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Primary production and photoacclimation models are two important classes of physiological models that find
applications in remote sensing of pools and fluxes of carbon associated with phytoplankton in the ocean. They
are also key components of ecosystem models designed to study biogeochemical cycles in the ocean. So far, these
two classes of models have evolved in parallel, somewhat independently of each other. Here we examine how they
are coupled to each other through the intermediary of the photosynthesis–irradiance parameters. We extend the
photoacclimation model to accommodate the spectral effects of light penetration in the ocean and the spectral
sensitivity of the initial slope of the photosynthesis–irradiance curve, making the photoacclimation model fully
compatible with spectrally resolved models of photosynthesis in the ocean. The photoacclimation model contains
a parameter θm, which is the maximum chlorophyll-to-carbon ratio that phytoplankton can attain when available
light tends to zero. We explore how size-class-dependent values of θm could be inferred from field data on chloro-
phyll and carbon content in phytoplankton, and show that the results are generally consistent with lower bounds
estimated from satellite-based primary production calculations. This was accomplished using empirical models
linking phytoplankton carbon and chlorophyll concentration, and the range of values obtained in culture measure-
ments. We study the equivalence between different classes of primary production models at the functional level, and
show that the availability of a chlorophyll-to-carbon ratio facilitates the translation between these classes. We dis-
cuss the importance of the better assignment of parameters in primary production models as an important avenue
to reduce model uncertainties and to improve the usefulness of satellite-based primary production calculations in
climate research.
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1. INTRODUCTION

Of all the oceanic essential climate variables [1,2], ocean color
(or visible spectral radiometry) is the only one that directly
targets the ocean biosphere. Spectrally resolved water-leaving
radiances (or equivalently, remote-sensing reflectances) and
chlorophyll—a concentration derived from them—are required
ocean color products. Recognition of the importance of ocean
color in climate research has led to a considerable investment in
generating climate-quality, time-series data of ocean-color-
derived chlorophyll and reflectance products [3]. These

products incorporate data from a number of sensors, after
implementing inter-sensor bias correction to minimize spurious
trends in the data, and are accompanied by estimates of product
uncertainties on a per-pixel basis. At the time of this writing, the
length of uninterrupted, climate-quality time-series of ocean-
color data exceeds 20 years, and the prospects of continuous data
streams are excellent for the foreseeable future with initiatives
such as the European Sentinel-3 missions and the Joint Polar
Satellite System (JPSS) of the United States.
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In the context of climate change, important applications of
chlorophyll concentration, or other measures of phytoplankton
biomass, such as carbon derived from ocean color, are in studies
of primary production by phytoplankton. Global primary
production by phytoplankton, computed using satellite data by
different authors using varied methods, ranges from less than
36.5 to 67 PgC y−1 [4], with an average value of 48.2 and a
standard deviation of 8 Pg C y−1. Note that Buitenhuis et al. [5]
give a somewhat different range (from 38.0 to 70.7 Pg C y−1),
after regridding the satellite-based results on to their model
grid. The high values of carbon flux through photosynthesis
confirm marine primary production as a key component of
the global carbon cycle and of other biogeochemical cycles in
the ocean. To enhance the utility of the products for climate
research, it would be important to better understand the sources
of disparities among them; to use the new insights to reduce
differences wherever feasible; and to generate a long-time
series of climate-quality primary-production products from
satellite data.

Typically, the methods used to estimate primary production
from satellite data are not stand-alone tools based solely on satel-
lite observations. Instead, they combine satellite-based data on
chlorophyll concentration (or other measures of biomass) and
photosynthetically available radiation (PAR) at the sea surface,
with in situ information on photosynthetic rate parameters and
the vertical structure in phytoplankton concentration [6–8]. In
this way, the computations combine satellite-based information
on the standing stock of chlorophyll-containing phytoplankton
(which varies by more than four orders of magnitude) over the
global ocean, and on the forcing variable, PAR (which also has a
high dynamic range), with information based on in situ obser-
vations of more stable quantities such as the photosynthetic rate
parameters and chlorophyll profile parameters. Technically,
such computations combine all the relevant information from
satellite and in situ observations.

However, the recent report of the International Panel on
Climate Change on the oceans and cryosphere [9] expressed
low confidence in satellite-based estimates of trends in marine
primary production. The reasons cited (in Section 5.2.2.6 of the
report) are: (i) length of the time series (too short); and (ii) lack
of corroborating in situ measurements or another validation
time series. The report also cites significant mismatches between
absolute values and between decadal trends in primary produc-
tion when different satellite-based products are compared. As
the length of climate-quality time series of ocean-color products
now exceeds two decades, it becomes possible to explore at least
the effect of climate variability on primary production trends.
Such studies (e.g., [10]) help improve our understanding of the
processes responsible for the regional differences in trends, and
help anticipate how phytoplankton and primary production
might respond to longer-term climate change. Considerable
community effort has also gone into comparing satellite prod-
ucts and ecosystem model outputs against high-quality in
situ time series data (e.g., [5,11]). Formal error analysis [12],
an important method to establish uncertainties, has shown
that uncertainties are around 50% in satellite-based, primary-
production calculations at individual pixels, and that the source
of highest uncertainty is that associated with chlorophyll con-
centration estimated from satellites. Similar uncertainties, of

about a factor of two, have been reported by others [13,14],
using different methods for uncertainty estimations. As satel-
lite algorithms for the retrieval of chlorophyll concentration
improve, one expects a concomitant decrease in the uncertain-
ties associated with primary production calculations. No doubt
such efforts to establish uncertainties and validate satellite prod-
ucts of primary production will continue and serve to increase
confidence in the computed values and in the trends calculated
from them. But there is another source of disparity between
models that has perhaps not received the attention it deserves:
The differences that arise from the choices made when assigning
model parameters.

Uncertainty in primary production trends is not confined
to satellite-based estimates: Ecosystem models designed for
climate research also show a high divergence in primary produc-
tion trends, with some models showing no significant trends in
forecast values, while others show negative trends, as noted in
the latest IPCC report. For example, Froölicher et al. [15] have
reported uncertainties in trends in marine primary production
estimated using ecosystem models. They attributed some of
the uncertainties to incomplete knowledge of the fundamental
processes.

One fundamental process, in this context, that the model-
ing and remote-sensing communities have had to deal with is
photoacclimation of phytoplankton, a process by which phyto-
plankton adjust their quota of chlorophyll-a concentration
in the cell relative to their carbon quota [16,17]. The process,
and the resultant changes in the chlorophyll-to-carbon ratio
in phytoplankton, can, in turn, affect computations of pri-
mary production through the influence of the ratio on model
parameters.

Against this background, we focus here on how photosynthe-
sis and photoacclimation change relative to each other, when
available light is modified, or when photosynthesis–irradiance
parameters are altered. We extend the photoacclimation model
to incorporate spectrally resolved light. Placing primary pro-
duction and photoacclimation on a common footing can
reduce another source of uncertainty in models: the uncer-
tainty related to the conversion between chlorophyll-a and
carbon concentrations in phytoplankton. The premise here
is that our understanding of the dynamics of phytoplankton
can be improved if we simultaneously keep track of at least
two measures of their standing stock: carbon concentration
and chlorophyll-a concentration. It is not a matter of choice
between one or the other. We focus on the available light mod-
els of primary production, and explore their relationship to a
resource-allocation model of photoacclimation. We show how
remote-sensing data, in situ data, and empirical models can be
brought together to infer the maximum chlorophyll-to-carbon
ratio achievable in photoacclimation model. Finally, we show
how these insights can also help demonstrate the equivalence
of different classes of primary production models, if they are
implemented with commensurate model parameters.

2. BACKGROUND

Available light models to estimate primary production by phyto-
plankton in aquatic systems make use of a set of parameters that
are derived from photosynthesis–irradiance experiments, in
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which phytoplankton subsamples are incubated in a range of
light levels, primary production being recorded as a function of
light available inside the incubator, for each of the subsamples.
Such models are easily adapted for remote-sensing applica-
tions, since their biomass currency is the concentration of the
main phytoplankton pigment, chlorophyll-a, which is readily
obtained from satellite data. However, to convert the carbon
fixed through primary production to the corresponding increase
in chlorophyll units, we need to know the chlorophyll-to-
carbon ratio in phytoplankton (not in the bulk, ambient water),
which is highly variable and depends on the photoacclimation
status of phytoplankton.

Photoacclimation models are also, of necessity, functions
of available light. However, they are commonly formulated
with a different set of parameters from those used in primary
production models, such that it has been difficult to examine
how photosynthesis and photoacclimation in phytoplankton
change relative to each other, when there is a perturbation to the
light environment. The situation has changed recently, with the
reformulation of the commonly used resource-allocation model
of photoacclimation [18] using standard photosynthesis–
irradiance parameters [19]. The formulation of Jackson et al.
[19] also has the advantage of being an exact solution to the
Geider et al. [18] model, whereas only an approximate solution,
valid for low-light conditions, had been available previously.

In addition to the photosynthesis–irradiance parameters,
implementation of the photoacclimation model [18] requires
information on the maximum chlorophyll-to-carbon ratio of
phytoplankton attained when available light tends to zero. We
have very little information on this parameter and its variability
in the natural aquatic environment, whereas several thousands
of photosynthesis–irradiance parameter data are available from
the field [20]. Before photosynthesis and photoacclimation
models for the aquatic environment can be unified with a
common set of parameters, we need to learn more about the
maximum chlorophyll-to-carbon ratio.

We begin with the theoretical considerations that underpin
the models.

3. THEORETICAL CONSIDERATIONS

Let us consider for a moment the phytoplankton cell as a
machine. It is a dissipative system (in the thermodynamic sense),
depending on energy supplied continually from an external
source for its metabolic integrity. In this case, the sun is the
source of energy. But by itself, even the sun’s energy is not suffi-
cient; what also is necessary is a means for the cell to capture the
solar photons and thus enable their energy to catalyze photo-
synthesis. The structures that intercept and capture photons are
the pigment molecules (notably chlorophyll-a) found on the
photosynthetic membranes, or thylakoids, located in the chlo-
roplasts of phytoplankton cells. Without their presence, there
could be no photoautotrophic production in the sea. Nor could
there be a marine biogeochemistry that follows from it; only a
limited geochemistry. Therefore, the intracellular concentration
of chlorophyll in phytoplankton is fundamentally important.

In fact, phytoplankton can adjust their concentration of
chlorophyll-a per cell, relative to that of carbon, in response to
the magnitude of the ambient irradiance. At low irradiance,

where photosynthesis is a quasi-linear function of irradi-
ance, phytoplankton are able to synthesize more chlorophyll
molecules to increase the number of photons they absorb per cell
in a given time. At higher irradiance, at or near light saturation,
high chlorophyll concentration is no longer a necessity, and
might even be an encumbrance if it leads to the supply of too
much energy to the photosystems and consequent damage to the
cell. A consequence of adjustments to the cellular chlorophyll
in response to ambient irradiance is that the ratio of chlorophyll
to carbon in phytoplankton (θ ) will be a variable quantity, of
considerable interest in phytoplankton physiology [16], and
appearing in models of phytoplankton production and growth.
Here, we show how models of θ can be reconciled with models
of primary production in phytoplankton, and discuss the impli-
cations for retrieval of phytoplankton properties from remotely
sensed spectral radiometry of the ocean.

In the field of phytoplankton physiological ecology, the mod-
eling of primary production has developed over the past 50 years
to the point where it may now be considered a mature subject
[6,21–23]. It leans heavily on the response of phytoplankton to
available light (the light saturation curve), which is a function
of irradiance, depending on two fundamental parameters: the
slopeαB at very low light (carbon fixed per unit of available light
and per unit of chlorophyll concentration), and the asymptotic
production P B

m (the rate of carbon fixation in saturating light
per unit of chlorophyll concentration), where the superscript B
indicates normalization to chlorophyll concentration B . The
ratio of these two parameters is known as the photoadaptation
parameter Ik :

Ik = P B
m /α

B . (1)

When the ambient irradiance I (PAR) is normalized to Ik , we
define the dimensionless irradiance I∗ (see also [24]), a quantity
that has a profound significance in the theoretical development:

I∗ = I/Ik . (2)

With these parameter choices, and the definition of Ik , we can
write the light-saturation curve as [25]

P B (I∗)= P B
m (1− exp(−I∗)), (3)

where P B is gross primary production normalized to
chlorophyll concentration.

Regarding the chlorophyll-to-carbon ratio, an analytic solu-
tion to the important model of Geider et al. [18] was published
recently by Jackson et al. [19] as

θ =

(
θm

I∗

)
(1− exp(−I∗)), (4)

where θm [18] is the maximum attainable value of θ (a constant
for a particular phytoplankton species or types, to be deter-
mined). Comparing the right-hand sides of Eqs. (3) and (4),
we find (

1

I∗

)(
P B

P B
m

)
=
θ

θm
. (5)

In the special case where I∗ = 1, we have
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Fig. 1. Plots of primary production, normalized to its maximum
value P B

m at saturating light, and θ normalized to its maximum value
θm at zero irradiance, as functions of the dimensionless irradiance
I∗ = I/Ik . The two plots coincide when the dimensionless irradiance
is I∗ = 1, demonstrating the connection between the two models.

P B

P B
m
=

P
Pm
=
θ

θm
. (6)

Here P is absolute production (not normalized to chloro-
phyll concentration), and Pm is the maximum production,
also unnormalized. Equation (6), which is independent of the
chlorophyll concentration, represents the most economical way
to express the reconciliation of the primary production models
with models of the chlorophyll-to-carbon ratio (Fig. 1).

Another way to look at the connection between primary
production models and the analytic model for θ is to plot the
ratio between θ and θm as a function of I∗, and then compare
it to plots of P B against I∗ (Fig. 2). Here, we see that θ/θm will
equal P B at I∗ = 1 for P B

m = 1. For P B
m > 1, the plot of P B will

coincide with that of θ/θm for some I∗ < 1, and for P B
m < 1, the

plot of P B will coincide with that of θ/θm for some I∗ > 1.
With this theoretical basis, and under the assumption of

balanced growth [18,26], we now explore the changes of car-
bon (C ) and chlorophyll (B) through time in the surface layer
of the ocean. Let us consider production (PZm ,T ) in the layer
extending from the surface to the mixed-layer depth Zm , where
the subscripts Zm and T imply integration over the mixed
layer and through the daylight hours. Let PZm ,T be the average
production in the layer for the same time interval. We assume
that within the layer, the chlorophyll concentration and model
parameters are uniform with depth. Consider two consecutive
days, 0 and 1. The carbon budget for the mixed layer will be

C1 −C0 = PZm ,T −Cr , (7)

where Cr represents carbon removed by various loss processes,
including respiration, export, and grazing. The corresponding
chlorophyll budget is

B1 − B0 = θ(C1 −C0). (8)

Comparing the two budgets, we find

Fig. 2. Plots of primary production, for different values of its
maximum value P B

m at saturating light, superimposed on a plot of θ
normalized to its maximum value θm at zero irradiance, as functions of
the dimensionless irradiance I∗.

B1 − B0

PZm ,T −Cr
= θ . (9)

In Eq. (9), all quantities on the left-hand side are known, with
the exception of Cr . In the special case that Cr is set to zero, we
have

θ =
B1 − B0

PZm ,T
, (10)

which provides a lower bound on θ .
Turning to the calculation of PZm ,T , we have to integrate the

light-saturation curve [Eq. (3)] through the mixed layer and over
the day,

PZm ,T = B
∫ D

0

∫ Zm

0
P B (z, t)dzdt, (11)

where D is the day length. Substituting for the depth depend-
ence and the time dependence of the irradiance, as well as for the
functional form of the light-saturation curve, we have

PZm ,T = B P B
m

∫ D

0

∫ Zm

0
(1− exp(−αB I0(t)

× exp(−K z)/P B
m )dzdt, (12)

where I0 is the surface irradiance, which can be represented
using a sine function with the particular magnitude I m

0 at local
noon and a sinusoidal variation through the day, such that
I0(t)= I m

0 sin(π t/D). Here, K is the diffuse attenuation
coefficient for downwelling light, and z is taken to be positive
downward. Note that the sine function is a good descriptor of
the variation in solar irradiance during the course of a day [27],
which varies from zero at dawn (t = 0) and at sunset (t = D), to
a maximum (I m

0 ) at local noon. The integral in Eq. (12) assumes
that P B

m ,αB , and B are independent of the depth, which is a rea-
sonable assumption for a mixed layer. Equation (12) describes
the case where the wavelength dependence of photosynthesis is
suppressed. It can be converted to a spectral form by noting that
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the wavelength-dependent terms,α and I , will always occur as a
product of the form α I in all primary production models. The
conversion procedure consists of replacing this product with its
integral over wavelength,5 [28,29], where

5(z, t)=
∫
α(λ, z, t)I (λ, z, t)dλ, (13)

such that the spectral model for production, corresponding to
the nonspectral version [Eq. (12)] would be

PZm ,T = B P B
m

∫ D

0

∫ Zm

0
(1− exp(−5(z, t)/P B

m )dzdt .

(14)
Analytical solutions exist for the daily water-column (or mixed-
layer) production for the nonspectral case and for a vertically
homogenous water column when the surface light is represented
as a sine function [27,30], but the integrals for the spectral
model must be calculated numerically.

The corresponding dimensionless irradiance can be written as

I∗(z, t)=5(z, t)/P B
m , (15)

and its average over the day length and over the mixed-layer is
then given by

〈I∗〉Zm ,T =
1

DZm

∫ D

0

∫ Zm

0
I∗(z, t)dzdt . (16)

As in the case of production, the subscripts Zm and T indicate
averaging with respect to mixed-layer depth and time of day
(from dawn to dusk).

4. IMPLEMENTATION

In this section, we implement the theory developed in the previ-
ous section using satellite data to compute primary production
and mean I∗ (over the day length and for the mixed layer) for a
sample image selected randomly. These results are then used,
along with the photoacclimation model and the realized change
in chlorophyll concentration on the subsequent day, to estimate
an upper bound on θm for each of the ecological provinces as
defined by Longhurst [31]. We also compare the satellite-based
estimates of mean I∗ to those for the in situ time-series stations
off Bermuda and Hawaii, to establish the range in I∗ that is
commonly encountered at sea.

We then turn to in situ data on phytoplankton carbon and
chlorophyll to examine whether the observed relationship
between these two quantities is consistent with the theoretical
development presented here and with the bounds on θm values
inferred from satellite data.

A. Computations Based on Satellite Data

As an initial implementation of the theory developed in the
previous section, we have made a global-scale calculation of
the change in B over two consecutive days (1st and 2nd of May
2010) using the OC-CCI product stream [3]. The resulting
quantity (B1 − B0) is mapped in the bottom panel of Fig. 3.

We then used a fully spectral model for the estimation of
photosynthesis as well as for the radiative transfer through the

Fig. 3. Global maps of chlorophyll-a from OC-CCI v3.1 [32]
for two consecutive dates May 1, 2010 (top panel) and May 2, 2010
(middle panel), and1B , the difference between the two (day 2–day 1,
bottom panel), computed for those pixels where data are available for
both images.

mixed layer (see Appendix A for details) to calculate PZm ,T for
the first of the two days (May 1, 2010), with photosynthesis
parameters assigned on the ecological provinces of Longhurst
[31], according to Mélin and Hoepffner [33]. For the mixed-
layer depths Zm , we used the work of de Boyer Montégut et al.
[34]. We also computed the mean of the scaled spectral irra-
diance for the mixed layer over the daylength, I (z, t) [using
Eq. (16)], for each of the pixels. Though the model allows for
assignment of chlorophyll profile parameters to define the ver-
tical structure in chlorophyll concentration, the calculations
presented in this paper are limited to the mixed layer, and we
have assumed that the chlorophyll concentration is uniform
within the mixed layer. The resultant maps of daily mixed-layer
production, averaged I∗(z, t) for the mixed layer, are shown in
Fig. 4.

Now from Eq. (4), we can see that in a plot of θ against
(I∗)−1(1− exp(−I∗)), a line passing through the origin should
have a slope equal to θm . Following Eq. (10), we can estimate
a lower bound on θ , under the assumption of zero loss terms,
from the difference in the mixed-layer chlorophyll concentra-
tion on consecutive days (B1 − B0) and from the average of
PZm ,T . By way of example, we made such calculations of θm
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Fig. 4. Global map of mixed-layer primary production
(mg m−2 d−1) for May 1, 2010 (top panel) and corresponding map
of mean I∗ (dimensionless) for the mixed layer (bottom panel), both
computed using the spectrally resolved model for light transmission in
water and for primary production.

on a province-by-province basis using (B1 − B0) from Fig. 3
along with PZm ,T and the daily mean I∗(z, t) from Fig. 4. We
know from Eq. (10) that the ratio (B1 − B0)/PZm ,T is a lower
bound for θ . The decrease relative to the true value of θ would be
greater, the higher the loss term. In the real world, the loss term
is always likely to be greater than zero. However, the smaller
the loss term, the closer (B1 − B0)/PZm ,T would be to the true
value of θ . We therefore used quantile regression (90th quantile)
to extract the slope that corresponded to the maximum value of
(B1 − B0)/PZm ,T .

Provinces with low number (less than 1000) of valid pixels (11
cases) or with θm ≥ 0.1 (a further three cases, which were out-
liers with unrealistically high values of θm) were excluded from
further analysis. The approach led to plausible values of θm for
the remaining 39 individual provinces (0.0033≤ θm ≤ 0.081,
mean= 0.024, and standard deviation= 0.017).

B. Distribution of the Averaged Scaled Irradiance for
the Mixed Layer

In satellite applications, we are concerned with production
integrated over depth, either for the entire euphotic layer
or for the mixed layer, and integrated through the day (sun-
lit hours). A relevant irradiance for production integrated
over depth and through the day is the dimensionless irradi-
ance at local noon, I m

∗
= I0(m)/Ik , which can then be used

along with the sine dependency for I0(t) to calculate daily
production [see Eq. (12)]. On the other hand, the depend-
ence of photoacclimation to changing values of I m

∗
would

be a function of the average light in the mixed layer during
the course of the light day, 〈I∗〉Zm ,T [see Eq. (16)]. For given
values of the dimensionless optical thickness, K Zm , it can be

Fig. 5. Daily mixed-layer production normalized to its value for
〈I∗〉Zm ,T = 10, plotted as a function of mean scaled irradiance in a
mixed layer. Each of the red curves shows the production for a particu-
lar value of the optical depth (K Zm). Note: K Zm = 4.6 corresponds
to the photic depth, at which light is reduced to 1% of its value at
the surface. In green, θ/θm as a function of 〈I∗〉Zm ,T , the mean scaled
irradiance for the mixed layer.

shown that the average light for the day length will be a fac-
tor of (2/π)((1− exp(−K Zm))/K Zm) smaller than I m

∗
, if

we assume that the change in PAR in the course of a day can
be represented using a sine function. Figure 5 illustrates the
relationship between θ and P , for selected values of optical
thickness (K Zm = 4.6, 3.9, 2.3, and 1.6) corresponding to
the 1%, 2%, 10%, and 20% light levels, respectively. The nor-
malized production curves and the normalized curves for θ
intersect at higher values of 〈I∗〉Zm ,T for lower values of K Zm .
But what are the typical values of 〈I∗〉Zm ,T measured in the
natural environment?

Based on the previously published results of Kovač et al. [35]
and Kovač et al. [36], which used a nonspectral model, we have
computed the distributions of 〈I∗〉Zm ,T for both the Bermuda
and Hawaii Time-series stations. At both sites, the frequency
distributions peak at 〈I∗〉Zm ,T ' 1.6 (Fig. 6). The frequency
distribution of 〈I∗〉Zm ,T for the satellite-based computations for
the sample day of May 1, 2010, corresponding to Fig. 4 (lower
panel) is also shown in Fig. 6. Here again, the distribution of
〈I∗〉Zm ,T also peaks at 〈I∗〉Zm ,T ' 1.6 and the distribution is
largely confined to a range of 0 to 5. Some generalizations appear
to be emerging.

C. Field Data on Phytoplankton Carbon

Another way to approach the determination of θ in natural
conditions is through examination of in situ samples assayed
for phytoplankton carbon and chlorophyll. The results of Li
et al. [37] and Marañón et al. [38] are of particular interest
because of the geographic coverage, the range of chlorophyll
values sampled, and because they both used a combination of
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Fig. 6. Frequency distributions of 〈I∗〉Zm ,T at the Bermuda Atlantic
Time-series station (top panel) and at the Hawaii Ocean Time-series
station (middle panel), according to the results of Kovac et al. [36] and
Kovac et al. [35], respectively, both using a nonspectral model. The
bottom panel is from satellite-based primary production calculations
for May 1, 2010, using a spectral model. See the results in Fig. 4.

methods to estimate carbon in all size classes of phytoplankton.
The data from [37] come from the California Current System,
and phytoplankton carbon biomass was estimated using flow
cytometry for photosynthetic prokaryotes and epifluores-
cence microscopy for autotrophic eukaryotes. The data from
[38] cover many ecological provinces in the North and South
Atlantic, with phytoplankton carbon biomass estimated using
flow cytometry for the picophytoplankton and inverted micro-
scope for the nano- and micro-phytoplankton. The variation
of phytoplankton carbon with chlorophyll for these two data
sets is shown in Fig. 7. That figure also shows the phytoplankton
carbon and chlorophyll estimates from remote sensing, each
point corresponding to a particular province, and computed
using average 1B for that province and the lower bound on
θm computed for that province. The figure shows remarkable

Fig. 7. Field data on phytoplankton carbon (mg m−3) and chloro-
phyll concentration (mg m−3) from Li et al. [37] (in green) and from
Marañón et al. [38] (in blue). Also shown are the points (in black) cor-
responding to the satellite-based estimates of θm for different ecological
provinces. The curves correspond to model estimates, for I∗ = 0, 1, 2,
and 5. The curve for I∗ = 0 represents θm variability with size class.

consistency between the satellite-based estimates and in situ
data, especially considering that the chlorophyll ranges for the in
situ data overlap little with those of the satellite data.

D. Reconciling Field Data, Satellite-Based
Estimates, and the Photoacclimation Model

We next explored whether the in situ data and the lower bounds
on θm estimated using satellite data were consistent with the
photoacclimation model [Eq. (4)], and whether the data shown
in Fig. 7 provided sufficient information for inferring θm appli-
cable to the natural marine environment. Ideally, the θm inferred
would also be consistent with laboratory-based estimates of this
quantity.

A decision to be made in this context is whether θm should
be treated as invariable, or whether we accept that it might vary
with species or with environmental conditions. In fact, the com-
pilation of θm values from laboratory culture experiments on
multiple species of phytoplankton provided by Geider et al. [18]
shows a tenfold range (from 0.007 to 0.072). If we consider the
typical sizes of the species on which Geider et al. [18] reported,
there is some association of high θm values with large cells and
vice versa, although this dependence is not clear cut, and the
size ranges associated with some of the species are quite broad.
There is also some evidence from the indirect estimates of the
carbon-to-chlorophyll ratio presented by Sathyendranath et al.
[39] that the ratio increases with decreasing cell size, implying
that θ increases with cell size (admittedly, their result is for θ
and not θm). More importantly, in Fig. 7, the phytoplankton
carbon increases more rapidly with an increase in chlorophyll
concentration for high values of chlorophyll. In the marine
environment, high chlorophyll environments are typically
associated with large cells, and low-chlorophyll environments
with small cells. A cell-size based assignment of θm would have
the advantage of ease of implementation, since many methods
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are available to determine the size classes of phytoplankton in
the field and from satellite data [40].

Therefore, in assigning θm values, we consider its potential
variation with size classes (while being cognizant of the diffi-
culty in separating taxonomic differences from those associated
with cell size, since both changes often go hand in hand). We
invoke the three-class model of phytoplankton size structure
after Brewin et al. [41], which allows for the partition of the
total chlorophyll into components belonging to picoplankton,
nanoplankton, and microplankton classes, and we allow θm to
change with size class. Then the community value of θm would
be obtained by taking a weighted average over all the classes.
We made the assumption that θm would increase with size,
in accordance with the results of Sathyendranath et al. [39].
Furthermore, we assumed that 0≤ 〈I∗〉 ≤ 5 to maintain consis-
tency with the frequency distribution of average I∗ for the mixed
layer, as shown in Fig. 6.

To fit the model to all the data in Fig. 7, we first used a non-
linear optimization routine (model NLS in R), with an assigned
value for I∗ close to 2.5, and searched for the best fit for θm in
each size class. The results of the nonlinear optimization were
somewhat sensitive to the initial guesses for θm , and the choice of
I∗. The estimated values of θm for pico-phytoplankton ranged
between 0.024 and 0.042 according to the assigned initial
guesses. There were similar uncertainties in the results for the
other two size classes. We found that the fitted magnitudes for
θm for all three size classes lay in the range 0.024≤ θm ≤ 0.08.
The results for θm = 0.03, 0.06, and 0.08 for pico-, nano- and
micro-phytoplankton, respectively, are shown in Fig. 7, super-
imposed on the field data and the satellite-based estimates. With
the statistical fitting using nonlinear optimization techniques
yielding results with somewhat high uncertainties, the values
used in the figure are those obtained by trial and error that best
enveloped the data (as evident, visually, in Fig. 7), while being
close to the results from culture measurements. The curve for
I∗ = 0 is associated with the community value of θm , which
changes with chlorophyll and the corresponding changes in
community size structure. The differences between size classes
(or possibly with taxonomy) appear to be somewhat smaller
than those reported for culture data [18]. Since the satellite-
based estimates are lower bounds for θm , the comparison of the
satellite results with the model result for I∗ = 0 indicates that
for some of the provinces, the estimated lower bounds were too
low (yielding higher carbon values for the same chlorophyll
concentration). But the values were more realistic for some of
the other provinces, that lie close to the model result for I∗ = 0.

E. Comparison of Theoretical Model with Empirical
Models

The photoadaptation model [18] implemented here is shown
in Fig. 8 for different values of I∗. The calculations use the
solution of [19], as extended here for the spectral dependen-
cies in light penetration and light absorption, and the new
θm values introduced here. Also shown in Fig. 8 are empirical
models for the relation between phytoplankton carbon (C) and
chlorophyll (B) of the form C = i B j , where i and j are fitted
parameters: The results from Buck et al. [42], Sathyendranath
et al. [39], Marañón et al. [38], and Loisel et al. [43] are plotted
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Fig. 8. Comparison of the photoacclimation model, as imple-
mented here, to empirical models relating field data on chlorophyll-a
concentration with corresponding estimates of phytoplankton car-
bon. The black and gray curves correspond to the photoacclimation
model estimates, for I∗ = 0 and 5, respectively. The other straight
lines are empirical fits of the form C = i B j , from Buck et al. [42] in
green (curve B, i = 83, j = 0.69), Sathyendranath et al. [39] in cyan
(curve S, i = 64, j = 0.63), Marañón et al. [38] in blue (curve M,
i = 62, j = 0.89), and Loisel et al. [43] in lavender (curve L, i = 73,
j = 0.91).

in Fig. 8, and we see that these empirical results lie between
the photoacclimation model curves for I∗ = 5 and I∗ = 0,
except at the lowest chlorophyll values, where the data are very
few and where the two empirical curves of Buck et al. [42] and
Sathyendranath et al. [39] are extended beyond the range of
chlorophyll values reported by the authors. The empirical mod-
els of Marañón et al. [38] and Loisel et al. [43] lie close to the
photoacclimation model for I∗ = 5, and parallel to it for the
full range of chlorophyll values. On the other hand, the empir-
ical relationships of [39,42] approach the photoacclimation
model for I∗ = 0 for high-chlorophyll values, as one would
expect if high-chlorophyll environments tend to be low-light
environments.

Interestingly, the models of Marañón et al. [38] and Loisel
et al. [43] have higher values of the exponent j than the earlier
reports ( j = 0.89 for Marañón et al. [38] and j = 0.91 for
Loisel et al. [43]). A value of j = 1 would imply that θm was
invariant across the entire range of chlorophyll values shown,
suggesting that changes in θm with size were unimportant. This
inference follows from the size-class model [41] adopted here,
in which the higher the chlorophyll concentration, the greater
would be the cell size of the population. In reality, changes in
nutrients, irradiance, temperature, cell size, and chlorophyll
concentration are all intimately related to each other in the
marine environment, so it would be difficult to rule out the pos-
sible effects of these other factors on the chlorophyll-to-carbon
ratio. At any rate, the empirical models with an exponent close
to 1 suggest that chlorophyll-dependent changes in θm are more
modest than expected initially, in light of the laboratory results.
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Fig. 9. Modeled carbon-to-chlorophyll ratio (inverse of θ ) plotted
as a function of chlorophyll concentration, for different values of I∗
between 0 and 5. The curve for I∗ = 0 represents θm (corresponding to
low light, bottom line), and I∗ = 5 represents high-light environments
(top line). The blue box on the left is representative of the range in the
carbon-to-chlorophyll ratio reported by Sathyendranath et al. [39] for
Prochlorococcus, for the typical range of chlorophyll concentrations
where this phytoplankton type is likely to dominate. Mauve box to the
right: corresponding representation for diatoms.

F. Comparison of Model-Derived
Carbon-to-Chlorophyll Ratio with Field Data

In this paper, we have focused on θ , the chlorophyll-to-carbon
ratio. However, in the literature, one frequently sees reports of
the inverse, the carbon-to-chlorophyll ratio. In this section,
we examine the variability in the carbon-to-chlorophyll ratio
inferred from the model. Once θm has been fixed, we can model
the dependence of the carbon-to-chlorophyll ratio (the recip-
rocal of θ ) on chlorophyll for different values of I∗ (Fig. 9),
where the size classes are allowed to vary with the chlorophyll
concentration, according to Brewin et al. [41]. Within the
range of 0≤ I∗ ≤ 5, the carbon-to-chlorophyll ratio varies
between 20 and 150, with the greater values in low-chlorophyll,
high-light environments (note that the high-light environment
is indicated by the high values of I∗), and the smaller values in
high-chlorophyll, low-light (low I∗) conditions (Fig. 9). The
colored boxes in the figure are indicative of the ranges of carbon-
to-chlorophyll ratios inferred for two phytoplankton functional
types—diatoms and Prochlorococcus—from Sathyendranath
et al. [39], and of the chlorophyll concentrations in which the
two types are likely to dominate. Once again, we see that the
photoacclimation model implemented here is consistent with
previous estimates of the carbon-to-chlorophyll ratio, at least for
a couple of phytoplankton types.

5. DISCUSSION

A. Unification of Photosynthesis and
Photoacclimation Models

Building on the recent work of Jackson et al. [19], we have
shown how photosynthesis and the chlorophyll-to-carbon ratio
evolve in a coupled fashion, with changes in the scaled irradiance

I∗. We have shown how the photoacclimation model can be
extended to a spectral model, for consistency with spectral mod-
els of primary production. The results clearly demonstrate that
the two models can be driven by the same set of two parameters:
αB and P B

m , the ratio of which determines the photo-adaptation
parameter Ik , thereby introducing an economy in parameters
required to compute phytoplankton dynamics in ecosystem
models. Given that a few thousands of in situ measurements
of these parameters are available from different parts of the
world oceans [20], it follows that they can be used to guide
implementation of not only primary production models, but
also of photoacclimation models. The unification of the two
types of models makes it easier to keep track, simultaneously, of
two currencies for the biomass of phytoplankton: chlorophyll-a
concentration and carbon concentration.

B. Chlorophyll-a or Carbon?

It has been customary to use chlorophyll as the currency for
the computation of primary production. There are a number
of reasons for this preference. One argument stems from func-
tional considerations: Chlorophyll-a is the transducer that acts
to connect the supply of energy from the sun to the plant-based
ecosystems on our planet. When we examine a map of chloro-
phyll concentration from satellite data, we are looking at how
the strength of this energy–ecosystem coupling varies across
the global ocean: the higher the chlorophyll concentration, the
stronger the coupling. Therefore, information on chlorophyll
concentration is easily integrated into primary production
models, which estimate the rate of carbon fixation that ensues
from this coupling. The second argument is practical: Of all the
biological variables that are amenable to measurement at sea,
chlorophyll concentration is the simplest variable to measure,
and it is measured just about everywhere. From a remote-sensing
perspective, chlorophyll-a has the clear advantage of having a
distinctive absorption spectrum, which facilitates its detection
from the changes in the color of the water.

The arguments that favor the use of carbon as the measure of
the standing stock of phytoplankton stem from biogeochemical
considerations: The main objective of most biogeochemical
models of the ocean is to better understand the cycle of car-
bon and other climate-relevant variables in the ocean. In this
context, carbon appears to be a natural choice for tracking the
phytoplankton biomass.

These conflicting requirements have led to a dichotomy in
primary production models: those that are chlorophyll-based
and those that are carbon-based. However, the unification of
primary production and photoacclimation models implies
that the same set of parameters can be used to compute the
change in carbon from photosynthesis, as well as the corre-
sponding change in chlorophyll-a concentration, through the
chlorophyll-to-carbon ratio θ . It is no longer necessary to make
a choice between chlorophyll and carbon.

C. Maximum Chlorophyll-to-Carbon Ratio

We are aware of only one earlier attempt to unify the primary
production and the photoacclimation model: The work of
Smith [44], which recently came to our attention, is based on a
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generalization of available light models of primary production
to compute the carbon-to-chlorophyll ratio. It makes use of
the fundamental connection between αB , the quantum yield
of photosynthesis, and the specific absorption coefficient for
phytoplankton that had been published earlier [21], but of
which Smith appears to have been unaware. This important
work has received surprisingly little attention in the intervening
years. Smith notes in his paper that his model suffers from the
lack of a resource allocation component, which would have con-
strained the minimum carbon-to-chlorophyll ratio from going
to zero at low light. He argued that considerations of optimal
resource allocation would favor phytoplankton maintaining a
minimum carbon-to-chlorophyll ratio of about 20, and that his
model-observation comparison would improve if he imposed
such a limit. The development of the resource allocation model
of Geider et al. [18] has, in fact, removed this limitation, so the
carbon-to-chlorophyll ratio goes to a finite value (= 1/θm) when
light tends to zero.

In the conceptualization of the Geider et al. model, the
parameter θm is more of a model constant than a model param-
eter. However, there is also the recognition that the value of θm

could vary with the phytoplankton type, so it is not a universal
constant. In this paper, we have provided what we believe are
the first estimates of θm that are consistent with the field data,
and have shown that the assignment of θm values to three size
classes of phytoplankton is sufficient to capture the variability in
phytoplankton carbon in relation to the chlorophyll data from
the field. We have further shown that the photoacclimation
model implemented with these values of θm gave results that
are consistent with the culture experiments on single species
under controlled conditions; with in situ observations; with
empirical models based on field data; with satellite-based
computations of primary production; and with known vari-
ability in the chlorophyll-to-carbon ratio with changes in the
phytoplankton types.

D. Reconciling Different Classes of
Primary-Production Models

Many models are available to estimate primary production.
However, most of them are conceptually similar, and it is
quite straightforward to show that they can be reformulated to
demonstrate the equivalence between them, if implemented
with equivalent parameters [29]. The different classes of pri-
mary production models and their equivalence to the available
light models are shown in Table 1. Regardless of individual
preferences for the selection of a model, and the preferences may
be strategic (see, for example, Lee et al. [45]), such a comparison
shows that only a small set of parameters is needed to implement
primary production models at sea. These are the assimilation
number P B

m ; the initial slope αB of the photosynthesis–
irradiance curve; the specific absorption coefficient a B

∗
of

phytoplankton; and θ , the carbon-to-chlorophyll ratio in
phytoplankton. If all four are known, then implementation of
any of the models becomes easy [29].

Of these, a B
∗

, the specific absorption coefficient of phyto-
plankton, also appears in computations of light penetration
underwater. For accurate implementation of absorbed light
models and of phytoplankton absorption-based models, one

would ideally note the difference between light absorbed
by all pigments (needed for computation of light penetra-
tion underwater) and that absorbed by photosynthetic
pigments [45].

The translation between carbon-based models and all the
other classes shown in Table 1 has been hampered by limited
information from the field on the variability in θ , which is the
subject we have focused on in this paper. With the coupling
between primary production and photoacclimation established,
it is now a simple matter to move seamlessly between these
classes of models.

An advantage of studying the equivalence between these
models is that it enables us to use the wealth of in situ data
on photosynthesis–irradiance parameters from the global
ocean [20] to aid the parameter assignment not only of avail-
able light models, but also of the other classes of models. It
would be instructive to study the extent to which intermodel
differences might be reduced, if a common set of in situ data on
photosynthesis–irradiance parameters were used to constrain all
the models.

E. Climate Context

The first ocean-color-based computations of primary produc-
tion at the global scale emerged some 25 years ago [6]. Many
others have followed in the intervening years [23,33,48–51],
using one or another classes of models discussed in the previous
section. Much effort has been expended comparing the products
against each other, against in situ data, and against ecosystem
models [11,13,14,52]. Yet, we have made little progress in
reducing uncertainties in the products and the confidence of the
climate community in these products remains low. Although it
is important to continue confronting products with observa-
tions, we also need to explore other avenues. The angle we have
pursued here is to explore the relationships between the models
at the functional level, allowing us to ask in a systematic way how
the models would differ from each other in particular contexts,
which would then enable us to better understand the sources of
divergence between models and to reconcile them. Although
the availability of a multitude of models is sometimes taken to
be a sign of a healthy field, in the climate context, it is important
to understand the nature of the differences between models and
to evaluate which approach might be appropriate in a climate
context (see, for example, Sathyendranath et al. [53]).

The other value of the comparison of models at the func-
tional level is that we can better investigate the role played by
parameter assignment in the models. For example, it is common
to use a temperature-dependent function to model the assimi-
lation number or related hybrid parameters [8,46,48,54,55].
Temperature-dependent functions are also commonly used to
estimate the growth rates of phytoplankton in ecosystem models
designed for climate studies [56]. Clearly, temperature is an
important driver in modeling primary productivity in climate
simulations. It has been difficult to check the validity of the tem-
perature functions used in models because of a lack of sufficient
field data on model parameters. When the equivalence between
different model parameters is known (Table 1), the field data
on photosynthesis–irradiance parameters [20] could be used
to test which temperature-dependent functions work best, and
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Table 1. Classes of Primary Production Models, the Model Parameters, and Their Equivalence to the Parameters
PB
m and αB Typically Used in Available Light Models

a

Model Name Equation Equivalence References Remarks

Available light P = B P B
m (1− exp(−IαB/P B

m ))

P = B P B
m (1− exp(−I∗))

[25] The original paper also includes an
additional term for photo-inhibition.

Absorbed light P = φm Ba B
∗

Ik(1− exp(−I∗)), or
P = φBa B

∗
I , where

φ = (φm/I∗)(1− exp(−I∗))

P B
m = α

B Ik

αB
= a B

∗
φm

I∗ = I/Ik

[45] and
references
therein.

IdentityαB
= a B

∗
φm from [21],φm is

maximum realized quantum yield, and a B
∗

is
absorption coefficient of phytoplankton, per

unit chlorophyll concentration.

Biomass-independent, or
Phytoplankton-absorption-
based

P = φma B Ik(1− exp(−I∗)), or
P = φa B I

a B
= Ba B

∗
[45] Hereφ is realized quantum yield.

Carbon-based, or Growth µ= 1
C

dC
dt , dC

dt = P , and
P =Cθ P B

m (1− exp(−I∗))
P =Cµm(1− exp(−I∗))

θ = B
C [39,46,47] Here,µm is maximum gross growth rate in

carbon units. Important to note that C is
phytoplankton carbon and not total

particulate organic carbon in the ocean.
aThe references are not meant to be exhaustive, but we have provided at least one reference to the early development of each class of physiological models and to early

examples of its implementation in a remote-sensing context.

even whether drivers other than temperature should be taken
into account, in the climate context (see, for example, [54,55]).
A realistic method to model θ , as discussed here, would also
facilitate such comparisons and evaluations. A relevant point
is that photosynthesis–irradiance parameters are now available
for a time span of some 50 years, perhaps sufficiently long to
interrogate the database to seek evidence of climate trends in
the parameters.

6. CONCLUDING REMARKS

We have shown that the photosynthesis–irradiance parameters
provide the key to reconciling models of primary production
and of photoacclimation. Changes in the primary production
stem from coordinated changes in the chlorophyll-to-carbon
ratio θ and in photosynthesis–irradiance parameters. The work
underlines the critical requirement for more measurements of
photosynthesis–irradiance parameters, as well as a better under-
standing of how they vary with environmental conditions and
with the phytoplankton community structure. It also highlights
the importance of improving our understanding of the relation-
ship between chlorophyll concentration and carbon content in
phytoplankton cells: We see that the ratio varies roughly over an
order of magnitude. Without a doubt, the results presented in
this study must be improved over time.

Accurate estimates of the underwater light field, ideally
spectrally resolved, are key to both photosynthesis and pho-
toacclimation, which are governed by the coupling between
the ambient light and the photosynthetic machinery in
phytoplankton.

We have provided what we believe are the first estimates of the
magnitude of the maximum chlorophyll-to-carbon ratio (θm)
for natural assemblages of phytoplankton. The values of θm that
emerge lie within the range of results from laboratory measure-
ments, and are consistent with field data and empirical models
of chlorophyll–carbon relationships based on observations at
sea. The new information on the magnitude of θm opens the
door to new applications of remotely sensed data on ocean color.

APPENDIX A: IMPLEMENTATION OF SPECTRAL
MODEL OF LIGHT PENETRATION AND PRIMARY
PRODUCTION

The spectral model of light penetration and primary produc-
tion implemented here is based on Sathyendranath and Platt
[57], Platt and Sathyendranath [22], and Sathyendranath and
Platt [28], with a number of changes to make the implementa-
tion more up to date. The steps involved in the computations
are shown schematically in Fig. 10. Each step is described
briefly below.

A. Light Available at the Sea Surface

First, the spectrally resolved clear-sky irradiance at the sea
surface, partitioned into direct and diffuse components, is
computed as in [57], using the clear-sky atmospheric light trans-
mission model of Bird and Riordan [58], at 12 time steps from
dawn until noon. The clear-sky values are then scaled to match
the photosynthetically available radiation (PAR) products from
NASA (https://oceancolor.gsfc.nasa.gov), for either SeaWiFS
or MODIS-Aqua [59,60]. For time series analysis, a simple
correction is applied to minimize inter-sensor bias between
the SeaWiFS and MODIS-Aqua products, on a per-pixel
basis. Reflection and refraction at the sea surface are computed
assuming a flat ocean, as in [57].

B. Chlorophyll Profile

The vertical structure in the chlorophyll values is computed as
in [6,7], using Gaussian profile parameters for each ecological
province and for each season, based on a database of in situ aver-
age profile parameters, scaled to match the surface value from
satellites. The profile parameters have been updated to those
used in [33,49]. However, when calculations are made for the
mixed layer, we assumed that the satellite-retrieved chlorophyll
concentration held for the whole of the mixed layer.

https://oceancolor.gsfc.nasa.gov
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Fig. 10. Schematic diagram showing the steps involved in the
computation of primary production. Green boxes: input from satellite
observations. Purple boxes on left: input from in situ observations.
Mauve boxes on right: models used. Blue boxes down the middle:
computed fields. Change in light with time of day, change in light
with depth, and photosynthetic response to available light are shown
schematically. Computation of light field and primary production are
spectrally resolved, and fully coupled.

Light Penetration

The computation of light penetration is based on the Case 1
assumption that all inherent optical properties can be computed
as a function of chlorophyll-a concentration. First, the spectral
absorption and backscattering coefficients at depth z and time t
are computed as

a(λ, z, t)= aw(λ)+ a B (λ, z, t)+ ag d (λ, z, t), (A1)

bb(λ, z, t)= bbw(λ)+ bbp(λ, z, t), (A2)

where a and bb stand for the total absorption coefficient and
total backscattering coefficient, respectively, and λ is the wave-
length. Subscripts w, g d , B , and p stand for water, combined
effect of gelbstoff (colored dissolved organic matter) and detri-
tus, phytoplankton, and particulate matter in suspension,
respectively.

Absorption by pure water is computed as in [61].
Phytoplankton absorption is expressed as the sum of absorption
by pico-, nano-, and micro-phytoplankton, which are calculated
as in [41,62], using the model parameters for the global ocean
for the three size classes. Following [63], ag d (440) at each time
step and for each depth is set to 0.3a B (440) and the spectral
values of ag d (440) are computed using an exponential function
with the exponent equal to−0.014 nm−1 [64].

Pure water scattering is assigned according to [65], and
backscattering (bbw) is estimated as 50% of total scattering by
water. Scattering by particles at 660 nm is computed according
to [66], and the wavelength dependence of particle scattering

and the ratio of backscattering to total scattering are computed
as in [67].

Once the absorption and backscattering coefficients are esti-
mated, the spectral diffuse attenuation coefficient for direct sun-
light K d (λ) and for diffuse sunlight K s (λ) are computed as

K d (λ)= [a(λ)+ bb(λ)] /µd , (A3)

K s (λ)= [a(λ)+ bb(λ)] /µ̄s , (A4)

whereµd is the cosine of the sun-zenith angle in water, and µ̄s is
the mean cosine for the diffuse sunlight after refraction at the sea
surface, which is set to 0.83 [28].

Diffuse and direct components of light available at any depth
z and time t are then computed as [57]

Id (λ, z, t)= Id (λ, z−1z, t) exp (−K d (λ, z, t)1z) ,
(A5)

Is (λ, z, t)= Is (λ, z−1z, t) exp (−K s (λ, z, t)1z) , (A6)

where1z is the depth interval in the computations, currently set
at 0.5 m.

Computation of Primary Production

Photosynthesis–irradiance parameters αB and P B
m are assigned

for each season and each ecological province [31], using values
from [33,49].

The initial slope αB is assigned a spectral shape that matches
the spectral shape of the phytoplankton absorption coefficient at
each depth, and scaled such that its spectral average matches the
white-lightαB in the parameter assignment file.

The term5 in Eq. (15) is estimated as [28]

5(z, t)=
∫
αB (λ, z, t)

[
Id (λ, z, t)
µd

+
Is (λ, z, t)
µ̄s

]
dλ,

(A7)
where the diffuse and direct components of irradiance are
tracked separately, because of the differences in their angular
distributions (as indicated by µd and µs ), which in turn influ-
ence both their rates of light penetration and their utilization
for photosynthesis. The computed 5(z, t) is then used in
the photosynthesis–irradiance equation of [25] to compute
production P (z, t), as

P (z, t)= B(z, t)P B
m (z, t)

(
1− exp

(
−
5(z, t)
P B

m (z, t)

))
.

(24)
The choice of equation for the photosynthesis–irradiance curve
was dictated by its compatibility with the photoacclimation
model, which is also based on the same representation. It is
straightforward to derive this equation from considerations
of light absorption by phytoplankton [21], making it con-
ceptually easy to translate the model into an absorbed light
model. Furthermore, the model is easily adapted to incorporate
photo-inhibition at high light, if required.
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Computation of Daily, Water-Column Production

Once the production at all depths and at all time intervals are
computed for the day, the daily, water-column production PZ,T

is simply the numerical integral of all P (z, t) values, so

PZ,T =

∫∫
P (z, t)dzdt . (A9)
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