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Digital twins (DT) are simulation models that so closely replicate reality in their behaviour that experts may believe
model output to be real. Plankton offer worthy yet tractable biological targets for digital twinning, due to their relatively
simply physiology and significant role in ecology from theoretical studies through to planetary scale biogeochemistry.
Construction of dynamic plankton DT (PDT), representing a supreme test of our understanding of plankton
ecophysiology, would form the basis of education and training aids, provide platforms for hypothesis setting/testing,
experiment design and interpretation, and support the construction and testing of large-scale ecosystem models and
allied management tools. PDTs may be constructed using concepts from systems biology, with system dynamics,
including feedback controls akin to biological (de)repression processes, to provide a robust approach tomodel plankton,
with flexible core features enabling ready and meaningful configuration of phenotypic traits. Expert witness validation
through Turing Tests would provide confidence in the end product. Through deployment of PDTs with appropriate
input controls and output (visualization) tools, empiricists are more likely to engage with modelling, enhancing future
science and increasing confidence in predictive operational and also in long-term climate simulations.
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INTRODUCTION

Simulations provide a tool to test understanding and
explore “what-if ” scenarios. The ultimate simulation
model would provide a digital twin (DT) of reality (Wright
and Davidson, 2020). DTs are typically exploited in
some form of decision support tool (DST), with various
branches of science and business relying heavily on such
approaches (Cimino et al., 2019; Erol et al., 2020; Liu
et al., 2021; Phanden et al., 2021; Shao and Helu, 2020;
Tao et al., 2019). For ecological and climate change
science, simulation models are the only tools available
(Bauer et al., 2021) but ecological applications of DTs
(Nativi et al., 2021) remain a developing arena (Blair,
2021). Here, we consider digital twinning of plankton
for research and management applications in freshwater
and marine systems. To aid the reader, Table I provides
definitions for technical terms.
Plankton research is a sprawling discipline involving a

myriad of organisms, very few of which are understood
in any detail, living and interacting in a complex 3D
environment. Much effort is directed to identification of
organisms, where they are and, critically, what they are
doing. Molecular biology cannot provide detail on what
they are doing (Liu et al., 2017; Strzepek et al., 2022);
determining contributions of plankton to different pro-
cesses (McLeod et al., 2021; Ozaki et al., 2019) requires
knowledge of rate processes with numeric modelling to
contextualize those rates. We need to bring information
from biochemistry and ‘omics together with simulation
modelling to progress, helping us interpret empirical data
(Westerhoff et al., 2009; Figs 1 and 2). Digital twinning
provides a focus for such developments.
While simulation models should by definition repli-

cate reality, plankton models are typically extremely
simplistic. Most conceptual cores date from the 1960’s
to 1990’s (Droop, 1968; Shuter, 1979; Fasham et al.,
1990; Evans and Garçon, 1997; see Anderson and
Gentleman, 2019), with interactions between laboratory
and field studies (Fig. 3). Most enhancements have been
focussed on (Pahlow and Oschlies, 2009; Smith et al.,
2016), or dominated by (Cael et al., 2021; Follows
et al., 2007; Lindemann et al., 2017), phytoplankton
models. Piecemeal developments have carried risks of
reusage of equations without verifying that they remain
appropriate for the task at hand (Smith et al., 2014;
e.g. coupling N and P ignoring associated physiolog-
ical interactions—Flynn, 2008; Pahlow and Oschlies,
2009; Sharma and Steuer, 2019). Grazers continue to
be described using inappropriate approaches viewed
through the lens of zooplankton ecophysiology (Everett
et al., 2017; Flynn et al., 2021; Mitra et al., 2014).
Descriptions of bacteria, viruses and mixoplankton are

conspicuous by their absence (Glibert and Mitra, 2022;
Mateus, 2017).
An expert in empirical plankton science would have

little trouble locating questionable aspects of a model out-
put claimed to represent a particular planktonic system,
which raises concerns as to the veracity of science stem-
ming from those outputs. Plankton theoretical ecology
also exploits models far removed from conforming to a
DT; the extreme simplicity facilitates the establishment
of analytical solutions, bifurcation and tipping points,
etc. (Cuesta et al., 2018; Song et al., 2020). While not
necessarily meaning that the emergent theory is flawed,
if the concept had been explored using DTs, then it
would be more robust set against real world expectations.
Similar arguments run for ocean simulators; plankton
sub-models, each individually that fail objective testing,
do not necessarily mean that the ocean simulation fails,
but if the components are questionable, then so must also
be the product of those components. To become more
credible, plankton models need to improve and strive to
become DTs.

THE CORE OF THE PLANKTON DT

Organisms show great diversity but they are based on
components sharing great commonality. A DT could
exploit such modularity, enabling phenotypic features to
be readily modified without requiring a radical rebuilding
for each plankton model. This is akin to an engineering
space-frame concept, where structures are easy to adapt
with limited risk of critical failure. In contrast, most
plankton models are akin to monocoques—lightweight
efficient structures that are difficult to repurpose without
radical redesign.
Systems biology concepts provide an obvious basis for

developments, describing biological processes in a holistic
(rather than a reductionist) fashion (Voit, 2013), from
molecular biology through to whole organism physiology
including models (Fig. 1). All systems biology applications
have coarse-grain components (related to features such
as stoichiometry; Inomura et al., 2020), with fine-
grain detail only for explicit descriptions of individual
processes, enzymes, metabolites, etc. (Sharma and Steuer,
2019). Interactions between physiological modules are
achieved via feedback and feed-forward mechanisms
akin to those mediated in reality by (de)repression
processes (Flynn et al., 2015), which may be aligned
with metabolomic signatures. Such signatures in vivo

provide measured responses to stimuli providing robust
models in silico (Fasham et al., 2006; Flynn et al., 1997;
Mitra and Flynn, 2007). In contrast, most plankton
models exploit passive equilibrium optimization controls
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Table I: Definition of terms used in this work (terms in italics are defined elsewhere in the table)

Term Explanation

Decision Support Tool

(DST)

A framework, often supported by outputs from a computer programme, to optimize a management or other

operational strategy. DSTs may be as simple as a look-up table or decision tree, or as complex as a DT enabling

near-real-time analysis of options.

(de)repression A biological control mechanism, usually involving feedback, through which physiological (biochemical,

behavioural) processes are modulated by being gradually enabled (de-repressed) or disabled (repressed).

Digital Twin (DT) An in silico representation of reality that may range from being static (e.g. geological structure) through to highly

dynamic (aircraft in flight). Dynamic versions are often associated explicitly or implicitly with a Decision Support

Tool to guide an intervention. DTs may be differentiated from a simulation model by the presence of an interface

to enable a non-specialist to interact with the model and to explore features beyond the data originally used in

model validation in a predictive or “what-if?” mode, perhaps in real time.

Dysfunctionality Behavioural trait of a model that is contrary to expectation, as distinct from being absent through simplification

(as per Flynn, 2005, 2010).

Dunning-Kruger effect Cognitive bias that leads to an overestimation of one’s ability.

Empirical Based on observation (e.g. field, laboratory) rather than through theory or logic. Empirical data may be subject to

subsequent transformations or manipulations based upon theory or logic, but the data are not synthetic as

generated by a model.

Expert Witness

Validation (EWV)

A means to validate the performance of a numeric model by exploiting a form of Turing Test, asking of experts in

the real world system “does this model output so-closely resemble reality that you could be fooled by it?” EWV

minimizes the risks of over-fitting by explicitly considering the full breadth of phenomenological understanding.

Grain Level of detail; fine grain for systems biology may describe individual biochemical processes, while coarse grain

may refer to elemental stoichiometry.

Model A simplification of reality, ranging from abstract to physical, static to dynamic, including mathematical constructs

from statistical fits to numeric models that may be hypothetical, through to simulations and DT . Data generated

by a mathematical model are synthetic rather than empirical.

Numeric model A mathematical model that uses a complex series of equations, often involving differential calculus to described

events changing over time as used in simulations.

‘omics Molecular biological suffix (e.g. genomics, transcriptomics, proteomics, metabolomics) of terms for biological

molecules that characterize organismal structures and functions.

Over-fitting A consequence of fitting or tuning a model (especially a statistical model) that, because it describes a particular

data set too closely, is then unable to reproduce the general case.

Simulation (model) The output of a numeric model that provide an approximation of a real world process at least over the conditions

under which it was validated (cf. DT , validation).

Systems biology Computational analysis and modelling of complex biological interactions using a holistic approach (e.g. with

explicit inclusion of (de)repression feedbacks), rather than the traditional reductionist approach of modelling in

which simplification is a dominant feature.

System dynamics A modelling approach characterized by feed-back, feed-forward interactions developed for simulating especially

complex numeric data-poor situations.

Technology Readiness

Level (TRL)

A grading of maturity in technology development, ranging from TRL1 (basic research), via TRL5 (technology

development/demonstration) to TRL9 (mature and fully operational); see Fig. 4 for an example.

Tuning Optimizing the fit of (minimizing differences between) model output and external (usually real world) data series

by the modification of parameters or constants present in the model equations. cf. validation.

Turing Test A test of a machine’s (computer programme’s) ability to exhibit a level of intelligent behaviour similar to, and

thus indistinguishable from, that of a human (Turing, 1950). cf. EWV .

Validation A means of determining the veracity of a model output against external (usually empirical numeric) data series

independent from those data used for tuning or optimisation. Often there are very few data available once those

used for tuning have been excluded. See also EWV .

(Armstrong, 1999; Geider et al., 1998; Grossowicz et al.,
2017), which do not lend themselves readily to the control
of multiple resources (Elrifi and Turpin, 1985; Harrison
et al., 1976) and can cause problems in simulating the
dynamics of those interactions (Flynn et al., 2001).

MODELING CHALLENGES

Inevitably, the extra fidelity of a DT incurs additional
computational costs, while the increase in parameters
ostensibly available for tuning may raise fears that
model performance is compromised through over-fitting

(Hellweger, 2017). However, with care, the state variable
count can be minimized and overfitting is not such
an issue for systems biology models as responses are
constrained by explicit feedbacks. Thus, in the light-N–
Fe interaction, phytoplankton model of Fasham et al.
(2006), a medium-coarse-grain, systems biology model
contrasting strongly with traditional crude phytoplankton
description typified by Fasham et al. (1990), very few of
the parameters notionally available actually warranted
tuning.
While a fundamental feature of real life is the

individual, most models of plankton are biomass based
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Fig. 1. Relationships between molecular biology (‘omics), physiology
and biochemistry, and simulation models. Alignments between these
facets of biology are in the horizontal plane; thus, genomics aligns
with DNA, which if included explicitly in models would constitute state
variables (i.e. parameters with history).More often physiological features
are controlled in models via constants encoding potential traits with
fixed parameterization. Rates in models are calculated intermediaries.
Note the lack of overlap between ‘omics and the rate processes that
dominate much of physiology (Liu et al., 2017; Strzepek et al., 2022)
and that also align with features of simulation models. Systems biology
provides an interface across these three approaches.

Fig. 2. Potential interactions between molecular biology, laboratory
experimental and ecological ecophysiology, and the ultimate simulation
model for plankton, the plankton DT. Ecology is an emergent function
of biology and abiotic conditions. The linkage from ‘omics to DT is
most likely via ecophysiology, for support of the conceptual base of the
twin; ‘omics do not readily provide information on physiological rate
processes’ (Strzepek et al., 2022). See also Fig. 1 for interactions between
these facets and Fig. 3 for placement in a historic context.

(Butenschön et al., 2016), with organism abundance
calculated assuming a set biomass per individual. While
studies of microbial cell–cell interactions could be studied
in a digital laboratory with direct empirical insight
from nanoSIMs technology (Pett-Ridge and Weber,
2021), pragmatically a routine use of individual based
models (IBMs) describing millions of individual plankters
L−1 may not be possible or necessary (cf, Lindemann
et al., 2015). Agent-based model (ABM) formats, where

Fig. 3. Schematic for the development of ecosystem-facing plankton
models. Conditions and biological composition at field sites inform field
and laboratory studies (i). Information and data, from laboratory studies
(ii), together with generic biochemical and physiological understanding
(iii), enable the construction and testing of models describing the phys-
iology (autecology) of organisms, and thence coupled models of simple
trophic systems. Information flows (ii) from experimental to modeling
research; in silico experiments may aid further rounds of laboratory
studies. First-generation (1G) ecosystem models (typified by Fasham
et al., 1990) contained much-simplified representations of the abiotic
system (iv), together with very simple models of the biota configured
from biological rules, (v) developed from general and theoretical princi-
ples, with some concepts developed from physiological models (vi), and
data such as maximum growth rate estimates from laboratory studies
(vii). Current, second-generation (2G), ecosystem models (viii) contain
greatly enhanced abiotic descriptions, with some level of enhanced
biotic description stemming from physiological models (ix) or from
biological rules such as trait-trade-off assumptions (x). Development
of DT (xi), exploiting systems biology approaches linked to molecular
biology, tested in digital laboratories (which also provide a platform for
theoretical biology and ecology science) provides the core planktonmod-
els for future (third-generation, or 3G) ecosystem models. Developed
from Flynn and McGillicuddy (2018).

subpopulations of individuals are assumed to be in
physiological and behavioural synchrony (Scheffer
et al., 1995), are more plausible; these could still have
explicit state variables for organism abundance (No

L−1) with allometry. For organisms with complex life
cycles (including resting stages and diseased individuals),
ABMs are more likely required to justify a credible
DT label. Conceptually more challenging, can a DT
be made of a Plankton Functional Type (PFT), an
ecologically valid grouping (Gitay and Noble, 1997) of
taxonomically disparate organisms? Pragmatically, large-
scale simulators must operate using PFTs (Hashioka
et al., 2013). A useful activity would be to run plankton
DTs of multiple species/genus in a digital laboratory
to generate high-resolution data (that could never be
collected in the real world) against which we could test the
consequences of groupings plankton species in different
ways.
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Introducing physiological detail for a DT may be con-
sidered a high-risk/low-reward exercise, and possibly as
detrimental (Mitra et al., 2007); the inertia in continuing
with what (sort of) works may be overpowering. The
Dunning-Kruger effect may also operate with the sub-
ject arena dominated by researchers who, for whatever
reason, fail to recognize that their models do not give
appropriate descriptions of reality.Models have improved
slowly. Well known as being incompatible with phyto-
plankton physiology (Geider and LaRoche, 2002) and
trophic dynamics (Flynn, 2010; Sterner and Elser, 2002),
the gradual rejection of Redfield ratios (Redfield, 1958)
to an acceptance of variable stoichiometry in models has
taken decades. Introducing planktonDTsmay experience
similar levels of resistance; the ultimate driver will be the
demand for improved credibility by stakeholders.

THE ROLE OF THE EXPERT WITNESS

Determining how well a biological model performs is
a major challenge (Brodland, 2015), a judgment call
usually made by few anonymous scientists who are almost
inevitably fellow modellers. An obvious challenge in
building plankton DTs is the lack of suitable numeric
data, and interpretating available data appropriately
(Flynn et al., 2018). For organisms of biotechnological
interest (Al-Hoqani et al., 2017; Butler et al., 2020),
significant amounts of information may be available,
although these organisms are often poor exemplars for
plankton (Sabir et al., 2018). We need to engage the
plankton scientists who are best placed to judge whether
or not, for example, the “diatom” in an ecosystem
model is indeed representative of any or all species of
diatoms.
Much information is held at a phenomenological level

by scientists we term, “expert witnesses.” Any attempt
to produce a plankton DT requires buy-in from these
expert witnesses. This commences with explaining the
structure of models to that audience. Some form of code-
of-conduct, standardization, in describing models may
help, not just to support modelling (Grimm et al., 2006),
but specifically to aid engagement with empiricists.
Exploitation of expert witness knowledge can proceed

in two steps:

1) Detailed expectations can provide an initial check of
model conceptual basis and behaviour, ensuring it
conforms to a given plankton type without dysfunc-
tionalities (Flynn, 2010).

2) Testing of the model by experts of the real-world sys-
tem. This exploits an approach akin to the Turing Test
(Turing, 1950), in which expert witnesses verify that the
model behaves in a way that they find convincing.

For (i), as no DT could ever twin 100% with real-
ity, some form of grading system may help, weighted
for the importance of each characteristic in defining
that organism’s ecophysiology. A level of objectivity and
also subjectivity is required, acknowledging the variability
in nature needs to be reflected in how models behave
(Irigoien, 2006) and that it is (to quote Keynes) “better to
be roughly right than be precisely wrong”. The traditional
notion of models only being used to answer the question
posed at their inception (Yates et al., 2018) is far less likely
to be applicable, or acceptable, with a DT.
Performing task (ii) requires a modelling platform with

which the empiricist expert can readily interface, using
some form of digital laboratory. Such an approach is not
uncommon in hydrodynamic modelling, where known
dynamical behaviours are tested against idealized sce-
narios (Penven et al., 2006; Debreu et al., 2012; Ilıcak
et al., 2012). A graphic user interface (GUI), needing no
intimate understanding of computer coding nor direct
access to specialized computing facilities, could make
use of drop-down menus or sliders to select between
parameter options. It would need to operate in units that
an empiricist recognizes (invariably for plankton research,
that includes numeric abundance).
The output display also needs consideration. Many

plankton scientists never see clearly what they study;
images of organisms below ca. 0.5 mm (most plankton
are <0.05 mm) often lack well-defined physical features.
Accordingly, plankton presence and activity are typically
viewed in abstract form, via graphs. However, the greater
realism of a DT likely demands a greater range of plots
available from a user-friendly GUI. Gamification plat-
forms could provide direct visualization of differences
between plankton types and their interactions, recogniz-
ing the disproportionate importance in both biomass and
productivity related to size (Finkel et al., 2010; Hansen
et al., 1997). For example, diatoms are often placed in
models as a single functional type (cf. Xu et al., 2020),
despite their linear size range exceeding ca. 5—200 μm;
it is unlikely such an anomaly would be easily ignored if
the graphic display was more in keeping with the data
type (Steenbeek et al., 2021).
Given the ease with which computer graphics can

persuasively misrepresent reality, perhaps we also need to
make it clear when models are “inspired by true events,”
rather than aspiring to a DT standard.

A ROAD MAP

The simplest applications of plankton dynamic DTs
would describe a single microbe clone growing in a flask,
replicating a classic wet laboratory setup, as a digital
laboratory. Repeated and then combined for several
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Fig. 4. Technology Readiness Level (TRL) schematic for DT develop-
ment. For plankton DTs, expert witness validation, provided by those
with empirical knowledge of the real system, is required throughout
the process, ensuring the original concept design of the plankton model
aligns with the deployment aspiration (TRL1/2), checking (validating)
functionality at each development point, and contributing to design of
the operator interface to produce the final product (TRL9). Progress
fromTRL1 to TRL6may be restricted by a lack of appropriate data and
understanding (see Fig. 2), which will become apparent only through
attempting to develop the DT. This should not hinder initial efforts as
the product will be subjected to revisions as science advances. Likewise
TRL6–8 (operator interface) will undergo cycles of revision in response
to user feedback, and will likely include instruction manuals and allied
explanatory materials, disclaimers and caveats for deployment.

species, simple food-webs could be constructed in a digital
mesocosm exploiting a suitable GUI. Plankton models
individually accepted as DTs could then be operated
together within more expansive physical descriptions,
perhaps based on a representation of a cubic meter in a
Lagrangian framework relatable to a limited geographic
location, such as an oligotrophic gyre. Beyond that
step, simulations would more likely operate using high-
performance computers with more complex interfaces,
but they would at least be conducted using descriptions of
plankton that are themselves each considered (validated)
as being well founded.
How far down the line are we with all of this? For

biochemistry and physiology (autecology) of individual
microalgae for commercial uses and allied DSTs (Flynn,
2021; Sharma and Steuer, 2019), we are perhaps at rela-
tively high technology readiness levels (TRL, 5–9; Fig. 4).
Building from these, at least for laboratory exemplars
of plankton (e.g. Dunaliella, Isochrysis, Oxyrrhis), we could
achieve TRL 4–7. The situation is rather different when
we consider plankton DT applications within local, basin,
or global scalemodels (TRL1,2?), and thence formanage-
ment and planning (TRL1,2?). There are various barriers
to overcome in implementing radical changes to Earth-
system type of models, but this is where the real prize
lays, and arguably for political and environmental reasons
also where the application of planktonDTs is most impor-
tant. Satisfying desires to better interface scientists with

policy makers and managers through exploiting models
(Weiskopf et al., 2022) also requires modelling tools that
are easily used and understood, and indeed also criticized.

CONCLUSIONS

We all need to have confidence in models used to guide
management and the making of political decisions, as
evidenced during the SARS-COV-2 pandemic (Eiken-
berry et al., 2020; James et al., 2021). The experience of
the authors suggests that empirical plankton scientists
may often not trust plankton models to represent
reality in a useful way. Reasons for this situation are
complex but building DTs by involving empiricists would
improve that situation. A readily operable DT, in an
appropriate technological or ecological setting, would
represent a major breakthrough in plankton research, one
that brings together knowledge (Figs 1–3) for emergent
understanding, and one that highlights scope, and the
need, for new research. Until ecology-facing funders are
convinced of a need for DTs, progress is likely to be
slow (noting, however, that the United Nations “Digital
Twins of The Ocean” aspires significant progress during
this decade—https://ditto-oceandecade.org/). However,
as empiricists are required to actively engage with the
building of plankton DTs, it is also likely that once
started there will be a level of positive feedback across
the science area to promote further development. We
all learn much by mistakes, but we need first to see
and recognize those mistakes; the bringing together of
empiricists and modellers in dialogues that have long
been recognized as lacking (Anderson, 2005; Everett
et al., 2017; Flynn, 2005) in the attempt to build DT
will at the least reinvigorate our science to the benefit of
us all.
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