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Future digital twins: emulating
a highly complex marine
biogeochemical model
with machine learning
to predict hypoxia

Jozef Skákala1,2*, Katie Awty-Carroll1,2,3, Prathyush P. Menon4,
Ke Wang4 and Gennadi Lessin1

1Plymouth Marine Laboratory, Plymouth, United Kingdom, 2National Centre for Earth Observation,
Plymouth, United Kingdom, 3Space Intelligence, Edinburgh, United Kingdom, 4Faculty of
Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
The Machine learning (ML) revolution is becoming established in oceanographic

research, but its applications to emulate marine biogeochemical models are still

rare. We pioneer a novel application of machine learning to emulate a highly

complex physical-biogeochemical model to predict marine oxygen in the shelf-

sea environment. The emulators are developed with intention of supporting

future digital twins for two key stakeholder applications: (i) prediction of hypoxia

for aquaculture and fisheries, (ii) extrapolation of oxygen from marine

observations. We identify the key drivers behind oxygen concentrations and

determine the constrains on observational data for a skilled prediction of marine

oxygen across the whole water column. Through this we demonstrate that ML

models can be very useful in informing observation measurement arrays. We

compare the performance of multiple different ML models, discuss the benefits

of the used approaches and identify outstanding issues, such as limitations

imposed by the spatio-temporal resolution of the training/validation data.

KEYWORDS

digital twins, machine learning emulator, oxygen prediction, shelf seas, marine
biogeochemical model
1 Introduction

Ocean ecosystems play an essential role in many aspects of our lives: from providing

essential sources of food, through producing half of the planet’s oxygen, to serving as an

important sink of carbon dioxide (e.g., Pauly et al. (2002); Riebesell et al. (2009)). Of

particular relevance for this are the continental shelves, and coastal regions, which are

highly biologically productive, containing 90% of the world’s fisheries (Pauly et al. (2002))

and providing resources for the aquaculture industry (Bostock et al. (2010)). Despite its

importance, our understanding of marine biogeochemistry suffers from it being extremely
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undersampled (Davidson et al. (2019)), with robust observations

limited to the ocean surface and to a few variables that can be

reasonably estimated from the satellite optical measurements (such

as the surface total chlorophyll-a). More diverse data, like sub-

surface concentrations, or variables that cannot be derived from the

optical reflectances seen by the satellite, are only a few and scattered.

They are either limited to specific stations, or provided by observing

missions, e.g., by cruises, or more recently by automatic observing

platforms, such as Bgc-Argo’s and gliders (Johnson and Claustre

(2016); Telszewski et al. (2018)).

The gaps in our monitoring and understanding of marine

ecosystem processes are often filled by marine ecosystem models.

Models conceptualize the relationships between marine organisms

and describe their biological and chemical impact on the

environment, e.g., on the cycling of key chemical elements, such

as carbon, nitrogen and phosphorus (Heinze and Gehlen (2013);

Ford et al. (2018)), representing our mechanistic understanding of

ecosystem processes relevant to specific problems addressed by the

model. Based on these mechanistic principles, models can calculate

phenomena of high complexity, and derive non-trivial ecosystem

emergent properties (e.g., De Mora et al. (2016)).

One function of models is that they can aggregate the

information provided by oceanic, atmospheric and terrestrial

observations, propagate it in time and extrapolate it into the

unobserved variables, and spatial regions. The models can be thus

seen as complex functions that map the inputs provided by the

observations into the unobserved outputs, e.g., specific variables, or

indicators of interest. How constrained is the mapping between the

observed inputs and the unobserved outputs, depends on the output

observability and controllability (e.g., Villaverde et al. (2016)). For

example, we might want to monitor dissolved oxygen levels in the

ocean to predict and better understand marine hypoxic events. We

have access to atmospheric observations, some observations for

riverine discharge and a plethora of satellite observations for the

sea surface temperature (SST) and the surface chlorophyll derived

from the ocean color (OC). It is clear that these observations contain

some information about the state of marine oxygen, but since they are

related to oxygen only indirectly through a complex web of processes,

the information is difficult to decode. However, the missing link

between the observations and oxygen can be provided by the marine

model, if we incorporate the atmospheric and riverine data into the

model forcing and systematically re-initialize the model run with the

SST and OC chlorophyll observations (e.g., Skákala et al., (2021);

Skákala et al., (2022)). The re-initialization of the model with

observations is performed by merging them with the model

forecast, using statistical and computational technique known as

data assimilation (e.g., Bannister (2017)). The model can be then

understood as a map from the observed inputs to the oxygen outputs,

either in the form of oxygen analysis, or forecast.

Two issues with the use of models are worth mentioning: (i)

Any unobserved outputs provided by the model will always be more

uncertain than the observable inputs put into the model. The

reasons are several uncertainties and biases associated with the

formulation of the model, its limited spatial resolution and

uncertainties in the values of the (often empirical) model

parameters (e.g. Schartau et al. (2017)). (ii) The ecological/
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biogeochemical models significantly vary in complexity, i.e., from

relatively simple nutrient-phytoplankton-zooplankton (NPZ)

models (Franks (2002)) to models with tens of different variables

describing different functional types and variable stoichiometry

(e.g., Butenschön et al. (2016)). However, even the simpler

biogeochemical models are typically very computationally

expensive and their computational expense grows further when

data assimilation is involved.

Digital Twins of the Ocean (DTOs, e.g., Blair (2021); Flynn et al.

(2022)) can be seen as digital representations of particular aspects of

the marine environment, designed to answer specific stakeholder

needs in real time. Unlike typical models, DTOs should be

adaptable, i.e., capable to evolve and learn based on new acquired

knowledge and observations (an example is ‘smart’ autonomous

observing system minimizing cost and carbon footprint, see Ford

et al. (2022)). The applications include stakeholders, often with

non-scientific backgrounds, exploiting modelling tools for making

informed management decisions. Such stakeholders might need to

run different (what-if) scenarios in real-time, which needs

computational models that (i) are significantly computationally

cheaper than the existing biogeochemical models, and (ii) can still

reasonably predict (or forecast) the data of interest. It is envisioned

that the concept of DTO will play a key role in future marine

science, as well as in its application for policy and decision making

(e.g. UN Ocean Decade programme, EU Destination Earth

initiative, e.g., Voosen (2020); Nativi et al. (2021)).

Machine/deep learning (machine learning, ML) techniques

have undergone a significant revolution in the last two decades

owing to the availability of unprecedented volumes of training data

available in many domains of our life and the considerable progress

in computer hardware (e.g., Sonnewald et al. (2021)). Due to their

power, ML models can become an ideal tool for DTOs, i.e., they can

replace the computationally expensive complex models with a

cheaper statistical model trained either on observations, or the

model outputs. Although there is a variety of successful applications

of ML models predicting unobserved marine biogeochemistry

variables, trained only on observations (e.g., for oxygen see Giglio

et al. (2018)), it is often hard to build such models for robust

applications. The reason is that there are too few marine

biogeochemistry observations around, forming not very well and

consistently structured set of data (e.g., due to different locations of

measurements, different spatial scales of measurements, different

sampling frequencies), which can pose serious problems to ML. On

the other hand, model output is always well structured for ML

purposes and if the output represents the reanalysis (the available

observations were assimilated into the model) it might be often the

most optimal choice for ML. The ML model trained on complex

model simulation outputs is appropriately called an ML emulator of

the complex model. Although ML is already heavily used in marine

sciences (Sonnewald et al. (2021)) and has been used in geosciences

to emulate atmospheric and marine physical models (e.g., van der

Merwe et al. (2007); Rasp et al. (2018); Brenowitz and Bretherton

(2018); Nowack et al. (2018); Kochkov et al. (2021); Nonnenmacher

and Greenberg (2021)), the applications of ML to emulate marine

biogeochemistry models are still quite rare (Schartau et al. (2017)).

By far the most common application of ML/statistical emulators to
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marine biogeochemical models is to estimate biogeochemical model

parameters (Hooten et al. (2011); Leeds et al. (2013); Mattern et al.

(2012; 2014); Sharma et al. (2016); Schartau et al. (2017)). One

notable exception to this is the paper of Mattern et al. (2013), where

polynomial chaos emulator has been constructed to estimate

uncertainty of hypoxia prediction in the regional model within

the Gulf of Mexico.

In this work we pioneer a new application of ML emulator, i.e., to

replace the biogeochemical model, used in operational oceanography

on the North-West European Shelf (NWES, Skákala et al. (2018;

2021; 2022)), within one specific purpose, which is to derive and

forecast unobserved variables from the observed data. Furthermore,

the biogeochemical model emulated in this work, the European

Regional Seas Ecosystem Model (ERSEM, Butenschön et al.

(2016)), is highly complex, consisting of more than 50 pelagic state

variables. In the knowledge of the authors this is by far the most

complex model that has been so far emulated [(for comparison see

Mattern et al. (2012; 2013; 2014); Hemmings et al. (2015); Sharma

et al. (2016); Schartau et al. (2017); Kuhn and Fennel (2019); Kasim

et al. (2021)]. More specifically, in this work we develop ML

emulators to predict and forecast anomalies in the oxygen

concentrations across the full depth of the water column at specific

locations on the NWES. Such oxygen anomalies are of high interest

for monitoring hypoxic events that may occur both seasonally, and

due to sudden excessive phytoplankton blooms. Oxygen deficiency is

already a problem at certain locations on the NWES (Niermann et al.

(1990); Diaz and Rosenberg (2008); Greenwood et al. (2010); Topcu

and Brockmann (2015); Große et al. (2017)) and is predicted to occur

more frequently with the progress of climate change, as the marine

oxygen becomes less abundant in the warming waters (Falkowski

et al. (2011); Helm et al. (2011); Ito et al. (2017); Melzner et al. (2013);

Schmidtko et al. (2017)). The ML emulators explored here are

envisioned to be prototypes of future DTOs used by two specific

stakeholder groups: (i) the aquaculture industry, managing the risk of

hypoxia potentially killing their farmed organisms, and (ii)

observational scientists, aiming to expand their observed data to

new variables.
2 Methods

2.1 Processes driving marine oxygen and
the corresponding ML model inputs

The marine oxygen cycle is driven by a network of biological

and physical processes, whose imbalances may lead to anoxic

conditions, causing large scale damage to ocean life (Pena et al.

(2010); Oschlies et al. (2018)). In particular: (i) the oxygen

concentrations near the sea surface are substantially influenced by

the air-sea gas exchange, which depends on the gas saturation levels

in the water, and these in turn depend on SST. The upper ocean

oxygen is also driven by the (ii) oxygen production through

photosynthesis by the different phytoplankton groups and (iii) the

oxygen sinks through the collective respiration by all the living

marine species. The oxygen in the deeper part of the water column

is impacted (iv) by the vertical transport, which depends on the
Frontiers in Marine Science 03
levels of vertical mixing and the pycnocline, and also (v) by the

respiration, especially by microbes remineralizing non-living

organic matter at the sea bottom, or in the sediments. Finally, as

most biogeochemical tracers, oxygen is also influenced by the

ocean advection.

Unlike the complex deterministic models, which represent these

different oxygen processes mechanistically, the ML models, often

seen as “black boxes”, can only represent those processes by the ML

model inputs, which act as some kind of “proxies”. This means the

oxygen processes need to be to a suitable degree associated with the

available (atmospheric/terrestrial/marine) observations that are fed

into the model. The links between processes and their proxy data

are described in the Table 1. For example for the near-surface

oxygen, the SST satellite observations provide a good proxy for the

air-sea gas exchange and the OC-derived surface phytoplankton

functional type (PFT) chlorophyll (e.g., Brewin et al. (2017))

provides a proxy for the net primary production. Net primary

production is dependent on the available nutrients and sunlight, so

riverine nutrient input data and the atmospheric data for the

incoming short-wave radiation can supplement chlorophyll

observations as additional proxy variables. Phytoplankton is the

baseline of the food web, hence the proxies for net primary

productivity, can be to a less direct degree taken to be also proxy

data for respiration, both by the phytoplankton and the higher

trophic-level species.

The sub-surface oxygen in the pelagic layer depends on the

vertical transport (e.g., pycnocline) and the biogeochemical

processes that depend on the light and nutrient availability across

the water-column. Unless we are able to observe directly subsurface

temperature and salinity (proxies to vertical density gradients), and/

or sub-surface chlorophyll, the best proxies for sub-surface oxygen

are the same data as for the surface oxygen, with additional

importance of atmospheric variables. For example atmospheric

wind stress may have an important impact on the vertical

structure of the water column and the amount of light at a sub-

surface location is expected to correlate with the incoming surface

short-wave radiation. However, if the sub-surface observations are

absent, it is reasonable to expect that the skill of ML models to

predict sub-surface oxygen will be substantially worse than their

skill to predict the surface oxygen concentrations.

The most difficult may be the prediction of near-bottom oxygen,

which is largely driven by microbial respiration remineralizing the

organic matter. Remineralization depends on the past biological

productivity that took place elsewhere in the water column and

hence might have been observed days, or even weeks ago, e.g., by the

surface chlorophyll data. Speaking more generally, the proxy

observations defining the ML model inputs need not only be

supplied for the time of the predicted oxygen output, but also for

some period before the predicted oxygen. Such time-lags between the

ML model inputs and the predicted ML model outputs would then

account for ocean processes with longer time-memory.

The choice of the ML model inputs depends on what variables

at which spatio-temporal domains and resolutions can be observed.

The larger the space of potential inputs into the ML model, the

more skilled the ML model might be (especially if we can always

reduce the inputs with methods, such as Principal Component
frontiersin.org
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Analysis, PCA), but also more demanding is the model on our

observing capacity. We will explore in this work three different

spaces of inputs:
Fron
(i) A case with available atmospheric and riverine observations,

as well as with satellite data for the OC surface PFT

chlorophyll, SST and surface salinity (we call this case

“Minimum Scenario” and abbreviate it “MinSc”).

(ii) The same inputs as in MinSc case, extended by the sub-

surface temperature and salinity data (we call this “Medium

Scenario” and abbreviate it “MedSc”). This scenario is

relevant if we have platforms (in a generic sense, e.g.,

moorings, gliders) providing sub-surface temperature and

salinity observations, but also if we have outputs of a

physical model run and we want to only emulate the

computationally expensive biogeochemical model. We

will explore different numbers of sub-surface locations for

the temperature and salinity inputs and evaluate their

impact on the ML model skill.

(iii) The same inputs as in MedSc case, extended by the sub-

surface total chlorophyll. This case we call the “Maximum

Scenario” and abbreviate as “MaxSc”. This scenario

requires that we also have observing platforms measuring

sub-surface total chlorophyll.
These three scenarios, however, do not mean that all the variables

from each scenario have been used in the ML models, only that they

are available for use. For example, the salinity inputs have been found

redundant in most of the results presented in this study (based on a

multilayer perceptron neural network emulator) and have not been

used. Not using surface salinity has also another advantage: the most

robust salinity data-sets, based on measurements from space (e.g.,

Srokosz and Banks (2019)), are still much less developed than the

more traditional SST and OC chlorophyll products. Furthermore, in
tiers in Marine Science 04
most of the results presented in this study, there was no need to

partition the surface total chlorophyll into PFTs, and similarly only a

very small fraction of the riverine and atmospheric observed variables

has been found relevant.

A separate issue is the advection of oxygen by the large scale

(mostly geostrophic) currents. We have avoided including it in our

ML model inputs for a couple of reasons: Firstly, to include

advection from locations outside of the ML model domain, one

needs to supply data that predict oxygen in those “neighboring”

locations (like data for SST, or chlorophyll). These data would

ideally be complemented by the (relatively coarse-resolution)

observations of ocean currents from space (e.g., Dohan and

Maximenko (2010)). ML emulators that include advection would

then have to either automatically rely on the satellite data, or require

some network of observing stations in the neighborhood of the

predicted location. This contrasts with the ML emulators from our

study, which can be in principle applied stand-alone for any

observing station near the coast, using only the station’s data as

inputs. Furthermore, satellite data have many missing values, and as

we will discuss later, these gaps in the data can be effectively filled by

coarsening the resolution of the product. In such case advection

would make sense only on spatio-temporal scales significantly

larger than the grid coarsening scale, but on such scales, near-

surface oxygen will equilibrate with its environment long before it is

advected to a different location. This might not be the case if oxygen

is transported through deeper ocean currents, but these are not

particularly relevant for the NWES explored in this study.
2.2 The emulated physical-biogeochemical
model

We focus in this work on the reanalyses produced by the

operational model for the NWES, run by the UK Met Office, the
TABLE 1 The list of processes that impact oxygen within a fixed shelf sea location (in a 1D water-column) both near the surface and deeper beneath
the surface (sub-surface).

vertical layer process process observability proxy observed variable degree of relevance

near-surface air-sea flux high satellite SST high

net primary production high OC PFT chlorophyll high

riverine discharge (lagged) medium

respiration medium OC PFT chlorophyll (lagged) medium

riverine discharge (lagged) medium

sub-surface vertical transport low to medium wind stress medium

incoming short-wave radiation low

respiration/remineralization/nitrification low to medium OC PFT chlorophyll (lagged) medium

riverine discharge (lagged) medium

net primary production low incoming short-wave radiation low

riverine discharge (lagged) medium
Each process has associated “proxy” observed variables that can be used as ML model inputs. We further rank, based on expert knowledge, how closely (low-medium-high) is a specific process
linked to the observed variable (the “degree of relevance” column), and similarly we rank the observability of each process (“process observability”). By mentioning “(lagged)” we indicate that the
inputs should be taken for a much earlier time than the predicted oxygen.
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physical model Nucleus for the European Modelling of the Ocean

(NEMO, Madec et al. (2017)) coupled through Framework for

Aquatic Biogeochemical Models (FABM, Bruggeman and Bolding

(2014)) to the biogeochemical model ERSEM (Baretta et al. (1995);

Blackford (1997); Butenschön et al. (2016)).

2.2.1 NEMO
The NEMO ocean physics component (OPA) is a finite difference,

hydrostatic, primitive equation ocean general circulation model

(Madec et al. (2017)). The NEMO configuration used in this study is

based on the CO6 NEMOv3.6 version, a development of the CO5

configuration explained in detail by O’Dea et al. (2017). The model has

7 km spatial resolution on the Atlantic Meridional Margin (AMM7)

domain using a terrain-following z* − s coordinate system with 51

vertical levels [Siddorn and Furner (2013)]. The lateral boundary

conditions for physical variables at the Atlantic boundary were taken

from the outputs of the Met Office operational 1=12° North Atlantic

model (NATL12, Storkey et al. (2010); the Baltic boundary values were

derived from a reanalysis produced by the Danish Meteorological

Institute for the Copernicus Marine Environmental Monitoring

Service (CMEMS).

2.2.2 ERSEM
ERSEM (Baretta et al. (1995); Butenschön et al. (2016)) is a

lower trophic level ecosystem model for marine biogeochemistry,

pelagic plankton, and benthic fauna (Blackford (1997)). ERSEM

splits phytoplankton into four functional types largely based on

their size (Baretta et al . (1995)) : picophytoplankton,

nanophytoplankton, diatoms and dinoflagellates. ERSEM uses

variable stoichiometry for the simulated plankton groups

(Baretta-Bekker et al. (1997); Geider et al. (1997)) and each PFT

biomass is represented in terms of chlorophyll, carbon, nitrogen

and phosphorus, with diatoms also represented by silicon. ERSEM

predators are composed of three zooplankton types

(mesozooplankton, microzooplankton and heterotrophic

nanoflagellates), with organic material decomposed by one

functional type of heterotrophic bacteria (Butenschön et al.

(2016)). The ERSEM inorganic component consists of nutrients

(nitrate, phosphate, silicate, ammonium) and dissolved oxygen. The

carbonate system is also included in the model (Artioli et al. (2012)).
2.3 Training, validation and test data

We base this work on a 23 year data (1998-2020), with daily

resolution, obtained from the UK Met Office reanalysis for the

NWES (product of CMEMS, DOI:https://doi.org/10.48670/moi-

00058). The reanalysis was based on NEMO-FABM-ERSEM and

the 3D-variational assimilative system NEMOVAR standardly used

by the Met Office in their operational system (Mogensen et al. 2009;

2012)). In this case NEMOVAR assimilated satellite SST from a

range of satellites (GCOM-W1/AMSR-2, NOAA/AVHRR,

MetOp/AVHRR, MSG/SEVRI, Sentinel-3/SLSTR, Suomi-

NPP/VIIRS), EN4 Hadley center profiles for temperature and
Frontiers in Marine Science 05
salinity (Good et al. (2013)) and PFT surface chlorophyll derived

from the satellite ocean color (CMEMS product OCEANCOLOUR

ATL CHL L3 NRT OBSERVATIONS 009 036). The detailed

description of both physical and biogeochemical assimilation

components of the operational system can be found in Waters

et al. (2015) and Skákala et al. (2018).

The reanalysis provided us with the ML model inputs for PFT

chlorophyll, temperature and salinity. The inputs for atmospheric

variables and riverine discharge were taken from the data used to

force the reanalysis. The atmospheric forcing data were obtained

from an hourly and 31 km resolution realization (HRES) of the

ERA5 data-set (https://www.ecmwf.int/), whilst the daily riverine

discharge product is based on data from Lenhart et al. (2010). The

atmospheric variables contained data for the incoming short-wave

radiation, the 10m wind velocity vector horizontal components, the

specific humidity and the sea level pressure. The riverine discharge

observations contained data for nitrate, ammonia, oxygen,

phosphorus, dissolved inorganic carbon, silicate, total alkalinity

and freshwater runoff.

Since the point of this work is to be able to predict unobserved

model output (oxygen) from the observations, it might be seen as

problematic, that we use the reanalysis data for SST and PFT

chlorophyll, rather than the assimilated satellite observations. The

reason for this choice is two-fold: firstly it is known that, on

the NWES, at the locations with assimilated observational data,

the reanalyses converge towards the observations, i.e., the analysis-

observation differences are negligible [Skákala et al. (2018; 2020;

2021; 2022)]. In this sense the outputs for the observed variables in

the analysis can be seen as simple model-extrapolations of the

observed data into locations where the observations were missing.

Secondly, the “extrapolated” data in the analysis outputs are on

their daily time-scale much more complete than the observations

(which have many gaps, especially in the winter), making the

outputs more suitable for the purpose of training the ML models.

Using the reanalysis data with their daily resolution, we can explore

what would happen with the ML model skill, if we lowered the time

resolution of its inputs, i.e., using low-pass filtering. The ML models

using the low-pass filtered inputs from the reanalysis should then

naturally converge to ML models using as inputs interpolated

observations. These interpolated observations effectively represent

coarse time-resolution data with no missing values.

Finally, for all the variables used as inputs and outputs of our

ML models we focus purely on their daily anomalies, rather than on

their total values (total value = climatology + anomaly). The reason

for this is that the time series of all the input and output variables

have typically strong seasonal signals (e.g., see Figures S1, S2 of

Supplementary Information, SI). These seasonal harmonics are

often reasonably well known through the daily/monthly

climatologies and can be easily predicted only from the time of

the year. Thus the oxygen seasonal climatology is thought to

represent a trivial component of any ML model skill. To use the

ML models for much more non-trivial purposes, including

predicting extreme events, such as hypoxia, we need to be able to

predict well the oxygen daily anomalies rather than the total oxygen
frontiersin.org
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values. The daily anomalies for both model inputs and outputs have

been obtained by (i) estimating for each variable the daily

climatology by averaging the daily values through the 23 years of

the reanalysis and then (ii) subtracting the climatology from the

total value. For variables distributed across different horizontal and

vertical locations this procedure was repeated for each

location separately.

The reanalysis data were split into 20 years (1998-2017) of

training and validation data, and the last 3 years (2018-2020) were

left out as the test data. The 20 years of training and validation data

were further split into 16 years of training data and 4 years of

validation data.
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2.4 Locations

In this work we predict oxygen at two different locations that are

representative of different types of oxygen dynamics (for details see

Figure 1) and of the two different stakeholder applications explored

in this study: (i) To predict oxygen for the observational scientists,

we train an ML emulator at the L4 observing station in the western

English Channel, which provides an extraordinary record of

physical and biogeochemical data (Harris (2010)). (ii) To

demonstrate a potential aquaculture application we focus on

another location in German Bight (GB), close to the delta of the

Elbe river (for both L4 and GB locations see Figure 1), which is one
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FIGURE 1

The top three rows (A-F) show for NWES the lagged Spearman correlation between the different ML model inputs (surface chlorophyll, SST, surface
salinity anomalies) and the surface oxygen anomaly (left hand panels), or bottom oxygen anomaly (right hand panels). Both, the time-series of the
ML model input variables and the oxygen are always correlated at the same location, but with a potentially non-zero time-lag, which at each
location corresponded to the maximum absolute value of Spearman correlation (so the time-lags can change with the spatial location and can differ
between input variables). The orange/yellow dots in all the panels show the L4 station in the English Channel and the GB location. The bottom plots
(G, H, G for surface oxygen, H for bottom oxygen) show regionalization of the NWES based on correlations from the upper three panels. The
different colors describe regions where oxygen is controlled by different variables: dominantly controlled by SST (“tot-T”, blue), mostly controlled by
SST (“ms-T”, purple), mostly controlled by the surface salinity (“ms-S”, beige), controlled by both surface salinity and SST (“ms-phy”, red) and region
where surface chlorophyll plays comparable role with SST and/or salinity (“mixed”, lime).
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of the areas in the North Sea with the largest risk of hypoxia

(Niermann et al. (1990); Diaz and Rosenberg (2008); Topcu and

Brockmann (2015); Große et al. (2017)).

2.4.1 The L4 observing station
The L4 station is part of the Western Channel Observatory

(WCO, https://www.westernchannelobservatory.org.uk/) and

SmartSound Plymouth (https://www.smartsoundplymouth.co.uk/),

based at 50m deep location (see Figure 2) about 13km from the

Plymouth Sound area in the English Channel. The L4 location (50.25°

N, 4.217°W) is highly biologically productive with seasonally

stratified dynamics (Pingree and Griffiths (1978)), significantly

impacted by the outflow of the nearby Tamar and Plym rivers. The

oxygen dynamics at L4 shows a high degree of complexity, with

comparable impact of biology and physics on the oxygen (see

Figure 1). WCO, operated by Plymouth Marine Laboratory, runs at

the L4 station one of the longest observational time-series (since 1988,

Harris (2010)), delivering data typically with an average 7-10 day

sampling frequency for physical ocean variables (temperature,

salinity), biogeochemistry (e.g., chlorophyll, phytoplankton carbon,

nutrients, oxygen, benthic data) and bio-optical data (e.g., PAR). As

part of SmartSound Plymouth, the area near L4 station is

continuously observed by other platforms (e.g., E1 buoy, vessels),

and was also explored by the first fully autonomous glider bloom-

tracking mission (Ford et al. (2022)).

The reanalysis data were extracted at the nearest model AMM7

domain grid cell to L4, the atmospheric forcing data were

interpolated to the model grid location, whilst the riverine

discharge data were taken from the area of 30km radius around

the L4 location. Similar data processing methodology was used also

at the GB location. Despite of slight mismatch in the locations and

the major difference in spatial resolution, the temperature and

oxygen variables agree very well between the Met Office reanalysis

and the L4 observations (Figure 3 and Figure S3 of SI), however

there is much less agreement in the total chlorophyll (Figure S4 of

SI). This can be partly due to small-scale chlorophyll variability (e.g.

Ford et al. (2022)) missed by the 7km resolution of the reanalysis

data, but also partly due to differences between the L4 fluorescence-

based chlorophyll measurements and the assimilated satellite
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chlorophyll, derived from the optical measurements (for more

comparisons see also Skákala et al. (2018)).

2.4.2 The German Bight (GB) location
Another location included in our study is in German Bight

(54.067 °N, 8.444 °E). GB is a shallow section in the southeast of the

North Sea, ranging from the coastline of Netherlands to the Danish

coastal waters. It is an intertidal zone, near the substantial river

deltas and estuaries (e.g., Elbe estuary). It is widely regarded as one

of the most hypoxic zones in the North Sea, at risk of agricultural

runoff and eutrophication (Brasse et al. (2002); Topcu and

Brockmann (2015); Große et al. (2017); Brockmann et al. (2018)).

The location selected for this study was 10m deep and very well

mixed. It should be noted that in the 1998-2020 reanalysis used in

this study there was no direct evidence of hypoxia (oxygen< 2mg/L)

at the GB location (the bottom oxygen concentrations were always

above 7 mg/L), and the oxygen was mainly driven by the SST (air-

sea gas exchange, see Figure 1). This is likely a consequence of the

data resolution (7km and 1 day), but model inadequacy in

representing some of the processes leading to hypoxia cannot be

ruled out (e.g., Oschlies et al. (2018)). Finally, due to the mixing and

the shallow bathymetry, it is not very surprising that the SST turned

out to be at the GB location also a good predictor of the bottom

oxygen (Figure 1).
2.5 ML models

To guarantee that our analyses are robust, in this study we

trained three separate ML models (Gaussian Process emulator,

Long Short-Term Memory (LSTM) Neural Network and a

standard Multilayer Perceptron (MLP) Neural Network), which

belong to two highly expressive classes of supervised learning

algorithms, Gaussian Processes and Deep Neural Networks

(DNNs). ML models such as these are well suited to problems

with multiple interactions between inputs and outputs, because they

are able to model complex non-linear relationships between

variables. Their straightforward architecture makes MLPs an

effective baseline model, while LSTM-based models are
FIGURE 2

The left hand panel shows the bathymetry (in m) of the NWES for the AMM7 domain of the bi-decadal Met Office reanalysis. The right-hand panel
shows the bottom oxygen concentrations (mg/L) for the NWES (the rest is masked), calculated from the 1998-2020 reanalysis data using the OSPAR
methodology: the values represent the mean of the lowest quartile of the sea bottom oxygen during the stratified season between July and October
(https://oap.ospar.org/en/). The L4 and GB locations are marked by the yellow dots.
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specifically designed to identify dependencies in time series data.

The three models are described in the following sections.

2.5.1 Gaussian process (GP) emulator and GP-
based feature sensitivity analysis

As a robust non-parametric Bayesian inference framework,

Gaussian Process (GP, Williams and Rasmussen (2006)) is a

generalization of multivariate Gaussian distribution, such that any

finite collection of the variables follows joint Gaussian distribution.

GP can capture complex relationships between the model’s input

and (noisy) output data. As with Gaussian distributions, the mean

and covariance functions can completely describe a GP. Their

parameters together with other model parameters, such as the

measurement noise, are collectively called hyperparameters, and

all of these can be learned from the training data. GP has been used

for variety of applications, for instance, Bayesian optimization

(Binois and Wycoff (2022)), predictive control (Kocijan et al.

(2004)) and Bayesian filtering (Ko and Fox (2009)), among

others. In this work we follow Williams and Rasmussen (2006)

and use the squared exponential kernel with automatic relevance

determination (SE-ARD) function to represent the covariances in

the GP model.

Variance-based methods of probabilistic sensitivity analysis

(Saltelli et al. (2000)) provide an efficient way to quantify the

sensitivity of the GP model output to the GP model individual

inputs through the total effect index. In this work, we follow the
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Bayesian approach of Oakley and O’Hagan (2004) to compute the

total effect index.

2.5.2 Long short-term memory neural network
emulator

Artificial neural networks (NN, e.g. Gurney (2018)) are models

originally inspired by biological brains, constituted of

interconnected and mutually communicating sets of nodes called

neurons. Long Short-Term Memory (LSTM) networks are a type of

neural network specifically designed to operate on time series. An

LSTM cell replaces the standard neuron with a more complex set of

operations, controlling how much information from the input at

each time point is retained and how much is discarded (Hochreiter

and Schmidhuber (1997)). This structure allows LSTMs to retain

relevant information from previous time points for use in predicting

the final output. As with a standard artificial neural network, an

LSTM can be trained to predict an output, or set of outputs, given

an input time series as a vector.

For this case, models were constructed using the Keras library

(with TensorFlow backend) with the number of LSTM layers

matching the number of input variables, where each input

sequence is fed separately through an LSTM layer before the

outputs are concatenated and connected to a fully connected

output layer with size 50 (one output for each vertical layer).

LSTM layers consist of a number of LSTM cells equal to the

length of the input vector (i.e., the number of time steps). Models
FIGURE 3

Comparing the oxygen total (climatology+anomaly) concentrations (in mg/L) at L4 between the reanalysis providing the training/validation/test data
and the L4 observations. For completeness we show also the values predicted by a ML model (multilayer perceptron neural network) for the last 3
years of the time-series (2018-2020), which correspond to the test data. The ML model however predicted only the oxygen anomalies, which were
added here to the L4 oxygen daily climatology known from the Met Office reanalysis. The oxygen concentrations are compared at a range of depths,
excluding the surface values, since at the surface the L4 observations were largely missing. To show the limited oxygen range on the y-axes of the
different panels, few observational outliers have been removed.
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were trained for 20 epochs (sufficient to reach convergence) using

the Adam optimizer and RMSE as a loss function.

2.5.3 Multilayer perceptron neural network
emulator

We have also trained a simple Multilayer Perceptron (MLP)

neural network (NN) model using the Python TensorFlow library.

The MLP NN model had three hidden layers and the number of

neurons in each hidden layer was set to scale as ten times the

number of model inputs. Before the model was trained, we applied

PCA and reduced the number of inputs by 30-50% (depending on

the exact inputs). Similarly to the LSTM NN, the MLP NN model

used the Adam optimizer and RMSE as a loss function. The model

was typically trained on 15 epochs (sufficient to reach convergence).
2.6 ML forecasting

It should be noted that we trained our models to do both,

predict the oxygen anomalies at a simultaneous time to (some of)

the observational inputs and to forecast the oxygen anomalies into

the future. To forecast the oxygen into the future, we have trained

the ML model separately for each forecast lead time using the same

ML model design and hyperparameters, with the only difference

that the observed inputs were time-shifted from the predicted

outputs by the forecast lead time.
3 Results and discussion

3.1 The controls over oxygen on the NWES

We used the 23 year reanalysis data to identify the key drivers

behind the surface and bottom oxygen anomalies across the whole

NWES (Figure 1). The impact of each driver was estimated based on

lagged absolute Spearman correlation, where the correlation

analysis was run separately at each location through a (-40 days

to +40 days) interval of time-lags between the oxygen time-series

and the time-series of the ML input variable (SST, surface

chlorophyll, surface salinity). The overall lagged-Spearman

correlation between the oxygen and the ML input variable, shown

in Figure 1, then, separately for each location and input variable,

corresponds to the time-lag that gave the largest absolute

correlation value.

Figure 1 demonstrates that the surface observations for

temperature, chlorophyll and salinity are good predictors for

surface oxygen anomalies, but do not have strong relationship to

the bottom oxygen. The exception are the areas mostly in the

southern North Sea, which have very shallow bathymetry (⪅ 20m)

and are well mixed. We can also see (Figure 1) that the physical

variables (especially the SST) have stronger control over the oxygen

concentrations than the biological variables (chlorophyll) and in

some areas the oxygen anomalies can be predicted solely from their

values. The regionalization shown in the bottom panels of Figure 1

shows that the surface oxygen anomalies in the south of North Sea

are either “fully” (absolute lagged-Spearman correlation > 0.75), or
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“mostly” (absolute lagged-Spearman correlation > 0.5 and at least

twice as large as the absolute lagged-correlation of the other

variables) controlled by the SST anomalies.

The bottom oxygen anomalies are also controlled by the SST,

but on a smaller portion of the domain, with shallow bathymetry.

Except of some very limited sections of the NWES where salinity

(“mostly”, in the same sense than for SST) controls the bottom

oxygen anomalies, the rest of the domain (called “mixed”) is

represented by much more complex dynamics where both biology

and physics play a comparable role. The “mixed” domain was

defined by either (i) the absolute values of lagged-correlation of all

three (SST, salinity, chlorophyll) variables being lower than 0.5, or

by (ii) the absolute lagged-correlation of none of the physical

variables being twice as large as the absolute lagged-correlation

of chlorophyll.
3.2 The GB location

The GB location falls in the region where oxygen anomalies are

dominantly controlled by the SST anomalies (Figure 1). The same is

shown by Figure 4 (and Figure S5 of SI), demonstrating the strong

linear lagged-relationship between the surface oxygen anomaly and

the SST anomaly. It is then not surprising that training a ML model

(at GB location only MLP NN model was used, the other ML

models were used only at L4 location, where the emulation is more

complex) using only the SST inputs does a very good job in

predicting the oxygen anomaly (Figure 5). Figure 4 in fact

suggests that a simple linear interpolation model might be

sufficient for the oxygen anomaly prediction, but we have

observed that the linear model considerably underperformed

compared to the MLP NN model from Figure 5, i.e., it had RMSE

over 50% larger than MLP NN (not shown here).

Figure 6 demonstrates the MLP NN model capacity to forecast

oxygen anomalies into the future. This is particularly important for

the hypoxia warnings, as they need to be provided sufficient time in

advance. Figure 6 shows that the model skill is broadly constant
FIGURE 4

The relationship between the SST anomaly and oxygen anomaly
(lagging on SST by 5 days) at the GB location. The Pearson
correlation describing the linear relationship is R=-0.83.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1058837
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Skákala et al. 10.3389/fmars.2023.1058837
with depth (high degree of mixing in a 10m water-column) and the

Pearson correlation drops from well over R=0.9 to about R=0.6 at

the forecast lead time of about 17 days, with RMSE increasing on

the same time-scale by about 50%. The long lead-time of this

forecast can be understood from the long GB oxygen auto-

correlation time-scales, that correspond to the relatively slow

dynamics of the SST anomalies (Figure S6 of SI).

As mentioned in the Methods, the neural network did not predict

oxygen anomaly in Figures 5, 6 from a single SST value, but from a

whole time-interval of SST values ahead of the predicted oxygen. In

fact, the left-hand panel of Figure 7 shows that for the ML model to

perform optimally, we should include into the inputs the SST data on

a time-interval with length of at least two weeks. To be able to do

prediction from such long time-interval of inputs, one always needs

to have available SST data on a large number of successive days. Such

availability is rare with satellite SST data with a daily time-resolution,

as satellite SST from a specific location will usually have temporal

gaps in the data. It is thus important to estimate how the ML model

skill depends on the time-resolution of the SST inputs. Figure 7, the

right-hand panel, demonstrates that the skill of the MLmodel did not

substantially change when the SST inputs were low-pass filtered on a

time-scale of up to 30 days. This suggests that the daily time-

resolution of satellite SST is not necessary, i.e., the MLP NN model

using satellite SST time-series with much coarser time-resolution

(even > week) would perform similarly to the one using daily data.

This is important, since the coarser the resolution, the more we are

allowed to fill the data gaps with interpolation. These results
Frontiers in Marine Science 10
demonstrate that the oxygen prediction can be easily performed in

realistic situations with widely available observational products.

The relatively stable GB oxygen anomaly time-series with long

auto-correlation time-scales (e.g., Figure 5 and Figure S6 of SI) are

probably an artefact of the relatively coarse spatio-temporal

resolution of the Met Office reanalysis. So is likely the absence of

hypoxia in the GB reanalysis: it is known that due to high level of

mixing and the shallow bathymetry in the GB area, the hypoxic

events are relatively short-lived compared to much more stratified

waters [Topcu and Brockmann (2015)]. It is therefore expected that

on a finer spatio-temporal resolution scale we would see much greater

extremes in the oxygen anomalies, and these will be inherently

predictable only when riverine discharge and chlorophyll variables

were added to the ML model inputs. Unfortunately, this hypothesis

remains to be tested, as sufficient amount of high-resolution data,

needed to train the ML models, is not available for the GB. As for the

Met Office reanalysis, adding chlorophyll, or riverine data to ML

model inputs did not further improve the ML model skill, e.g., it did

not capture better some of the extremes of the test data missed by the

ML model (a positive extreme in the Summer 2018, and negative

extremes in the Winter 2019 and 2020, shown in Figure 5).
3.3 L4 location

Whilst SST anomalies have similar auto-correlation

lengthscales between L4 and GB locations (Figures S6, S7 of SI),
FIGURE 5

Neural network based on SST inputs predicting the surface oxygen anomaly at the GB location compared with the test data-set from 2018-2020.
FIGURE 6

The skill of MLP NN model, measured by the Pearson correlation (left panel) and RMSE (right panel), to forecast oxygen anomaly across the full
water-column at the GB location. The neural network uses as inputs only SST.
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unlike GB, the L4 oxygen anomalies are better correlated with

chlorophyll (Figure S8 of SI) and have shorter auto-correlation

lengthscales than SST (Figure S7 of SI). This means, at L4, biological

processes play an important role in the predicted oxygen (see also

Figure 1). Furthermore, the L4 location is highly seasonally

stratified and the surface values are effectively decoupled from the

values near the sea bottom. This makes the problem of predicting

oxygen anomalies much more non-trivial, but also more interesting.

3.3.1 The sensitivity of oxygen anomalies to the
observed variables

The three ML models were used to investigate the sensitivity of

the predicted oxygen anomalies to the atmospheric, riverine inputs

as well as the SST, surface salinity and surface chlorophyll. In this

analysis only the inputs from the MinSc case were considered.

The sensitivity results were consistent between the three ML

models, which indicates that the results are robust. The most
Frontiers in Marine Science 11
systematic analysis was performed using the GP emulator and is

shown in Figure 8. The ranking based on the total effect index shows

that for the near-surface oxygen, the PFT chlorophyll, SST and

surface salinity are the most important inputs, with additional

impacts from phosphorus and ammonium riverine inputs

(Figure 8). In the deeper layers the ranking does not dramatically

change, however the impact of PFT chlorophyll is significantly

diminished, whilst the impact of riverine phosphorus and

ammonium load remains similar to what it was near the surface.

These results are consistent with what has been anticipated based on

Table 1, however some specific details need explanation, i.e., the high

ranking of phosphorus riverine discharge indicates that

phytoplankton growth in the model is phosphorus-limited. This

contradicts the established knowledge that productivity at L4 is

mostly nitrogen-limited (Smyth et al. (2010)). We suspect this

discrepancy is an artefact of the emulated ERSEM model, which

overestimates nitrates at L4 (Skákala et al. (2018)) and fails to capture

the observed nitrogen-limitation of the phytoplankton growth.
FIGURE 7

The necessary time-lags in the SST inputs (left-hand panel) and the required time-resolution of the input data (right-hand panel). The RMSE values
on the y-axis of the left-hand panel are shown for simulations using in their inputs always the full range of time-lags from the zero time-lag to
maximum time-lags corresponding to the values on the x-axis. The analysis is for MLP NN model at the GB location.
FIGURE 8

Total effect indexes for the full range of ML model inputs from the MinSc case at the L4 location. The abbreviations are: “U10”: zonal wind at 10m,
“V10”: meridional wind at 10m, “WS”: total wind speed, “SWR”: incoming short-wave radiation, “MSL”: mean sea level pressure, “SPH”: specific
humidity, “no3”: riverine nitrate input, “nh4”: riverine ammonium input, “dic”: riverine dissolved inorganic carbon input, “o”: riverine oxygen input, “p”:
riverine phosphorus input, “sio2”: riverine silicate input, “totalk”: riverine total alkalinity input, “runoff”: the freshwater runoff by the river, “P1_Chl”:
diatoms chlorophyll, “P2_Chl”: nanophytoplankton chlorophyll, “P3_Chl”: picophytoplankton chlorophyll, “P4_Chl”:dinoflaggelates chlorophyll (all on
the surface), “T”: sea surface temperature, “S”: surface salinity. The different lines correspond to the predicted oxygen outputs at different depths
(marked in the legend).
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Based on other sensitivity tests performed with the MLP NN

emulator (not shown here), the MLP NNmodel at L4 was run in the

MinSc case only with total chlorophyll (sum of PFT chlorophyll),

SST and riverine phosphorus inputs. The LSTMNNmodel used the

same features as the MLP NN model (based on its own analysis),

with additional inputs for riverine ammonia discharge and

incoming short-wave radiation.

3.3.2 The prediction of oxygen from the relevant
inputs

The three ML models considered in this study were highly

variable in their skill, depending on the type of scenario, the depth

of the predicted oxygen anomaly, and the forecast lead time. The

detailed comparison of the model skill is for the three scenarios

(MinSc, MedSc, MaxSc) shown in Figures S9-S11 of the SI. The

conclusion drawn from this analysis is that there is no best-

performing ML model among the three: the most appropriate

choice of the ML model depends on the specific scenario, vertical

depth and the forecast lead time. Furthermore, it should be noted,

that greater model complexity does not necessarily imply better

performance. For example, the GP model performed worse for the

MedSc and MaxSc cases than for the MinSc case, since as a

nonparametric model it is more prone to overfitting, and also

requires more data for larger input dimensions to train its

hyperparameters. However, despite of the many differences in the

performance of the three ML models, all the models led broadly to

similar conclusions. This is very encouraging, as it indicates that

those conclusions are robust. Hence, the results presented here are

based on the MLP NN model, but similarly, they could have been

based on any of the other two ML models (GP, LSTM NN).

To predict sub-surface oxygen in the stratified waters, the ML

model needs to carry information about the vertical profiles of the

physical and biogeochemical variables. In the MinSc case it is hard

for the ML model to deduce those profiles, except for trying to

predict them from the atmospheric forcing (e.g. the wind stress

data, see Table 1). Figures 8, 9 (left-hand panel) demonstrate that

the atmospheric forcing data are of minimal use, and the MLP NN

model in the MinSc case fails to predict well the sub-surface (>10m

depth) oxygen anomalies. However, providing physical profiles by

adding sub-surface temperature anomalies to the inputs (MedSc,

middle panel of Figure 9) leads to significant improvement in the
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sub-surface oxygen anomalies. This is further improved when the

sub-surface chlorophyll anomalies are added to the model inputs

(MaxSc, right-hand panel of Figure 9). Finally, Figure 9 also

demonstrates that the MLP NN model maintains most of its

prediction skill within the 5 day (MinSc) or 7-10 day (MedSc,

MaxSc) forecast lead time.

The results for MedSc and MaxSc (Figure 9) are based on inputs

for temperature (MedSc) and also chlorophyll (MaxSc) supplied for

all 50 model vertical grid cells. However, it is unrealistic to expect

that measurements can be made with such resolution across the

whole water column unless they are done by an autonomous

underwater vehicle, such as a glider. It is, therefore, essential to

determine at how many sub-surface grid cells (on top of the existing

surface inputs) one needs to provide the input information for

temperature, or chlorophyll, to achieve a skilled prediction of the

sub-surface oxygen anomaly. The answer is provided by Figure 10,

showing that for the MLP NNmodel to perform well (everywhere R

> 0.5 for MedSc and R > 0.6 for MaxSc) in predicting sub-surface

oxygen anomalies in all 50 vertical grid cells, it is enough to provide

temperature (MedSc), or temperature and chlorophyll (MaxSc), in

one single additional sub-surface cell at the 25m depth. This

typically lies beneath the mixed layer, at the L4 location, during

the stratified period (e.g., see Powley et al. (2020)). When inputs in

some other vertical cells are added to the model, we can further

improve its performance, but the gain is relatively small compared

to the addition of the single vertical cell at 25m. This is encouraging,

as collecting observations at the surface and at one another deeper

location is a realistic prospect.

Similarly to the GB location, it is hard to realistically expect that

the observations at the L4 station can be supplied with a daily

resolution for a successive number of days, in order to provide the

time-lagged inputs into the MLmodel. Figure 11 is thus an analogue

of Figure 7, and shows the skill of the MLP NN model when the

time-resolution of the model inputs is coarsened through applying a

low-pass filter. Similarly to Figure 7, Figure 11 demonstrates that

the model skill is mostly preserved when the time-resolution is

coarsened by up to 30 days. This is again good news: such smoothed

SST, or chlorophyll, time-series can be typically estimated from the

daily observational products, despite of their many missing values.

Furthermore, it should be noted that in Figure 11, low time-

resolution ML model inputs were used to predict high time-
FIGURE 9

The MLP NN model forecast skill measured by the Pearson correlation shown for the full range of depths at L4 (y-axis) vs the forecast lead time (on the x-
axis). The three panels are the three scenarios explored in this study: using only surface chlorophyll and temperature data (MinSC, left-hand panel), using
also sub-surface temperature data (MedSC, middle panel) and using both temperature and chlorophyll sub-surface data (MaxSC, right-hand panel).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1058837
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Skákala et al. 10.3389/fmars.2023.1058837
resolution (daily) oxygen anomalies; if the predicted oxygen

anomalies were taken on the same coarse resolution time-scale as

the ML model inputs, the model skill would be much better (see

Figure S12 of SI).

Finally, we have attempted to directly apply the ML models

trained on the reanalysis data to the total chlorophyll and SST

anomalies derived from the observations at the L4 station, and

compare the model outputs to the anomaly derived from the L4

observed oxygen. To overcome the limitation of the L4

observational sampling frequency of ~10 days, we had to heavily

interpolate the missing observational values, and estimate the L4

observational anomalies based on the (smoothed) climatology of
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the interpolated L4 data. Unfortunately, it turned out that the ML

models performed poorly on the L4 interpolated anomaly inputs

(not shown here), when validated by the L4 oxygen anomaly

estimates. There are a number of possible reasons for why this

has happened:
(i) While the temperature and oxygen L4 observations

compare very well with the reanalysis (Figures 3, Figure

S3 of SI), there is a clear mismatch between the total surface

chlorophyll L4 observations and the reanalysis, based on

assimilating the satellite OC chlorophyll data (Figure S4 of

SI). This discrepancy in the chlorophyll values can be easily
FIGURE 10

The skill of the MLP NN model (Pearson correlation) as a function of depth at the L4 location (x-axis) for different numbers of inputs in the vertical
dimension: inputs at two, three, five and all fifty vertical cells in the water-column. The three, five and fifty vertical cells were always selected to have
one cell located on the ocean surface, one on the sea bottom and the other(s) always regularly spaced in between (e.g., for three cells the cells
were selected at the 0m, 25m and 50m depths). In case of one cell, the cell was placed at the surface, for two cells they were placed at the surface
and the 25m depth (the middle of the water column). The upper panel is the MedSc case and the bottom panel the MaxSc case.
FIGURE 11

The dependence of the MLP NN model (Pearson correlation) skill across the full range of L4 depths (y-axis) on the time-resolution of the data (the
time-scale of the low-pass filter, x-axis). Similarly to Figure 9, the different panels show the different scenarios explored here.
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caused by the different spatial and temporal resolutions of

the two products, since, unlike temperature and oxygen,

chlorophyll has at L4 large small-scale variability (e.g., see

Figure S2 of SI). The instantaneous L4 chlorophyll

measurements, with their sparse sampling frequency (~10

days), might be then highly non-representative of the

biological productivity driving oxygen concentrations at

the L4 location. The heavily interpolated L4 chlorophyll

observations might be therefore a poor predictor of oxygen.

(ii) With the limited number of raw L4 observations, it is

highly non-trivial to derive from the total values of the

observed variables their anomalies. For example, applying

the anomaly calculation procedure to the observed L4

oxygen reduced the correlation between the reanalysis

and the L4 observations from R=0.68 for the total oxygen

values (Figure 3) to R<0.2 between the oxygen anomalies.

This means the anomaly estimation procedure presumably

introduced large biases to the L4 oxygen anomaly data, both

due to lack of sufficient number of long-term L4 oxygen

observations and potentially also due to some noisy

observational values (especially around the year 2017, see

Figure 3).
4 Conclusions

We explored ways how to build computationally cheap and

efficient machine learning (ML) emulators to replace a

computationally expensive complex physical-biogeochemical

model. These ML emulators can provide essential components

within future digital twin applications. In particular, we build ML

emulators to predict oxygen anomalies, including hypoxia, at the

selected locations in the North Sea and in the western English

Channel. The stakeholder applications we had in mind are: (i)

monitoring the risk of hypoxia by the aquaculture farmers in the

German Bight region of the North Sea, and (ii) expanding the

observed data into unobserved variables at the L4 coastal

monitoring station in the western English Channel.

We have shown that complex models can be replaced with

computationally cheap ML surrogates that are capable to

successfully predict simulated oxygen anomalies with relatively

modest requirements on the ML model inputs. We have

identified the observable variables with the highest impact on the

oxygen anomalies, throughout the whole water-column and in

different types of environments (mixed, stratified). For the near-

surface oxygen, the most essential observable variables are the SST,

surface chlorophyll and some specific riverine discharge data. We

have demonstrated that to predict sub-surface oxygen across the

stratified water-column it is often sufficient to measure temperature

at a single location (in addition to the surface), that is typically

beneath the mixed layer (25m at L4). Similarly, for the ML model, it

is sufficient to provide the surface observation inputs with a coarse

temporal resolution (e.g., weekly). These can be always supplied,

with the required quality, by the satellite data with interpolated

observational gaps.
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There are some issues that need addressing in the future, e.g. to

develop successful digital twins for high resolution applications, we

might need to adapt the observational sampling strategies to the

needs of the ML models. However, as discussed before, this can be

often done without a major increase in the observational cost. But

improvements need to be done also on the modelling side, e.g., (i)

we need to either increase the model resolution to better

approximate the scales of (most of) the digital twin applications,

or we need to find ways how to downscale the model outputs, (ii) we

also need to ensure that the dynamics relevant to the digital twin

application is as well represented in the model, as possible.
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