is recorded.

Removal of non-target
species

Low Medium Medium
Q: Medium A: Medium C: Medium Q: High A: High C: Medium Q: Medium A: Medium C: Medium

Direct, physical impacts from harvesting are assessed through the abrasion and penetration of the
seabed pressures.  The characterizing species Fucus vesiculosus creates a dominant turf within this
biotope.  The dominance of this characterizing species means it could easily be incidentally
removed from this biotope as by-catch when other species are being targeted.  The loss of this
species and other associated species would decrease species richness and negatively impact on the
ecosystem function.

Sensitivity assessment. Removal of a large percentage of the characterizing species would alter
the character of the biotope. The resistance to removal is ‘low’ due to the easy accessibility of the
biotopes location and the inability of these species to evade collection. The resilience is ‘Medium’,
with recovery only being able to begin when the harvesting pressure is removed altogether. This
gives an overall sensitivity score of ‘Medium’.
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