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A B S T R A C T   

Harmful algal blooms (HABs) intoxicate and asphyxiate marine life, causing devastating environmental and 
socio-economic impacts, costing at least $8bn/yr globally. Accumulation of phycotoxins from HAB phyto-
plankton in filter-feeding shellfish can poison human consumers, prompting harvesting closures at shellfish 
production sites. To quantify long-term intoxication risk from Dinophysis HAB species, we used historical HAB 
monitoring data (2009–2020) to develop a new modelling approach to predict Dinophysis toxin concentrations in 
a range of bivalve shellfish species at shellfish sites in Western Scotland, South-West England and Northern 
France. A spatiotemporal statistical modelling framework was developed within the Generalized Additive Model 
(GAM) framework to quantify long-term HAB risks for different bivalve shellfish species across each region, 
capturing seasonal variations, and spatiotemporal interactions. In all regions spatial functions were most 
important for predicting seasonal HAB risk, offering the potential to inform optimal siting of new shellfish op-
erations and safe harvesting periods for businesses. A 10-fold cross-validation experiment was carried out for 
each region, to test the models’ ability to predict toxin risk at harvesting locations for which data were withheld 
from the model. Performance was assessed by comparing ranked predicted and observed mean toxin levels at 
each site within each region: the correlation of ranks was 0.78 for Northern France, 0.64 for Western Scotland, 
and 0.34 for South-West England, indicating our approach has promise for predicting unknown HAB risk, 
depending on the region and suitability of training data.   

1. Introduction 

Aquaculture, including the farming of finfish, shellfish and seaweeds 
will play a key role in future food security. Global aquaculture pro-
duction has recently overtaken capture fisheries by producing 82 million 
tonnes of food fish per year globally (worth US$232 billion), with pro-
jections rising to 109 million tonnes by 2030 (FAO, 2020). Marine 
aquaculture (mariculture) shows enormous potential for sustainable 
food production (Costello et al., 2020). Expanding the farming of marine 
bivalve shellfish (currently amounting to 17.3 million tonnes, worth 
over $24 billion per year globally) is particularly attractive, since these 
filter feeders derive their food from freely available marine planktonic 
microalgae; shellfish also perform a wide range of ecosystem services, 

including nutrient regulation and carbon capture (FAO, 2020; Van der 
Schatte Olivier et al., 2020). 

However, future expansion of bivalve mariculture depends on 
several socio-economic and environmental constraints relating to 
competing demands from other marine economic activities (Daniels 
et al., 2020), environmental carrying capacities (Ferreira et al., 2009) 
and environmental hazards, including adverse climatic conditions, 
pollution, and Harmful Algal Blooms (HABs) (Brown et al., 2020). The 
increasingly frequent and widespread detection of HABs, proliferations 
of harmful planktonic algae causing intoxication and/or asphyxiation of 
marine life, is a major constraint on bivalve shellfish mariculture in NW 
European shelf seas and other HAB hotspots around the globe (Glibert 
et al., 2014; Weisberg et al., 2019; Trainer et al., 2020; Wells et al., 2020; 
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Belin et al., 2021; Hallegraeff et al., 2021). Global annual economic 
impacts of HABs exceed $8 billion, approximately half due to enforced 
seafood harvesting bans or product recalls and half due to unavoided 
HAB toxin-related human health costs (GESAMP, 2001; Berdalet et al., 
2016). Whilst there is considerable uncertainty in quantifying the global 
economic costs of HABs (Trainer et al., 2020), the scale of the problem is 
highlighted by the cost of HAB monitoring, which for example amoun-
ted to $6.9 million in Chile alone in 2019 (Mardones et al., 2020). 
Monitoring costs are only a small fraction of the economic impacts of 
HABs on fisheries and aquaculture and human health. 

In NW Europe, dinoflagellate HAB species from the genus Dinophysis 
(including Dinophysis acuminata and Dinophysis acuta) are particularly 
problematic, since low biomass blooms of these species >100 cells/L are 
sufficient to intoxicate bivalves and cause diarrhetic shellfish poisoning 
in human consumers (Manfrin et al., 2012; Reguera et al., 2014). These 
low biomass blooms are undetectable by satellite surveillance and, as 
with several other dinoflagellate HAB species, they are likely to increase 
in prevalence with global warming, seasonal thermal stratification, and 
stabilisation of the water column (Glibert et al., 2014; Wells et al., 2015; 
Gobler et al., 2017; Trainer et al., 2020). 

There is an urgent need for new tools to better quantify long-term 
changes in HAB risk for shellfish cultivation and harvesting, to inform 
mitigation strategies, including optimal siting of new shellfish produc-
tion sites. Current assessment and management of HAB risk, including 
for Dinophysis spp., relies on regular weekly or bi-weekly in situ sam-
pling and subsequent chemical analysis of phycotoxins in shellfish, 
alongside microscopic quantification of HAB species abundance at 
routine monitoring points across regulatory networks e.g. in the UK and 
EU (EC 2004a, b, c). Predicting HAB events and geographical hotspots is 
highly complex, due to multiple environmental drivers varying tempo-
rally from seconds to decades; and spatially, from the microscopic scale 
(mm) to the mesoscale (100 km). These include physical factors driving 
water stratification and nutrient depletion, as well as mixing and 
nutrient replenishment (Anderson et al., 2011; Anderson et al., 2019). 
Ecological interactions between HAB species, other planktonic organ-
isms and their physico-chemical environments can also be highly 
influential, notably resource competition, predation, and parasitism – 
which can invoke biochemical (allelopathic) defence mechanisms 
involving phycotoxins (Anderson et al., 2011; Wells et al., 2020). 

Existing HAB models account for spatial and temporal variation in 
HAB risk either: explicitly in the case of dispersion models (Davidson 
et al. 2016) and mechanistic models incorporating key biogeochemical 
and ecological (life-history) processes (Gillibrand et al., 2016); or 
implicitly in the case of data models (i.e. statistical or machine learning 
models) that incorporate short-term and long-term trends (Karasiewicz 
et al., 2020; Cruz et al., 2021; Fernandes-Salvador, 2021). Data models 
are simpler and less subject to structural errors, at the expense of 
overlooking the afore mentioned processes. Moreover, coupled with 
probabilistic elements, data models can quantify the uncertainty asso-
ciated with any estimates or predictions. Recent approaches have 
demonstrated skill in making reliable short-term predictions, notably via 
flexible smoothing functions (Schmidt et al., 2018) or threshold func-
tions accounting for sudden shifts, e.g. when sea surface temperature 
falls below tolerable or optimal physiological limits for a HAB species 
(Taranu et al., 2017). Support vector machines, random forests, proba-
bilistic graphical models, and artificial neural networks have also been 
shown to be capable of modelling highly dynamic (non-linear) and 
multi-source physico-chemical and biological data underlying HAB 
development and decay (Lee et al., 2003; Grasso et al., 2019; Cruz et al., 
2021). Long-term recurring HAB hotspots, including for low biomass 
HAB species such as Dinophysis spp., have also been predicted based on 
physical processes statistically associated with HABs (e.g. through 
general additive modelling) (Díaz et al., 2019; Fernandes-Salvador et al., 
2021). 

Here we develop a novel data modelling approach to quantify long- 
term, recurring risk of shellfish intoxication from Dinophysis spp., using 

10–20 years of ‘Official Control’ monitoring data for a range of shellfish 
species at coastal sites in Western Scotland, SW England, and Northern 
France. We choose to focus on this data set to leverage the direct 
connection it offers to regulatory action levels for Dinophysis toxins (i.e. 
160 μg/kg Okadaic Acid equivalents [OA eq.] in shellfish flesh), 
providing a pathway to better understanding impacts on cultivation of 
different shellfish species at a range of sites, in each of our study regions. 
To quantify long-term HAB risks, we present a statistical framework 
built on flexible smoothing techniques capable of evaluating spatio-
temporal trends in average Dinophysis toxin concentrations in shellfish. 
This framework offers the potential to inform marine spatial planning 
and species selection for new shellfish mariculture businesses. We assess 
this potential using a cross-validation experiment to systematically 
predict toxin concentrations at locations from which data are withheld. 
We find more promising performance in Northern France and Western 
Scotland, compared to SW England. Despite regional differences in po-
tential for spatial interpolation of HAB risk, temporal trend analysis for 
all three regions highlighted a statistically significant increase in 
Dinophysis toxin concentrations over the study period, corresponding 
with a period of climate warming. We discuss these results and consider 
how data-driven models such as ours can aid long-term forecasting and 
mitigation of HAB risk for shellfish mariculture. We present recom-
mendations for optimising monitoring and modelling approaches to 
further improve the accuracy of long-term geospatial predictions of HAB 
risk. 

2. Methods 

2.1. Data 

Standardised HAB monitoring data used in this analysis span 12 
years (2008–2020) and include a total of 294 sites and at least 19 
shellfish species farmed or collected in a) Western Scotland, b) SW En-
gland and c) Northern France. Specifically, our model for Western 
Scotland (a) included data from West and North-West Scotland, with 
sample collection dates ranging from 30th March 2009 to 8th July 2020; 
our model for SW England (b) included data from the south coast of 
Cornwall, Devon, and Dorset, with dates ranging from 4th July 2011 to 
9th September 2020; and our model for Northern France (c) included 
data from the northern and north western coasts of France, with dates 
ranging from 18th November 2008 to 31st December 2019. 

At routine monitoring points for each of the sites in the data set, HAB 
toxins are measured in shellfish meat each week during blooms, in 
conjunction with HAB species abundance measured according to Official 
Control methods stipulated in EU Hygiene Regulation (EC) No 853/ 
2004 (EC, 2004). 

2.2. Spatiotemporal models for assessing long-term HAB risk 

We first describe our approach to inferring trends in HAB risk across 
broad spatial and temporal scales. 

To assess long-term average HAB toxin levels, we developed statis-
tical models within the Generalized Additive Model (GAM) framework. 
The idea is to define a model that can capture the spatiotemporal vari-
ation in phycotoxin levels using mathematically defined structures. For 
instance, seasonal cycles in HAB occurrence may vary substantially over 
a large geographical region, or the risk from HABs may increase or 
decrease at different locations due to changes in ocean regimes or 
climate. Capturing these spatiotemporal structures can better inform 
decisions about geographical expansion/diversification of mariculture. 
In contrast to applying a different model for each site, identifying any 
space-time apparent structures will provide more robust estimates of 
risk in each site, since data will be pooled across the sites. It will also 
enable the prediction of risk at times and in locations where no obser-
vations exist. 

We begin by assuming that toxin samples y can be modelled using a 
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log-Normal distribution (i.e. log(y) ∼ Normal(μ, σ2)). We can then 
characterise systematic variability in average toxin levels by introducing 
spatiotemporal structures in the mean μ. These structures are defined by 
smooth functions of one or more predictor variables (in this case space 
and time). The smooth functions themselves are linear combinations of 
basis functions, namely regression splines (Thompson et al., 2017). For 
example, a smooth function f(t) of time t is defined as 

f (t) =
∑K

k=1
θkbk(t)

where θk are unknown coefficients and bk are the basis functions (such as 
cubic splines or thin plate splines) (Thompson et al., 2017). When K 
(conventionally termed the “number of knots”) is too large, function f 
will be too “wiggly” and thus tend to overfit (over explain) the data, 
which is why when such functions are estimated from the data, a 
smoothness constraint is imposed to prevent overfitting. This constraint 
is estimated objectively from the data by leveraging in-sample and 
out-of-sample predictive skill. 

For toxin measurement yt,s,i observed on day t = 1,…,N, at day-of- 
the-year d(t) = 1, …, 365), at geographical location s ∈ S and in spe-
cies i (e.g. mussels) the our model is defined by: 

log
(
yt,s,i

)
∼ Normal

(
μt,s,i, σ2);

μt,s,i,j = α + βi + f1(t) + f2(d(t)) + f3(s) + f4(s, d(t)) + f5(s, t),

where α is the intercept and βi is the species effect that captures overall 
differences in the uptake of HAB toxins by different shellfish species with 
blue mussels acting as the baseline (intercept) species for all regions. 
Note that all functions f1,…, f5 are centred at zero so that α is the overall 
mean (across all space and time) toxin for blue mussels and α +βi is the 
overall mean for species i. In Section 3.3 we assess differences across 
species using estimates of α and βj (and their uncertainty). 

Function f1(t) captures the overall temporal trend (across all space) 
in toxin level. It is defined using thin-plate splines (Thompson et al., 
2017) with 50 knots (using a specific basis representation that imitates a 
1D Gaussian process with a Matérn covariance function) (Kammann and 
Wand, 2003; Wood, 2017). This function captures any temporal trend 
that is common across all sites (e.g. effects of large scale climate and 
ocean regimes), and therefore contributes to pooling of the data. For 
instance, sites with less information can “borrow” information from 
more data-rich sites through this common term. Function f2(d(t)) de-
scribes the overall seasonal trend across the region. This is defined as a 
cyclic cubic spline of calendar day (cyclic means the value is the same for 
day 0 and day 365) and is given 10 knots. As with f1(t), pooling is 
achieved since this is common to all sites. 

The function f3(s) is two-dimensional and it defines a surface over the 
coordinates of the region. It captures the overall spatial structure across 
the whole time period and it therefore pools the data spatially (e.g. by 
borrowing information from nearby data-rich sites). f3(s) is specified as 
a 2D thin-plate spline of longitude and latitude. The specific basis rep-
resentation imitates a 2D Gaussian process in space with an isotropic 
Exponential covariance function (Wood, 2017). For this function, we 
specified 50 knots for SW England, 100 for Western Scotland and 100 for 
Northern France, reflecting the smaller geographical extent of SW En-
gland compared to Western Scotland and Northern France. 

Function f4(s, d(t)) is three-dimensional and it describes a different 
spatial surface for each day of the year d(t). This allows the seasonal 
cycle to be different for each site (and more generally location s). 
Similarly, f5(s, t) defines a different spatial surface for each day t, 
therefore allowing each site to have a different temporal trend if 
necessary. Both f4 and f5 are constructed using tensor products, which 
can interact different types of smooth functions together. First, f4 in-
teracts a 2D thin plate spline (50 knots for Northern France and Western 
Scotland, 25 for SW England) of latitude and longitude with a 1D cubic 

cyclic spline of calendar day (10 knots). The result is that spatial surfaces 
are similar for adjacent days and days in the year. Meanwhile, f5 com-
bines a 2D thin-plate spline of longitude and latitude (10 knots) with a 
1D thin-plate spline (10 knots) of time. The structured nature of these 
interactions means that the seasonal and temporal trends are con-
strained to be more similar for nearby sites, while the spatial surface is 
more similar for successional days. One can also think of f4 and f5 as 
capturing the deviations of each site from the overall trends f2 and f1 
respectively. In choosing to specify highly structured interactions we 
aim to allow robust prediction at locations where there are no obser-
vations (we later assess this capability for Northern France in Section 
2.5). The models are fitted to the data using the R package mgcv (Wood, 
2011). 

2.3. Estimating yearly changes in toxin concentrations 

The spatiotemporal models described in Section 2.2 estimate the 
temporal signal in mean (log) toxin concentrations through 1D thin- 
plate splines f1(t), but since these functions are non-linear it can be 
difficult to assess any longer-term trends. We therefore opted to fit 
supplementary models, for each region, which replace all terms 
involving time with a single simple linear effect of time (in days). The 
coefficients of these effects were all positive and significantly different 
from zero at the 0.1% level. We calculated average “year-on-year” in-
creases by multiplying the coefficients by 365 and exponentiating the 
result (to invert the log transformation applied to the toxin concentra-
tions). These increases are reported in Section 3.2. 

2.4. Handling of missing values 

In both the UK phycotoxin datasets, particularly for SW England, a 
high proportion of observations were recorded as less than the Reporting 
Limit ‘<RL’ – around 80%. Reporting Limit (RL) values are higher than 
detection limit (DL) values; all values reported by the UK FSA represent 
upper confidence intervals around the final calculated toxin concen-
trations, and therefore provide greater protection of human health. 
Nonetheless, these <RL observations can provide valuable information 
on the periods of the time and locations where the toxin level was low. 
To accommodate such data in our spatiotemporal models for SW En-
gland and Western Scotland, we replaced all <RL entries with a fixed 
value below the lowest measured value, 10 µg/kg OA equivalents. For 
the French phycotoxin data, only numeric toxin values are reported (i.e. 
no <RL or equivalent). We therefore assume that the entire distribution 
of toxin concentrations had been observed (i.e. we assume there are no 
non-detects), noting that just under half of measurements are low values 
(i.e. below 10 µg/kg OA equivalents). If this assumption is wrong, for 
instance if non-detects have in fact already been replaced in the data 
with fixed low values, then our results may suffer from some bias at low 
toxin levels (e.g. less than 10 µg/kg OA equivalents). This bias also re-
sults from replacing <RL values with 10 µg/kg OA equivalents in the UK 
datasets. However, we do not believe bias at low toxin levels is a sig-
nificant issue for our aim to quantify risks from HABs, in the context of 
which precisely capturing low toxin levels is of low importance 
compared to reliably differentiating between low and high toxin levels. 

Some toxin measurements (approximately 0.78%) from shellfish 
samples in the data set for Northern France had recorded longitude and 
latitude values placing them over land, so we excluded them from the 
model. 

2.5. Cross-validation experiment 

To assess the capability of our approach for predicting HAB risk at 
locations with no data, we carried out a k-fold cross-validation experi-
ment. The parameter k represents the number of groups the data are split 
into. We choose k = 10, as this value has been shown empirically to be 
reliable in terms of the bias and variance of out-of-sample errors (James 
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et al., 2013). For each region separately, the procedure was as follows:  

1 Shuffle the harvesting sites into a random order.  
2 Split the shuffled sites into 10 groups of approximately equal size.  
3 For each group.   

a exclude all the data for the sites in that group;  
b fit the spatiotemporal model to data from the remaining 9 groups;  
c use the fitted model to predict the log-toxin values for the excluded 

data points. 

Here, we believe removing data for whole sites at a time is a more 
stringent implementation of k-fold cross-validation than just splitting 
the data into k groups irrespective of site, but better suited to assessing 
the capability of the model for assessing risk at locations without data. 

We then computed the mean predicted log toxin value for each 
harvesting site (across the whole time period of the study), as an indi-
cator of Dinophysis HAB risk. To assess out-of-sample prediction per-
formance across regions, we focus on relative HAB risk, since for 
Western Scotland and SW England a high percentage of available toxin 
measurements were below the reporting limit (Section 2.4), making 
assessment of absolute toxin level prediction less meaningful. We 
quantify relative risk by comparing the ranked (ascending) observed and 
predicted (out-of-sample) mean toxin levels at each site. We summarise 
performance in each region using scatter plots of observed versus pre-
dicted ranks and computing the correlation of the observed and pre-
dicted ranks (Spearman’s ρ). These results are presented in Section 3.5. 

For Northern France, where we did not need to replace any values 
below the reporting limit (Section 2.4), we also assess prediction of 
absolute HAB risk at unseen locations. In this case, we summarise per-
formance by computing the Pearson correlation value of the predicted 
versus observed mean log toxin values at each site (excluding sites with 
less than 20 toxin measurements). These results are also reported in 
Section 3.5. 

3. Results 

3.1. Overall spatial distribution of Dinophysis toxin concentrations 

Estimates of f3(s) (see Section 2.2), which can be interpreted as the 
long-term average HAB toxicity, can be used to indicate persistent or 
frequently recurring blooms and can therefore inform decisions about 
suitable locations for shellfish farming away from these hotspots. Here 
we plot the estimates at the log-scale so that e.g. a location with a plotted 
value of 2 has an exp(2) ≈ 7.4 times higher mean toxin concentration 
than a location with a plotted value of 0. Fig. 1 shows the estimates for 
South-West England, while Fig. 2a shows Western Scotland and Fig. 2b 

shows Northern France. 
In SW England, Dinophysis HAB hotspots (highlighted in yellow) 

include shellfish production areas mainly for blue mussels (Mytilus 
edulis) and Pacific oysters (Magallana gigas) in Falmouth Bay and St 
Austell Bay to the west (Fig. 1). In Scotland, regularly recurring HAB 
hotspots are located in the relatively sheltered Clyde Sea and along the 
more indented NW coast (Fig. 2a), impacting mainly on the farming of 
blue mussels and Pacific oysters. 

Shellfish production sites in Northern France are depicted for the 
north and west coasts (Fig. 2b); HAB hotspots comprise wild beds, 
including offshore king scallop (Pecten maximus) beds in the English 
Channel, as well as embayments along the north and west coast, which 
contain wild and cultivated King scallops (Pecten maximus) and Queen 
scallops (Aequipecten opercularis), Pacific oysters and blue mussels. 

3.2. Seasonal variation in Dinophysis toxin concentrations 

A clear understanding of systematic seasonal variability, or in other 
words what we expect the average toxin levels in shellfish to be at 
different times of the year, is essential for developing a sustainable 
mariculture industry, i.e. for site selection and subsequent mitigation of 
HAB impacts through optimal harvest scheduling and supply chain 
management. Our models for Northern France, Western Scotland and 
SW England estimate the overall temporal (f1(t)) and seasonal signals 
(f2(d(t))) in Dinophysis toxin concentrations at a regional level for each 
country, as illustrated in Fig. 3. 

In all 3 regions, toxin concentrations indicate an increasing trend 
over the period 2012–2020, as shown by linear trend lines (solid lines). 
In SW England, each peak in the temporal signal was higher than the 
last, interrupted temporarily in 2017 when concentrations fell sub-
stantially (Fig. 3a). On average, mean toxin concentrations increased by 
4.2% year-on-year in Northern France, by 2.7% year-on-year in SW 
England, and by 2.9% year-on-year in Western Scotland, within the time 
period and areas covered by the data (Section 2.1, also see Section 2.3 
for details on computing year-on-year changes). Maximum toxin con-
centrations are recorded from all three data series in 2018. The 
seasonally averaged signals for Scotland and SW England are similar, 
displaying an approximately symmetrical shape with single peaks 
occurring around July-August, while the highest toxin concentrations 
for Northern France occur around June, followed by a further small 
increase/inflection in the Autumn (Fig. 3b). 

Fig. 4 examines space-season interactions (f4(s, d(t))) for Northern 
France, where the model shows that peak toxicity occurs in July along 
France’s Atlantic coast, while on the north coast of France the peak 
occurs later in the summer and early autumn. 

3.3. Assessing vulnerability of shellfish species for spatial planning 

The model described in Section 2.2 also estimates the average 

Fig. 1. Estimated spatial variation in log Dinophysis toxin concentrations in shellfish in South-West England. Symbols indicate location of shellfish sites and species 
monitored for Dinophysis toxins. 
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Dinophysis toxin concentration in different shellfish species relative to 
the average toxin concentration in blue mussels (Mytilus edulis). By 
considering both the point estimates and uncertainty (95% confidence 
intervals) shown in Fig. 5, we can draw tentative conclusions about the 
risks associated with the farming of different shellfish species. We only 
compared estimates for species with at least 200 data points in total 
across all regions. Several species exhibited similar average levels of 
intoxication to mussels, including Dog cockles (Glycymeris glycymeris), 
King scallops (Pecten maximus) and Queen scallops (Aequipecten oper-
cularis). Meanwhile, Manila clams (Venerupis philippinarum), Pacific 
oysters (Magallana gigas) and common cockles (Cerastoderma edule) in 
Northern France exhibited substantially lower average toxin concen-
trations than blue mussels. Both native Atlantic oysters (Ostrea edulis) in 
Scotland and abrupt wedge shell clams (Donax trunculus) in Northern 
France exhibited substantially higher average toxin levels compared to 
blue mussels. 

Estimating the relative Dinophysis toxin concentrations for different 
shellfish species provides the opportunity to assess the potential coun-
terfactual change in HAB intoxication risk associated with the farming of 
alternative species at existing sites. For example, for Antifer ponton 
pêche on France’s north coast, Dinophysis toxin concentrations in blue 
mussels, consistently exceeded the action level (160 μg/kg OA eq., 
requiring harvesting closure) between 2010 and 2018, often for a month 
at a time (Fig. 6). Our model suggests that, if it were feasible for Pacific 
oysters or common cockles to be farmed here instead, the toxin con-
centration, and consequently the risk of disruption to harvesting, could 
be substantially reduced (Fig. 6). Meanwhile, harvesting of abrupt 
wedge shell clams here could suffer from longer periods of enforced 

closure on average. 

3.4. Assessing the importance of factors contributing to HAB risk 

To assess the relative importance of the different functions that 
define the mean log-concentration μ (section 2.2), we can compute the 
percentage of the variance of the toxin measurements y explained by 
each term. For Northern France, the most important term was the spatial 
function f3 (21%), followed by the species effect (16%) – reflecting the 
wide variety of species being cultivated in France – and the space-season 
interaction f4 (12%). In SW England, the spatial function f3 was also 
most important (16%), followed by the space-season interaction f4 
(13%) and then the function of time f1 (12%) – the latter reflecting the 
significant interannual variability for SW England as seen in Fig. 3. 
Finally, in Scotland the spatial and space-season terms were tied as the 
most important (19% each), followed by the seasonal function f2(17%). 

3.5. Predicting HAB risk at unseen locations 

Models developed within our proposed spatiotemporal framework 
can be used to predict Dinophysis toxin levels at times and locations 
where no data is available, since the fitted smooth functions are 
continuous in space, time, and time of year. In general, we can predict 
average log-toxin concentrations for any date within the data period and 
for any new or existing location in terms of longitude and latitude. From 
these predictions, we can derive measures of HAB risk, such as monthly 
means, which can be interpreted in absolute terms or in relative terms, e. 
g. against average levels at existing harvesting locations. 

Fig. 2. Estimated spatial variation in log Dinophysis toxin concentrations in shellfish in (a) the west coast of Scotland and (b) the north and west coasts of France. 
Symbols indicate location of shellfish sites and species monitored for Dinophysis toxins. 

Fig. 3. Estimated (a) temporal and (b) sea-
sonal signals (plotted as shapes) in the mean 
(log) Dinophysis toxin concentration in shell-
fish in each study region (from the spatial/ 
main effects model), with 95% confidence 
intervals (shaded areas). Solid coloured lines 
are linear trend lines for each region. Note 
that (a) and (b) respectively show the sepa-
rated temporal and seasonal signals. One 
would have to combine these two effects to 
see the annual maximum and minimum toxin 
concentrations occurring at the expected time 
of year.   
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We assessed this capability by systematically excluding data for 
groups of harvesting sites and making out-of-sample predictions, 
following a 10-fold cross-validation procedure described in Section 2.5. 
As explained in Section 2.5, for an even comparison of performance 
across regions, we focussed on predicting harvesting site ‘toxicity’ ranks 
(in ascending order, as measured by mean toxin values in shellfish at 
each site), as an indicator of relative Dinoyphysis HAB risk. 

Fig. 7 shows scatter plots of observed versus out-of-sample predicted 
toxicity ranks for harvesting sites in each region. The closer points are to 
the black diagonal line, the more accurately their toxicity rank has been 
predicted. The predicted ranks correspond most closely with the 
observed ranks in Northern France (correlation 0.78, n = 203), with 
only a few sites far from the diagonal. In Western Scotland (correlation 

0.64, n = 69), most sites follow the diagonal quite closely, with a 
handful of sites far from the diagonal. In SW England, which had the 
least data and the highest percentage of <RL values, there is a weaker 
correspondence between predicted and observed ranks (correlation 
0.34, n = 22). 

Finally, we also assessed prediction of absolute Dinophysis HAB risk 
at unseen locations in Northern France, by comparing predicted versus 
observed mean (log) toxin measurements in shellfish at each harvesting 
site. A strong correspondence was seen between the predicted and 
observed site averages (correlation 0.82), not substantially worse than 
for prediction of seen sites in the model with all data included (corre-
lation 0.91, n = 118). 

Fig. 4. Estimated average (relative) Dinophysis toxin levels in shellfish in Northern France at different times of the year, from the spatiotemporal model for French 
Dinophysis toxin data. 

Fig. 5. Estimated species effect (variation in Dinophysis toxin concentrations across shellfish species) from the long-term spatial risk models for Northern France, 
Western Scotland, and South-West England. Effects are shown relative to the point estimates for blue mussels (Mytilus edulis) for each region. Points show point 
estimates and error bars show 95% uncertainty intervals. The size of the point relates to the number of unique observations for each species, separately for 
each region. 
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4. Discussion 

4.1. Spatiotemporal assessment of HAB risk for sustainable mariculture 
development and operation 

Better quantifying and predicting the risk of HABs intoxicating 
shellfish is valuable for the operation and growth of shellfish maricul-
ture. This paper describes and evaluates the use of data-driven ap-
proaches for making spatial and temporal predictions of HAB risk based 
on existing, standardised HAB monitoring data for shellfish production 
sites in Western Scotland, SW England and Northern France. The same 
approaches could be developed and applied elsewhere in Northern 
Europe, including Spain and Portugal and other key shellfish harvesting 
areas, which are plagued by Dinophysis HABs and subject to rigourous 
‘Official Control’ monitoring. 

Our spatiotemporal models predict average annual HAB toxin risk 
maps for a variety of shellfish species across established, new and data- 
poor sites. As marine aquaculture looks to expand, these spatial maps of 
average HAB risk could support marine spatial planning by identifying: 
a) recurring HAB hotspots versus lower risk areas and b) opportunities 
for optimisation of existing mariculture, through changes in farmed 
shellfish species (informed by the weight of evidence across regions) and 
seasonal harvesting schedules. 

Western areas in SW England sheltered from prevailing SW winds by 
headlands were shown to have greatest risk from Dinophysis spp.; these 
areas have also been shown to undergo rapid sea surface warming and 
prolonged thermal stratification during the summer (Pingree et al., 
1975; 1983; Brown et al. 2022). In contrast, shellfish sites in sea lochs 
with a southwest facing aspect along the Western coast of Scotland 
appear to be at greatest risk, due to the potential advection of Dinophysis 
HABs from offshore (Gianella et al., 2021). 

The French dataset showed earlier onset of Dinophysis blooms and 

elevated toxin levels in shellfish on the west coast compared to the North 
coast (reported previously by Belin et al., 2021) and highlighted higher 
toxin concentrations in certain shellfish species, such as the abrupt 
wedge shell clam (Donax trunculus) compared to mussels Mytilus spp.). 
Previously mussels have been found to accumulate higher levels of 
diarrhetic shellfish toxins (DST), including Dinophysis toxins, than other 
species when exposed to the same algal bloom conditions (reviewed in 
Blanco, 2018; Swan et al., 2018). Lower levels of Dinophysis toxin 
accumulation for example in Pacific oysters or common cockles, offers 
the potential to strategically target the cultivation and collection of 
alternative, lower risk species (Fig. 6). 

Much of the predictive power of our models stems from the inte-
gration of substantial (10–20 year) EU-standardised, national shellfish 
monitoring data. These extensive data sets are updated on a weekly (or 
bi-weekly) basis, allowing for continual model recalibration and assur-
ing the validity of spatio-temporal interpolations for marine spatial 
planning for mariculture. Retrospective analysis of data from the most 
recent decade (2012–2020) demonstrated year-on-year increases in 
mean Dinophysis toxin concentrations in shellfish of 4.2% for Northern 
France, 2.7% for SW England, and 2.9% for Western Scotland. This 
period has corresponded with climate warming. For example, in 2020, 
annual mean sea surface temperature in near-coast waters around the 
UK was 11.9◦C, 0.5◦C above the 1981–2010 long-term average. In the 
most recent decade (2011–2020), sea-surface temperatures have been 
0.7◦C warmer than the 1961–1990 average, and nine of the ten warmest 
years (in terms of near-coast sea-surface temperatures) have occurred 
since 2002 (Kendon et al., 2020). 

While our analysis does show increasing trends in all three regions, 
there is considerable variability between years, which makes it poten-
tially unwise to extrapolate them beyond the latest available data. In 
other words, although we can predict the location of HAB hotspots based 
on recurrences in the last decade, longer-term multi-decadal data may 

Fig. 6. Estimated mean toxin concentration at Antifer ponton pêche for different species (lines). Points show the observed concentrations from blue mussel samples 
and the horizontal dashed line shows the toxin threshold above which harvesting is shut down. 

Fig. 7. Predicted versus observed rank of out-of-sample (unseen) harvesting sites by mean Dinophysis toxin measurement in shellfish, for each region, from the 10- 
fold cross-validation experiment. 
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be required to more confidently project trends into the future and 
confirm the causal factors which drive HABs. At the same time, however, 
we should remain conscious that an increasingly deep historical record 
won’t necessarily alert us to future regime changes. For example, there 
have been notable increases in the occurrence of HABs following major 
hydroclimatic regime shifts, such as the North Atlantic Oscillation 
switching abruptly (NAO+) and generating stronger westerly winds and 
milder, wetter winters since the mid-1980s in the North-East Atlantic 
and North Sea (Gobler et al., 2017; Raine et al., 2008; Drouard et al., 
2019). 

4.2. Scope for improving spatio-temporal risk assessment for HABs 

Optimising spatio-temporal predictions of HABs is important for 
marine spatial planning for mariculture, particularly for low biomass 
HABs such as Dinophysis spp., whose progression is difficult to track by 
traditional microscopic methods or by high resolution Earth observation 
systems (Caballero et al., 2020). Our regional spatio-temporal models 
provide a good indication of spatial and temporal trends for Dinophysis 
toxin concentrations across routinely monitored shellfish production 
sites in Western Scotland, SW England and Northern France. Additional 
monitoring points would be beneficial and could be focused on likely 
HAB hotspots (e.g. southwest facing coastal areas of NW Scotland, which 
are more likely to intercept wind-advected blooms). It is equally 
important to obtain monitoring data for low-risk areas with contrasting 
bio-geographies and ecological niches, to confirm their potential suit-
ability for shellfish farming. Our data-driven models could be further 
refined by accounting explicitly for climate variation (e.g. with latitude) 
and hydrodynamic factors (e.g. coastal circulation, mixing and upwell-
ing), which differentiate regions and shellfish production sites within 
them. 

Environmental factors could also be incorporated explicitly in the 
selection of shellfish fish for cultivation in a particular area, in addition 
to modelling the comparative uptake of HAB toxins across different 
shellfish within predefined regions (as illustrated here). After all, local 
hydrographical, water quality and climate-related conditions will ulti-
mately govern the suitability of sites for shellfish cultivation. 

Further development and refinement of our spatio-temporal model 
could include more detailed resolution of coastal boundary effects. 
Spatial structure is currently defined in our model by assuming space is a 
continuum, whereas for example sites either side of a peninsula may 
actually be more dissimilar than suggested by their Euclidian distance. 
Taking into account the land boundary and other geographical features 
could result in more reliable predictions when spatially interpolating 
and extrapolating, noting that the current models can produce strange 
estimates when predicting over land or far into the sea. Accounting for 
realistic structures could be achieved by using more sophisticated 
splines, such as soap film smoothing functions (Thompson et al., 2017), 
or by considering water depth as a covariate. 

4.3. Scope for improving data acquisition for HAB risk assessment 

Improving the spatial and temporal coverage of monitoring data for 
HABs and the detection of HAB toxins in shellfish (including detection 
levels) will clearly benefit data-driven modelling of HAB risk. This was 
demonstrated by data for SW England, which had fewest data points and 
the highest percentage of <RL values for Dinophysis toxin concentrations 
and showed far weaker correlation between out of sample predicted and 
observed ranks of toxin concentrations for harvesting sites in the region 
(Spearman’s ρ=0.34, n=22), compared to Western Scotland (ρ=0.64, 
n=69) and Northern France (ρ=0.78, n=203). Moving towards more 
proactive and wider monitoring data collection to feed data-driven HAB 
models such as ours, currently relies on labour intensive manual sam-
pling (e.g. weekly sampling) and highly skilled microscopic analysis of 
HAB cell counts, and chemical analysis of HAB toxin concentrations in 
shellfish which may not be feasible in every country. Nevertheless, there 

are several avenues for improving data collection to benefit HAB risk 
assessment. First, resolution of Dinophysis bloom dynamics could be 
improved by acquiring real-time data from in situ sensors capable of 
quantifying changing HAB toxin concentrations and HAB species 
abundance via automated algal cell imaging, cytometric or molecular- 
based methods (McPartlin et al., 2017; Bickman et al., 2018; Scholin 
et al., 2018; Guo et al., 2021). So far, only a limited number of real-time 
monitoring systems have been implemented in national or regional HAB 
surveillance programmes: NOAA’s HAB operational forecast system for 
the Gulf of Mexico (Campbell et al., 2013; NOAA, 2017); the Autono-
mous Ocean Sampling Network including Monterey Bay (Scholin et al., 
2018), the Gulf of Maine (Anderson et al., 2019), and the Hong Kong 
coast (Yamahara et al., 2019). There is huge scope to expand and 
advance HAB monitoring systems, but this work should be undertaken in 
tandem with the advancement of data-driven models, which can help to 
optimise data collection in time and space, to fill critical data gaps (e.g. 
for mariculture development sites that are potential HAB hotspots) and 
to exploit these data for forecasting and helping to mitigate the risk of 
HAB impacts on mariculture. 
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