Biogeosciences, 20, 1813-1828, 2023
https://doi.org/10.5194/bg-20-1813-2023

© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Global analysis of the controls on seawater

dimethylsulfide spatial variability

George Manville!'>3, Thomas G. Bell, Jane P. Mulcahy?, Rafel Simé*, Marti Gali*>, Anoop S. Mahajan®,

Shrivardhan Hulswar®, and Paul R. Halloran'

IFaculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4PY, UK

2Plymouth Marine Laboratory (PML), Plymouth, PL1 3DH, UK

3Met Office, Exeter, EX1 3PB, UK

Hnstitut de Ciéncies del Mar (ICM-CSIC), Barcelona, 08003, Catalonia, Spain
SBarcelona Supercomputing Center (BSC-CNS), Barcelona, 08034, Catalonia, Spain
®Indian Institute of Tropical Meteorology (IITM), Ministry of Earth Sciences, Pune, 411008, India

Correspondence: George Manville (gm441 @exeter.ac.uk) and Thomas G. Bell (tbe @pml.ac.uk)

Received: 22 December 2022 — Discussion started: 17 January 2023
Revised: 20 March 2023 — Accepted: 5 April 2023 — Published: 16 May 2023

Abstract. Dimethylsulfide (DMS) emitted from the ocean
makes a significant global contribution to natural marine
aerosol and cloud condensation nuclei and, therefore, our
planet’s climate. Oceanic DMS concentrations show large
spatiotemporal variability, but observations are sparse, so
products describing global DMS distribution rely on interpo-
lation or modelling. Understanding the mechanisms driving
DMS variability, especially at local scales, is required to re-
duce uncertainty in large-scale DMS estimates. We present
a study of mesoscale and submesoscale (< 100 km) seawa-
ter DMS variability that takes advantage of the recent ex-
pansion in high-frequency seawater DMS observations and
uses all available data to investigate the typical distances over
which DMS varies in all major ocean basins. These DMS
spatial variability length scales (VLSs) are uncorrelated with
DMS concentrations. The DMS concentrations and VLSs
can therefore be used separately to help identify mecha-
nisms underpinning DMS variability. When data are grouped
by sampling campaigns, almost 80 % of the DMS VLS can
be explained using the VLSs of sea surface height anoma-
lies, density, and chlorophyll a. Our global analysis suggests
that both physical and biogeochemical processes play an
equally important role in controlling DMS variability, which
is in contrast with previous results based on data from the
low to mid-latitudes. The explanatory power of sea surface
height anomalies indicates the importance of mesoscale ed-
dies in driving DMS variability, previously unrecognised at a

global scale and in agreement with recent regional studies.
DMS VLS differs regionally, including surprisingly high-
frequency variability in low-latitude waters. Our results in-
dependently confirm that relationships used in the literature
to parameterise DMS at large scales appear to be considering
the right variables. However, regional DMS VLS contrasts
highlight that important driving mechanisms remain elusive.
The role of submesoscale features should be resolved or ac-
counted for in DMS process models and parameterisations.
Future attempts to map DMS distributions should consider
the length scale of variability.

1 Introduction

Dimethylsulfide (DMS) is a volatile sulfur gas produced by
surface ocean microbial food webs and emitted to the at-
mosphere (Bates et al., 1992). DMS emissions dominate at-
mospheric biogenic sulfur and form a significant component
of natural marine aerosol loads (Simé, 2001; Sanchez et al.,
2018; Quinn et al., 2017). Aerosols increase light scattering
and modify cloud optical properties, thereby contributing to
a radiative forcing of climate (Charlson et al., 1987; Carslaw
etal., 2013; Gali et al., 2021). The amount, composition, and
distribution of natural aerosol in the atmosphere determine
the indirect radiative forcing effect of anthropogenic aerosols
on climate, but these are poorly constrained by global cli-
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mate models (Carslaw et al., 2013). DMS-derived sulfate
aerosols are ephemeral (~ 1 d residence time; Boucher et al.,
2003) and of greater consequence for cloud modulation in re-
mote pristine regions (Halloran et al., 2010). The distribution
of natural marine aerosol sources should be represented at
the resolution required to capture the frequency and magni-
tude of their variability. This is critical for reducing the large
uncertainties associated with natural aerosol-cloud interac-
tions.

Oceanic DMS production and consumption pathways are
complex, and the controls on DMS spatial distribution in the
global ocean are not fully resolved (Gali and Sim6, 2015).
The Global Surface Seawater DMS Database (GSSDD) con-
tains measurements that show large-scale temporal and spa-
tial variability in DMS concentrations (Lana et al., 2011;
Hulswar et al., 2022). In situ DMS measurements are rela-
tively sparse and limited with respect to global distribution,
coverage, and spatiotemporal sampling frequency, rendering
the majority of DMS observations insufficient to resolve lo-
cal and submesoscale variability (Tortell et al., 2011; Belviso
et al., 2004a; Lana et al., 2011). DMS sampling is globally
biased towards spring—summer months (see Fig. S1, Sup-
plement) and has disproportionally targeted biologically pro-
ductive areas (e.g. northeastern Pacific and northwestern At-
lantic, see Fig. 1), which can lead to an overrepresentation
of high DMS concentrations within the database (Gali et al.,
2018). Monthly and repeat interannual DMS measurements
are rare and generally restricted to DMS productive areas
(Gali et al., 2018; Tesdal et al., 2015). Sparse, infrequent,
and seasonally and spatially biased observations of highly
variable DMS concentrations create uncertainty because it is
hard to quantify the representativeness of the measurements.
Sampling uncertainties inevitably propagate through to DMS
concentration and flux climatologies, parameterisations, and
model outputs (Belviso et al., 2004b).

Relatively simple extrapolation methods have been used to
fill the gaps between sparse observations to provide globally
representative estimates of DMS (Lana et al., 2011; Kettle
et al., 1999; Hulswar et al., 2022). Significant differences in
these smoothed climatological estimates, and thus uncertain-
ties, have been attributed to the gap-filling techniques used,
specifically the appropriate interpolation/smoothing radius of
influence (Hulswar et al., 2022). More complex algorithms
have been generated at the basin or global scale using pa-
rameters such as chlorophyll, light, nutrients, surface tem-
perature, and mixed layer depth (Sim6 and Dachs, 2002; An-
derson et al., 2001; Aranami and Tsunogai, 2004; Halloran
et al., 2010; Vallina and Simé, 2007; Aumont et al., 2002;
Belviso et al., 2004a; Gali et al., 2015, 2018; Miles et al.,
2009; Chu et al., 2003; Herr et al., 2019). More recently,
global and regional climatologies have been generated using
machine learning approaches (Wang et al., 2020; McNabb
and Tortell, 2023, 2022; Humphries et al., 2012). The vari-
ation in different climatological DMS estimates highlights
that the scientific community needs to better understand and
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map the processes controlling its oceanic distribution (Hal-
loran et al., 2010; Belviso et al., 2004b). Modelled seasonal
and regional aerosol—cloud interactions and radiative forcing
are directly sensitive to the accuracy and choice of seawater
DMS estimates (Woodhouse et al., 2013, 2010; Mahajan et
al., 2015).

Recent studies have focussed on local and submesoscale
DMS variability, taking advantage of improvements to sea-
water DMS concentration sampling resolution (e.g. Asher et
al., 2011; Nemcek et al., 2008; Tortell, 2005a, b; Tortell and
Long, 2009; Zindler et al., 2014). This study explores the po-
tential mechanisms that appear to govern DMS variability at
the < 100 km scale and investigates whether these align with
the variables used within large-scale DMS parameterisations.
An improved understanding of submesoscale DMS variabil-
ity will aid the development of future climatological flux es-
timates and the appropriate radius of influence that sparse
observations should be afforded when smoothing and inter-
polating in situ observations.

Variability length scale (VLS) analysis is a powerful tool
for quantifying submesoscale variability. VLS analysis can
be used to indicate the lowest sampling resolution necessary
to capture most of the spatial variability (Royer et al., 2015).
High-resolution measurements are required to assess small-
scale variability. For example, observing variations within
10km when the research ship is travelling at 8 ms~! requires
measurements every 20 min. Instruments that can observe
variability at these high resolutions have been deployed in
recent years and have substantially contributed to the global
DMS database (Hulswar et al., 2022). A growing number
of high-frequency DMS measurements offers the opportu-
nity for a global analysis of the drivers of DMS variability at
small scales.

VLS analysis for DMS has been applied in only a few stud-
ies, with most focusing on a specific region and/or a single
sampling campaign (e.g. Ross Sea, Tortell and Long, 2009;
Tortell et al., 2011; northeastern subarctic Pacific, Tortell,
2005b; Asher et al., 2011; Nemcek et al., 2008). A larger-
scale VLS analysis was undertaken on the 7-month low-
to mid-latitude global circumnavigation conducted during
the Malaspina Expedition 2010 (M10; Royer et al., 2015).
Royer et al. (2015) combined their VLS analysis with VLS
values from three high-latitude studies (7—15km; Asher et
al., 2011; Nemcek et al., 2008; Tortell et al., 2011) and re-
ported an inverse relationship between DMS VLS and lat-
itude (R =—0.74, p <0.005). Royer et al. (2015) also re-
ported that biological variables dominate over physical vari-
ables as drivers of DMS VLS in low-latitude regions. While
it is tempting to draw global conclusions from the similari-
ties and differences between these studies, each study adopts
a slightly different approach to the data treatment, measure-
ment of interpolation error, and/or classification of VLS (see
Table S1, Supplement).

This study applies a single, objective VLS analysis to
high-frequency global DMS observations over the past
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Figure 1. Global extent of the 37 high-frequency DMS campaigns included in this analysis (coloured). Data are only shown for the underway
transects used in the VLS analysis (see Sect. 2.3). Insets show detail for northeastern Pacific and northwestern Atlantic regions with multiple
sampling campaigns (see Table S2 and Fig. S1 in the Supplement for metadata relating to each sampling campaign and the spatiotemporal

distribution, respectively).

15 years (Figs. 1 and S1, Supplement). The dataset used
includes all available data from previous VLS studies. Our
study assesses whether the factors controlling DMS variabil-
ity can be identified using a submesoscale variability analysis
across all ocean basins. Section 2 describes the datasets used
and the VLS methodology. Section 3 presents results includ-
ing global VLS statistics, regional patterns of DMS variabil-
ity, and drivers of DMS variability. Finally, the findings are
discussed in Sect. 4, with conclusions made in Sect. 5.

2 Data and methods
2.1 Seawater DMS data

The majority of DMS data are sourced from the global sur-
face seawater DMS database (GSSDD:; see https://saga.pmel.
noaa.gov/dms/, last access: 15 April 2022). Selection crite-
ria are used to identify datasets suitable for submesoscale
VLS analysis: a minimum of 100 data points in total and
< 1h between measurements, which excludes all data with
a spatial resolution of > 30 km. Applying these filters results
in 37 eligible datasets (collected between 2004 and 2019).
The filters broadly separate the DMS database by sampling
method, highlighting the rapid shift during the early 2000s
from discrete, low-frequency gas chromatography analytical
systems to continuous, semi-automated high-frequency mass
spectrometry (Bell et al., 2012; Saltzman et al., 2009). Addi-
tional data are from the Malaspina Expedition in 2010-2011
(M10; Royer et al., 2015), the North Atlantic Aerosol and
Marine Ecosystem Study in 2015-2018 (NAAMES; Bell et
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al., 2021; Figs. 1 and S1, Table S2, Supplement, campaign
numbers: 33 — blue, 34 — green, 35 — red, 36 — yellow), and
the Southern oCean SeAsonalL Experiment in 2019 (SCALE;
Manville and Bell, 2023; Figs. 1 and S1, Table S2, Supple-
ment, campaign number: 37, green). The M 10 circumnaviga-
tion data are split spatiotemporally into three datasets, each
broadly covering different ocean basins (Figs. 1 and S1, Ta-
ble S2, Supplement, campaign numbers: 30 — M10a, black;
31 - M10b, dark red; 32 — M10c, cyan).

2.2 Ancillary in situ and coincident satellite
measurements

Ancillary in situ and remotely sensed data are used to ex-
plore the potential mechanisms driving DMS variability. In
situ sea surface salinity (hereafter salinity) and sea surface
temperature (SST) from each DMS dataset are used to derive
sea surface density (hereafter density) (see Fernandes, 2014).
Satellite monthly mean chlorophyll a (Chl) and 5 d sea sur-
face height anomaly (SSHA) data are matched to the aver-
age date of each DMS sampling cruise. Satellite data pixels
are extracted along the coordinates of the DMS cruise track
using the NASA SeaDAS software (version 7.5.3). NASA
MEaSUREs level 4 (L4) 0.17° 5d SSHA data are used to ex-
plore the role of eddies in driving DMS variability (Zlotnicki
etal., 2019). NASA MODIS-Aqua level 3 (L3) 4 km monthly
Chl is used as a proxy for plankton biomass and biological
productivity (NASA Goddard Space Flight Center, 2018).
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2.3 Data processing

Underway data are screened to only include data acquired
when the ship speed was > 1 ms~! to avoid measurements
made when ships were sampling on station. Ship speed is cal-
culated from distance and time between measurements. Each
DMS dataset and all its ancillary data are divided into tran-
sects. Transects are defined as continuous data sections with
a minimum sampling frequency of 1h. Most observations
(83 %) captured by the temporal filter are <2.2km apart.
The minimum transect length is calculated in two stages:
(1) the linear distance between the start and end of a con-
tinuous data section must be > 100km to avoid campaigns
that targeted a specific area multiple times (e.g. a produc-
tive bloom or mesoscale eddy); (2) each dataset is divided
into equal length transects, with an along-track distance of at
least 100 km. The initial data processing yields 1039 contin-
uous transects from 37 DMS campaigns, with each transect
100-199 km in cumulative length (Fig. 1).

2.4 Variability length scale (VLS) analysis

Previous DMS VLS studies have not applied a standardised
or consistent approach (Royer et al., 2015; Asher et al., 2011;
Tortell et al., 2011; Tortell, 2005b; Tortell and Long, 2009;
Nemcek et al., 2008). The analysis presented here adopts the
method used to study the VLS of seawater CO, (Hales and
Takahashi, 2004), which was later applied to DMS by Tortell
et al. (2011) and Nemcek et al. (2008).

The highest observational DMS sampling resolution in the
datasets is typically between 0.2 and 2.2 km. Each data tran-
sect is subsampled repeatedly, starting from the first data
point, at increasingly coarse spacings ranging from 2.2 km
to half the length of the transect (the lowest possible resolu-
tion), increasing in 0.2 km increments. At each subsampling
resolution, the first and last subsampled points of the data
transect define the subsampling window. Subsampled data
across the subsampling window are linearly interpolated to
the resolution of the original data. Where the subsampling
window matches the length of the data transect, the interpo-
lation error associated with the subsampling resolution is cal-
culated as the root mean squared error (RMSE) between the
original and the interpolated values. Where the subsampling
window is not equal to the length of the transect, the win-
dow is shifted along the transect, incrementing by one data
point, and the transect is re-subsampled. Re-subsampled data
are linearly interpolated across the shifted window, and the
RMSE is re-calculated. The subsampling window is repeat-
edly shifted along the data transect and interpolation RMSE
re-calculated until the subsampling ends on the last data point
of the transect. The error associated with the subsampling
resolution is taken as the average of all the RMSE values
produced by sliding the window across the data transect at
that resolution. The RMSE is calculated following Eq. (1):
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RMSE = 4/ (Obs — Interp)2. (1)

The RMSE typically increases in proportion to the coarse-
ness of the subsampling until a maximum error plateau, or
asymptote, is reached. The maximum error plateau corre-
sponds to the total variance of the dataset (Tortell et al.,
2011; Belviso et al., 2004a). The trend in RMSE as a func-
tion of subsampling resolution is well described by a non-
linear first-order inverse exponential rise function following

Eq. (2):
E, = En (1 —e(_ﬁ)), )

where E is the interpolation error at subsampling resolution
x, Ex is the asymptotic maximum interpolation error at an
infinite subsampling resolution, and VLS is the characteris-
tic length scale of variability. The VLS is determined by the
subsampling resolution (interpolation distance) where a tan-
gent of the initial slope intersects with the maximum error
(Eso, Fig. 2). The VLS also corresponds to the intersect on
the curve (Ey) that is 63 % of E, i.e. Eq. (3):

Ex

=1—e(-v5) ~0.63. 3)
Eso

Previous work suggested that a sudden change (or “break-
point”) in the RMSE slope can be used to characterise the
DMS VLS (Royer et al., 2015; Asher et al., 2011). However,
this approach is unreliable because the data assessed in this
study show that the breakpoint does not always occur, and its
identification is subjective (see Table S1, Supplement).

An inverse exponential rise function (Eqs. 2 and 3) is
used here to objectively derive the VLS. The objective VLS
method is applied to all 1039 transects and six variables:
DMS, SST, salinity, density, Chl, and SSHA.

2.5 Quality assurance and VLS statistics

Two filters are used to identify viable data transects. The
VLS is rejected if the distance is greater than the maxi-
mum subsampling/interpolation distance (equal to half the
transect length), which only occurred in very noisy datasets.
The second filter is the quality of fit to the data using the
residual standard error (RSE) (Fig. 2b), which is defined as
RSE = /(sSes /1), where n is the number of data points in
the transect and sses is the sum of the squares of the residu-
als, i.e. sspes = Y (residuals from fitted curve)?.

The RSE is normalised using the maximum RSE of the
curve (i.e. (RSE /RSE at the asymptote) x 100), and if the
normalised RSE exceeds 10 %, the curve is deemed to inade-
quately describe the data and the transect is rejected. The two
quality control filters reduce the initial 1039 transects to 763
“viable” transects.
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Figure 2. (a) Example of seawater DMS concentration (nM) data transect (sampled from the northwestern Atlantic during the NAAMES1
(November 2015) campaign; see Bell et al., 2021), analysed to find the variability length scale (VLS). (b) Asymptotic error curve (dashed
black) fitted to interpolation errors (RMSE, nM; dotted cyan) plotted as a function of increasingly coarse interpolation distance (km). The
95 % prediction intervals (PIs) of the non-linear regression fit, i.e. =2 residual standard errors (RSE), are shaded blue. The VLS (km) is
characterised as the intercept (dashed red) on the curve at 63 % of the asymptotically approached maximum interpolation error (nM). Method

adapted from Hales and Takahashi (2004).

The VLS distributions from the 763 transects are skewed
for all parameters (Figs. 3 and S2, Supplement). The geomet-
ric mean and geometric standard deviation (GSD) are com-
puted to assess central tendency and spread while accounting
for skew in the data. Note that the geometric mean is reg-
ularly referred to as the “average” within this paper to aid
readability. All significance testing uses the non-parametric
Mann-Whitney U test. Transects are grouped and averaged
by sampling campaign to assess underlying spatial and tem-
poral (regional and seasonal) patterns of variability. Aver-
age VLS distances are calculated for each sampling cam-
paign and for all variables (VLSpms, VLSsst, VLSsalinitys
VLSgensity> YVLScni, VLSsspa). A minimum threshold of
four transects was necessary before calculating a campaign-
averaged VLS. Exclusion of campaigns with fewer than four
transects reduced the total number of campaigns from 37 to
35.

Correlation and multiple linear regression (MLR) are used
to explore the global controls on VLSpyps (see Sect. 3.3.1
and 3.3.2). The campaign-averaged VLS used in each corre-
lation and regression analysis only includes transects where
coincident VLS can be calculated from the DMS and non-
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Figure 3. Frequency distribution of variability length scales (VLSs,
km) for all DMS transects (grey bars). Vertical coloured lines corre-
spond to the global geometric mean (and geometric standard devi-
ation, GSD) from all transects for VLSpys (dark blue), VLSgsga
(beige), VLS ensity (cyan), and VLScy) (magenta).
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DMS variables. The MLR models with two input variables
contain 20-26 datasets, and MLR models with three input
variables contain 11-15 datasets. The relative importance of
the input variables in each MLR model are calculated based
on the incremental R? used to determine interactional dom-
inance (defined as the incremental R2 contribution of each
predictor to the complete model; Azen and Budescu, 2003).

3 Results
3.1 Global VLS statistics

The global average DMS concentration and geometric stan-
dard deviation (GSD) for the viable transects covered in this
study are 2.23 nM (average) and 2.29 (GSD), which are simi-
lar to the global average and GSD from the GSSDD (2.66 nM
(average), 2.88 (GSD); https://saga.pmel.noaa.gov/dms/, last
access: 15 April 2022). The similarity between the two
datasets suggests that the data used in this study are represen-
tative of global observations. The global average and GSD of
VLSpms from all 763 transects are 12.57 km and 2.33, re-
spectively (Fig. 3). The global average VLSps is the small-
est of the six variables tested, with VLSgsga the most sim-
ilar (15.76 km, 1.77 GSD) (Fig. 3). Global average VLScp)
is slightly larger (20.89 km, 1.67 GSD) and similar to global
average VLSgensity (20.21 km, 1.76 GSD) and its components
VLSsst (21.23km, 1.73 GSD) and VLSgainity (19.52km,
1.84 GSD) (Figs. 3 and S1, Supplement). Global average
VLSpMms and VLSssha are significantly different (p < 0.01)
from each other and the global average VLS of all other pa-
rameters. Global average VLScn, VLSdensity, VLSssT, and
VLSgulinity are not significantly different from one another.

All six variables have an average spatial variability that
is tens of kilometres in all regions. The global average
VLSssga is similar (within 4km) to the global average
VLSpms. The global average VLSs for all other parame-
ters are within 9km of the global average VLSpms. The
campaign-averaged VLSpys ranges from 2 to 30 km, which
is the same order of magnitude as the range of 7-50 km re-
ported by other DMS variability studies (Asher et al., 2011;
Nemcek et al., 2008; Tortell, 2005b; Tortell et al., 2011;
Royer et al., 2015). Note that a detailed comparison between
studies should be treated with caution because each has used
different methods to identify the VLS.

3.2 Regional patterns of DMS variability

VLSpums is generally small in the subtropical gyres, specifi-
cally the equatorial and subtropical South Pacific and South
Atlantic (Fig. 4; see Table S2, Supplement, for the campaign-
averaged VLSpyms of each sampling campaign, e.g. cam-
paign numbers: 30, M10a, black; 31, M10b, dark red; and
32, M10c, cyan). The average VLSpyms from all transects
in the three M10 low- to mid-latitude circumnavigation
campaign datasets (mean =6.34km, GSD =2.59) is con-
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sistently smaller than the global value (mean=12.57 km,
GSD =2.33) (Fig. 4). The relative homogeneity of small
VLSpwms in these oligotrophic domains is not replicated in
the VLS of any other variables (Fig. S3, Supplement). The
subtropical gyres of the Southern Hemisphere are perma-
nently stratified biomes, bounded to the south by a band
of seasonally stratified biomes (Fay and McKinley, 2014).
At the boundary transitions from permanently to seasonally
stratified conditions, there are some notable exceptions to
the low VLSpps, e.g. the Benguela upwelling (southeast At-
lantic) and South Australia upwelling (Fig. 4).

In contrast, the average (mean =22.06 km, GSD = 1.60)
of VLSpms in the Peruvian upwelling (eastern equato-
rial Pacific) is consistently larger than the global average
(mean = 12.57km, GSD =2.33) (Fig. 4). Larger VLSpwms
values are also found along parts of the Pacific and At-
lantic coastlines of North America, with smaller VLSpms
values further offshore (Fig. 4, inset). The VLSpms values
in the Arctic, northeastern Pacific, northwestern Atlantic,
and southeast Indian open ocean regions are highly vari-
able. The Southern Ocean has VLSpms generally below
the global average and features some localised pockets with
larger VLS (Fig. 4). The DMS concentration variability in
mid- to high-latitude regions is seasonal (Hulswar et al.,
2022), and VLSpys could be influenced by the season/time
of year.

3.3 Drivers of DMS variability

3.3.1 Transect and campaign-averaged VLS
regressions

Simple linear regressions are used to explore the relation-
ship between VLSpyms and VLS for SST, salinity, density,
Chl, and SSHA. The possibility of a relationship with lati-
tude (as discussed in Royer et al., 2015) is also investigated.
Transect and campaign-average VLSpyms do not vary with
latitude (R2 =0.02, n =35, p>0.05; Table 1). No signif-
icant relationships are observed between transect VLSpys
and VLS for SST, SSS, density, Chl, and SSHA. Averag-
ing transect VLS data into campaign averages reduces the
noise and enables statistically significant relationships to be
identified. The campaign-averaged VLSgensity €xplains 37 %
of the variations in VLSpyms (Table 1; Fig. 5a); VLSssua
(used as an indicator of the dynamic eddy field in the open
ocean) and VLScy each explain approximately half of the
campaign-averaged VLSpys (46 % and 47 %, respectively;
Table 1; Fig. 5b and c).

3.3.2 Multiple linear regression of VLSpys
Multiple linear regression (MLR) is used on the campaign-
averaged VLS for SST, salinity, density, Chl, and SSHA to

explore VLSpms variance (Table 1; see Table S4, Supple-
ment, for regression coefficients). Eleven MLR combinations
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DMS VLS (km)

Figure 4. Global distribution of 763 transects coloured by VLSpyg (km, log scale). The colour bar diverges at the global geometric mean
VLSpms (12.57km). See Fig. S3 in the Supplement for equivalent VLS distribution maps of Chl, density, SSHA, salinity, and SST and

Fig. S1 for the spatiotemporal distribution of VLSpys.

were tested, and all results are significant (p < 0.01), ex-
cept for the combination of VLScy, VLSssha, and VLSgst
(Model 17, Table 1). Note that the number of available
datasets is reduced in the MLR models that have more in-
put variables, which results in the contribution of fewer data
(campaigns) to the result. The number of input data is sub-
stantially increased if campaign averages are calculated with-
out filtering the data prior to correlation, so they only con-
tain data where the two or more correlated variables are co-
located. Relaxing the criteria such that the transects need not
be coincident increases the number of campaigns that can
be included in each MLR model. The “relaxed criterion” ap-
proach is less robust but gives similar results to those pre-
sented here (see Table S3, Supplement).

Individual VLScp and/or VLSssga regressions with
VLSpums are outperformed (i.e. R% > 0.47) by four MLR
combinations (Models 7-10, Table 1). The combination of
VLSgensity and VLScp (Model 9, Table 1) substantially im-
proves the regression with VLSpys (adjusted R? increases to
0.63). MLR Model 9 has the most campaigns (rn = 26) of any
model and the third highest number of available data tran-
sects (n =224); VLSch (54 %) and VLSgensity (46 %) make
approximately equal contributions to the changes in VLSpms
described by Model 9.

https://doi.org/10.5194/bg-20-1813-2023

The largest amount of VLSpys variability explained by
the MLR models uses the combination of VLSsspa, VLSchi,
and VLSgensity, improving the adjusted R?t00.77 (Model 7,
Table 1; Fig. 5d). The dominant parameter in Model 7 is
VLSssua (52 % of the explained variance), with VLScy and
VLS gensity accounting for 34 % and 14 %, respectively. Com-
bining VLScp and VLSgspa (MLR Model 11) reduces the
available input data (n =20) and does not increase the ex-
plained variance in VLSpys compared to using only one or
other of the input parameters. When paired with one other
variable, VLSssga and VLScy dominate the explained vari-
ance in MLR models (Models 12-16, Table 1).

4 Discussion
4.1 Global statistics

This is the first study of submesoscale seawater DMS vari-
ability from a global perspective. Spatial variability length
scale (VLS) analysis is applied to every ocean basin and at
different times of year using a consistent methodology. Char-
acteristic spatial variability in all six variables (DMS, SST,
salinity, density, Chl, SSHA) occurs at the low mesoscale (in
the tens of kilometres) in all regions. The campaign-averaged
VLSpwms ranges from 2-30km (Table S2, Supplement); this
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Figure 5. Campaign geometric mean VLSpys (km) plotted versus (a) VLSgensity, (b) VLSssHA, and (¢) VLScy. Error bars indicate 1
GSD of the data within each campaign. (d) Campaign geometric mean VLSpys predicted using coefficients from the VLSSSHA_Chl-density
multiple linear regression model (Model 7, Table 1; Supplement, Table S4; Fig. S4) versus observed VLSpys for the subset of 12 DMS
campaigns included in the multiple linear regression model. The 1: 1 line is shown.

is in general agreement with previous work (Royer et al.,
2015; Nemcek et al., 2008; Asher et al., 2011; Tortell, 2005b;
Tortell and Long, 2009; Tortell et al., 2011). There is no cor-
relation between the campaign-averaged DMS concentration
and VLSpums (R2 =0.01, p > 0.05), which suggests that un-
derstanding the variability may be a helpful and independent
approach to understanding the processes that control surface
ocean DMS.

4.2 Regional patterns of DMS variability

VLSpwms is generally above average at the edge of ocean
basins, e.g. parts of northwestern Atlantic, northeastern Pa-
cific, and the California coast (Fig. 4, inset). It may be possi-
ble that the longer length scales of coastal DMS spatial vari-
ability are driven by large phytoplankton blooms, which pre-
vious local and regional studies suggest can dominate coastal
domains (Asher et al., 2011; Nemcek et al., 2008). This work
does not investigate the detail of drivers of DMS variability
in individual regions or domains.

Biogeosciences, 20, 1813-1828, 2023

Open ocean domains such as the subtropical gyres in the
Southern Hemisphere have generally small VLSpys, a fea-
ture not evident in the VLS of the other parameters (Figs. 4
and S2, Supplement). Short length scales of DMS variabil-
ity in stable stratified biomes offer the opportunity for fu-
ture work to re-examine these regions for as yet unidentified
drivers of variability. Most low-latitude DMS data used in
this study originate from a single sampling campaign (e.g.
Malaspina Expedition 2010; Royer et al., 2015). To test if
small VLSpys is a persistent feature in undersampled sub-
tropical open oceans, more high-resolution observations are
needed.

Factors driving temporal DMS variability are not explored
in this study. However, complex VLSpuys fluctuations at high
latitudes (e.g. northwestern Atlantic, northeastern Pacific,
Southern Ocean; Fig. 4) may be capturing variations in both
space and time; VLSppys in high-latitude dynamic regions
could be related to the seasonality of biological productivity
and eddy activity (see Asher et al., 2011; Behrenfeld et al.,
2019; Bell et al., 2021; Fox et al., 2020; Gaube et al., 2019;
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Table 1. Regression results for the prediction of campaign-averaged VLSpy s, using different combinations of input parameters. Models are
ranked in order of how much VLSppg variance is explained. Models that are significant (p < 0.01) are denoted using *.

Model Input R? Adj. p Relative N (no.of No. of transects used to
no. parameters R? importance  campaigns) calculate campaign
(%) averages (of 760)

Linear regression

1 VLSchi 0.47 - <0.01* 100 29 351

2 VLSssua 0.46 - <0.01* 100 24 361

3 VLS density 0.37 - <0.01* 100 32 480

4 VLSsalinity 0.33 - <0.01* 100 32 490

5 VLSssT 0.21 - 0.014 100 28 445

6 Latitude (abs.)  0.02 - 0.375 100 35 760

Multiple linear regression

7 VLSch 0.83 0.77 <0.01* 34 12 87
VLSssuaA 52
VLsdensity 14

8 VLSch 0.77 0.71 <0.01* 58 15 100
VLSssua 41
VLSsalinity 1

9 VLSch1 0.66 0.63 <0.01* 54 26 224
VLsdensity 46

10 VLSgalinity 0.62 0.59 <0.01* 85 25 322
VLSgssT 15

11 VLSch 051 046 <0.01* 35 20 177
VLSssgA 65

12 VLSchi 0.50 045 <0.01* 70 22 211
VLssalinity 30

13 VLSssHaA 049 044 <0.01* 91 23 234
VLSsalinity 9

14 VLSchi 0.46 04 <0.01* 73 22 204
VLSssT 27

15 VLSssHA 043 036 <0.01* 75 20 189
VLSssT 25

16 VLSssHA 041 035 <0.01* 84 22 213
VLsdensity 16

17 VLScp 0.50 0.29 0.156 84 11 77
VLSssHA 15
VLSssT 1

Herr et al., 2019; Lana et al., 2011; McGillicuddy, 2016).
Additionally, it is plausible that VLSpyg in the polar regions
may be sensitive to the seasonal impact of sea ice on bio-
geochemical processes (see Gali et al., 2021; Lannuzel et al.,
2020; Stefels et al., 2018). There are not enough repeat mea-
surements made in high-latitude (high seasonal variability)
regions to establish the impact of seasonality on VLSpwms.
In this study, the only region sampled during different sea-
sons is the northwestern Atlantic (four Atlantic NAAMES
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campaigns; Bell et al., 2021), and there is not yet compelling
evidence of a temporal difference between the VLSpys of
these cruises/seasons. The VLSpms values of the NAAMES1
transects (November; average=11.93km, GSD=1.76)
are significantly different (p <0.01) from the transect
VLSpms of NAAMES3 (U =99, p <0.01; September; av-
erage =20.89km, GSD=1.69) and NAAMES4 (U =89,
p <0.01; March—April; average=21.94km, GSD = 1.57),
but not from NAAMES2 (U =108, p =0.014; May—June;
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average = 18.4km, GSD =1.56). VLSpys values of the
NAAMES?2, 3, and 4 transects are not significantly different
from each other (all p > 0.2).

4.3 Drivers of DMS variability

The variance in campaign-averaged VLSpys data explained
by physical processes (represented by VLSgspa ) is as impor-
tant as biogeochemical processes (represented by VLSchi),
with each parameter able to explain just under half of the
VLSpmMms (Models 1 and 2, Table 1; Fig. 5). This conclu-
sion contrasts with the findings of Royer et al. (2015), who
find that the majority of VLSpms (65 %) in the low to mid-
latitudes is more similar to the VLS of biological variables
that represent biomass and physiology (Chl and fluores-
cence) than to the VLS of physical variables. These contrast-
ing conclusions potentially reflect the fact that length scales
of physical oceanographic variability increase towards the
Equator due to the effects of the Earth’s rotation. The Coriolis
parameter and therefore Rossby radius are intrinsically latitu-
dinally dependent (Jacobs et al., 2001). The longer transects
used by Royer et al. (2015) at low to mid-latitudes enable
them to capture scales of variability that may be associated
with large physical features. This point is discussed further
in in Sect. 4.5.

A larger proportion of campaign-averaged VLSpys vari-
ability (77 %) can be explained using VLScy;, VLSssha, and
VLSgensity (Model 7, Table 1) compared to just VLSssga or
VLScn. The data included in the VLSssHA-Chi-density MLR
(Model 7, Table 1) are a subset but include at least one cam-
paign from each major ocean basin (Fig. S4, Supplement)
and thus represent a significant relationship with global ap-
plicability. VLSssga explains the majority of VLSpys in
the VLSssHA-Chl-density MLR (52 %) (Model 7, Table 1)
and improves the prediction of changes in VLSpys com-
pared to using just VLScp and VLSgensity (Model 9, Ta-
ble 1). The VLSSSHA—Chl—density MLR (Model 7, Table 1)
includes measurements from the NAAMES4 (2018) cruise,
which targeted a substantive eddy and observed a persis-
tent high Chl feature coincident with elevated DMS levels
(Bell et al., 2021). The water mass within an eddy tends
to be retained by the circulation, such that plankton within
the eddy are accumulated under relatively stable physics
(upwelling or downwelling) and consistent biogeochemical
conditions (Bell et al., 2021). Eddies may thus drive condi-
tions where DMS variability is closely associated with bio-
logical activity and a clear covariation in VLS is observed,
even if the relationship between DMS and Chl concentra-
tion is less obvious (della Penna and Gaube, 2019). The
relationship between eddy structure, biogeochemistry, and
DMS may explain the link between changes in VLSpws,
VLSssna, and VLScy;. The importance of VLSgsya for pre-
dicting VLSpwms is consistent with results recently reported
by McNabb and Tortell (2022), who apply two independent
machine learning techniques to analyse DMS in the north-
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eastern Pacific. McNabb and Tortell (2022) demonstrate the
power of mesoscale eddies for predicting DMS variability
(Spearman correlation coefficients = 0.35 and 0.42, depend-
ing on the machine learning method employed), using the
same SSHA product used in this study (using only summer-
time measurements, 1997-2017). The VLSssHA-Chl-density
MLR model coefficients (Model 7, Table S4, Supplement)
are used to predict VLSpys for the target input data subset
(Fig. 5d). The residuals of predicted VLSpms are not system-
atically biased within the full range of the data (5-25 km).

4.4 Implications for global DMS parameterisation

Low-resolution measurements have previously been used to
predict mean spatiotemporal patterns of DMS, both region-
ally and globally. Several studies have parameterised DMS
as a function of surface mixed layer depth (MLD), light, and
Chl (Vallina and Simd6, 2007; Gali et al., 2018; Simé and
Dachs, 2002; Aumont et al., 2002; Anderson et al., 2001;
Belviso et al., 2004a; Aranami and Tsunogai, 2004). For
example, Sim6 and Dachs (2002) use climatological MLD
and remotely sensed Chl to estimate average DMS con-
centrations, while Vallina and Simé (2007) use climatolog-
ical MLD, surface irradiance, and light attenuation to es-
timate surface DMS from the “solar radiation dose”. Gali
et al. (2018) employ an algorithm driven by climatologi-
cal Argo MLD and satellite-derived Chl, SST, and photo-
synthetically active radiation (PAR). Only the latter algo-
rithm was additionally validated at finer resolution using
non-climatological data to enable regional time series studies
(Galietal., 2019). SSHA reflects surface mixing and changes
to the MLD (Gaube et al., 2019). This study supports the
choice of key variables used in existing empirical parameter-
isations by demonstrating that, even on small scales, physical
mixing (SSHA, density) and biological activity (Chl) explain
a large portion of surface seawater DMS spatial variability in
the global ocean.

The DMS parameterisations with global coverage that rely
on remote and autonomous observations predict spatially
and seasonally averaged surface seawater DMS reasonably
well (e.g. Gali et al., 2018; Sim6 and Dachs, 2002; Vallina
and Simd, 2007). However, some studies have questioned
whether such parameterisations are overly reliant on spa-
tial and/or temporal averaging, often to 1° and/or monthly
resolution (e.g. Derevianko et al., 2009). The spatiotempo-
ral averaging used to develop global parameterisations may
lead to an overconfidence in current predictive capabilities
because key parameters are not included. Statistically signif-
icant MLR relationships in this study are obtained once the
transect data are averaged by campaign, and the average VLS
for all six variables in our study is tens of kilometres. Us-
ing VLS analysis to assess the covariation of parameters at
the submesoscale provides insights that can help to improve
global parameterisations. Our results indicate that patterns
of mesoscale and submesoscale DMS variability, particularly
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those associated with SSHA, will be obscured at the 1° reso-
lution of most global parameterisations, highlighting the im-
portance of modelling work at finer resolutions (e.g. Galf et
al., 2019; McNabb and Tortell, 2022, 2023). Regional studies
have tested empirical predictive relationships for DMS with
varying degrees of success (Asher et al., 2011; Royer et al.,
2015; Bell et al., 2006, 2021).

4.5 Study limitations and unidentified drivers of DMS
variability

This work provides as comprehensive an assessment of DMS
variability across the global ocean as existing data allow;
however, many regions have not yet been sampled at high
enough resolution to permit an assessment of VLSpys. For
example, only 7 of the 37 campaigns in this study have made
high-resolution DMS measurements in low-latitude waters
(30° N-30° S). There is a seasonal sampling bias within the
DMS database, and the northwestern Atlantic is the only re-
gion to have been assessed for VLS throughout the seasonal
cycle (Bell et al., 2021). More data are needed.

Satellite-derived VLS and VLSssga have been used to
predict VLSpwms (e.g. Model 7, Table 1), but this relies on the
assumption that the satellite-retrieved data are representative
of phytoplankton productivity and eddy activity throughout
the research cruise/campaign. Satellite retrievals for Chl with
higher than monthly temporal resolution or, in the case of
SSHA, higher than 0.17° spatial resolution may improve the
ability to explain variance in VLSpyvs.

Transect lengths between 100 and 199 km are used to en-
sure comparability between datasets/regions because VLS
results from previous studies appear to be sensitive to the
length of data transect (see Fig. S5, Supplement). How-
ever, by limiting the transect length, it is difficult to identify
large eddies using VLSssya. Eddy length scales are typically
larger at low latitudes due to the dependence of the Corio-
lis parameter on latitude (Chelton et al., 1998). The maxi-
mum VLS in this study is between 50 and 99.5 km (half the
transect length), which is long enough to capture the eddy
variability at latitudes where the eddy length scale is related
to the Rossby radius of deformation, i.e. poleward of 30°,
where the deformation radius is < 30 km (Eden, 2007). Equa-
torward of 30°, eddy length scales are not well predicted by
the Rossby radius of deformation and can exceed 50 km (Tul-
loch et al., 2011; Scott and Wang, 2005; Klocker et al., 2016;
Eden, 2007; Rhines, 1975). The VLSgspa analysis approach
used in this study is designed to identify the dominant scale
of variability in physical features up to 50-99.5 km; there-
fore, it may not capture the full extent of variability asso-
ciated with large eddies at low latitudes. Large eddies will,
however, still be captured in the VLSgsya analysis where a
transect segments an eddy without passing through its cen-
tre. We also note that although SSHA is used to represent
eddy features, at the Equator, stratification and strong west-
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ward currents tend to dominate SSHA variability rather than
rotation and eddy transport (Williams and Follows, 2011).

In the subtropical gyres, VLSpms is typically small
(< 10km; Fig. 4), which is qualitatively consistent with the
short (days) response time of DMS to perturbations in the dy-
namic equilibrium of DMS production and consumption in
these waters (Gali and Sim6, 2015); VLSpys in subtropical
waters does not correspond well with the VLS of any of the
other parameters (Fig. S3, Supplement). Cycling of reduced
sulfur compounds in subtropical waters is well documented
to be part of a different biogeochemical regime compared to
productive, higher-latitude waters (e.g. Gali and Sim6, 2015;
Toole and Siegel, 2004). In stable oligotrophic regions where
there is less variability in physical mixing and phytoplankton
productivity, VLSpms could thus be dominated by alterna-
tive parameters that drive variability in the biological cycling
of DMS such as zooplankton grazing (Simo et al., 2018) and
microbial organosulfur metabolism (Nowinski et al., 2019;
Cui et al., 2015; Alcolombri et al., 2015).

The so-called “summer paradox” describes the seasonal
misalignment between maximum concentrations of phyto-
plankton biomass and DMS in low-latitude waters, and it
has been challenging to model (e.g. Gali and Simd, 2015;
Polimene et al., 2012; Toole et al., 2008; Vallina et al., 2008).
In these areas, characterised by low seasonal amplitude in
phytoplankton biomass, changes in phytoplankton species
succession and physiological stress control DMS production
yields and rates and, ultimately, DMS seasonality. By con-
trast, aggregated loss processes exhibit low seasonal vari-
ability and are insufficient to explain large-scale DMS sea-
sonality in summer paradox areas (Gali and Simé, 2015).
Previous studies observed important short-term variations in
the balance between DMS sources and sinks in oligotrophic
waters, concomitant with meteorological forcing (Royer et
al., 2016). Hence, it is plausible to hypothesise that subtle
changes in this balance can explain some of the variance in
VLSpwms. Light exposure in surface waters influences plank-
ton physiological production and stress, photochemical reac-
tions, and bacterial activity and thus has a significant impact
on the cycling of reduced sulfur in oligotrophic regions (see
Toole and Siegel, 2004; Vallina et al., 2008). These factors
have not been included in the present study.

5 Conclusions

This study presents a comprehensive and objective analy-
sis of DMS variability based on a large global dataset of
high-frequency observations at the local/regional scale. The
work shows that the variability length scale for DMS is typi-
cally small (< 30 km) and that a substantial proportion of the
campaign-averaged variance can be explained by the VLS
of key biological (Chl) and physical (density, SSHA) ob-
servations (Model 7, Table 1). The results improve confi-
dence in the validity of the biological and physical param-
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eters used to currently parameterise seawater DMS at large
scales and used in many global climate models (e.g. Bock
et al., 2021; Gali et al., 2018; Mulcahy et al., 2020; Simé6
and Dachs, 2002). However, there is substantial variability
in VLSpms when assessing individual transects, which sug-
gests that unaccounted-for variables are also important (e.g.
light, wind speed, microbial diversity and activity). Mak-
ing high-frequency measurements of these parameters at the
same time as high-frequency DMS measurements may help
to elucidate their role in DMS cycling.
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