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Abstract
Kelp forests are extensive, widely distributed and highly productive. However, despite their importance, reliable estimates 
of net primary productivity (NPP) are currently unknown for most species and regions. In particular, how performance and 
subsequent NPP change throughout a species range is lacking. Here, we attempted to resolve this by examining growth and 
performance of the boreal kelp, Laminaria digitata, from range centre and trailing edge regions in the United Kingdom. Dur-
ing the peak growth season (March/April), range-centre individuals were up to three times heavier and accumulated biomass 
twice as fast as their trailing-edge counterparts. This was not apparent during the reduced growth season (August/September), 
when populations within both regions had similar biomass profiles. In total, annual NPP estimates were considerably lower 
for trailing-edge (181 ± 34 g C m−2 year−1) compared to range-centre (344 ± 33 g C m−2 year−1) populations. Our first-order 
UK estimates of total standing stock and NPP for L. digitata suggest this species makes a significant contribution to coastal 
carbon cycling. Further work determining the ultimate fate of this organic matter is needed to understand the overall contribu-
tion of kelp populations to regional and global carbon cycles. Nevertheless, we highlight the need for large-scale sampling 
across multiple populations and latitudes to accurately evaluate kelp species’ contributions to coastal carbon cycling.

Introduction

Macroalgae (i.e. kelps and other seaweeds) underpin some 
of the most extensive and productive coastal ecosystems 
globally (Mann 1973; Smith 1981; Duarte and Cebrián 
1996). Many macroalgal species, including most kelps, 
exhibit high rates of productivity and rapid biomass turno-
ver, with growth values of up to 2–4% of standing bio-
mass per day (Reed et al. 2008). However, unlike other 
coastal macrophytes (e.g. seagrasses, mangroves and other 
halophytes), macroalgae grow attached to hard substrata 
(rather than within sediments) and as such do not allocate 
biomass to ‘below ground’ storage (Duarte 2017). Conse-
quently, the vast majority of biomass accumulation (gener-
ally > 80% of production) is released as particulate organic 
matter, or detritus, which represents an important trophic 
resource for bacteria, suspension feeders and detritivores, 
and enhances trophic connectivity in coastal marine eco-
systems (Kaehler et al. 2006; Krumhansl and Scheibling 
2012). Moreover, emerging evidence suggests a significant 
proportion of macroalgal detritus may be sequestered in 
carbon sinks (up to 25%, see Krause-Jensen and Duarte 
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2016), such as coastal sediments and the deep sea (Chung 
et al. 2011; Hill et al. 2015; Krause-Jensen and Duarte 
2016; Filbee-Dexter et al. 2018; Krause-Jensen et al. 2018; 
Ortega et al. 2019; Queirós et al. 2019). In light of this, it 
has been argued that macroalgae should be incorporated 
into blue carbon assessments (Duarte et al. 2013; Hill et al. 
2015; Sondak and Chung 2015; Trevathan-Tackett et al. 
2015; Smale et al. 2018; Macreadie et al. 2019). Despite 
the fundamental role that macroalgae, and kelp species 
in particular, play in coastal carbon cycling, reliable esti-
mates of carbon fixation (i.e. productivity) are currently 
lacking for most species and regions (Reed and Brzezinski 
2009).

Understanding the role that kelp species play within 
local and global carbon (C) cycles requires quantification 
of primary production rates under different environmental 
conditions and throughout a given species’ range, to elu-
cidate regional differences in demographic performance. 
The “Abundant-Centre Hypothesis” (ACH) (also known as 
“centre-periphery” or “central-marginal” hypotheses) is a 
common paradigm in biogeography. The ACH assumes con-
ditions are optimal at the range centre and become increas-
ingly less favourable toward the periphery (Hengeveld and 
Haeck 1982; Brown 1984), which results in a reduction 
in genetic diversity, performance and abundance at range 
margins. However, meta-analyses have revealed that there 
is often little empirical support for the ACH challenging 
its generality across species (Sagarin and Gaines 2002; 
Dallas et al. 2017; Pironon et al. 2017) and to what extent 
kelp species conform to the ACH is largely unknown. On 
the one hand, the high degree of local adaptation observed 
for some marine macrophytes may maintain performance 
throughout a species range (see King et al. 2018a, b). On 
the other, stressful abiotic (e.g. temperature) and ecological 
(e.g. inter-specific competition) conditions and subsequent 
reduced genetic diversity may impair performance (Eckert 
et al. 2008; Viejo et al. 2011; Smale and Wernberg 2013; 
Straub et al. 2019; Wernberg et al. 2018).

The latitudinal distributions of kelp species are strongly 
constrained by temperature (Eggert 2012) and, as such, 
they are influenced by contemporary and near-future ocean 
warming trends (reviewed by Smale 2020). Assuming no 
local adaptation or plasticity, climate-driven poleward range 
shifts may result in considerable losses of standing biomass 
and reduced rates of primary productivity from any given 
species’ trailing edge (Wernberg et al. 2016; Arafeh-Dalmau 
et al. 2019). Moreover, rising temperatures will likely impact 
performance throughout the entire species range, with cur-
rent ‘cold’ populations likely to function similarly to current 
‘warm’ populations over the coming decades (Pessarrodona 
et al. 2018). As such, determining how kelp performance 
varies between populations and across latitudes is a prereq-
uisite to understanding how the capture and flow of carbon 

through temperate reef ecosystems systems may change in 
the future.

Rocky coastlines in the northeast (NE) Atlantic region 
are dominated by kelp forests, which are thought to make a 
substantial contribution to coastal primary production (Jupp 
and Drew 1974; Kain 1979; Pessarrodona et al. 2018; Ped-
ersen et al. 2020). However, the current state of knowledge 
on the dynamics of NE Atlantic kelp forests is limited, as 
they have been chronically understudied compared to some 
other temperate regions (Smale et al. 2013). Laminaria digi-
tata (Hudson) J.V. Lamouroux is a cool boreal kelp with a 
transatlantic distribution. In the NE Atlantic, it is distrib-
uted from the Arctic to the English Channel and is predicted 
to undergo a poleward range contraction over the coming 
decades (Raybaud et al. 2013; Assis et al. 2018). Here, we 
compared the performance of L. digitata in two thermally 
distinct regions in the United Kingdom (UK) representing 
trailing edge and range centre populations, during periods 
of maximum and minimum productivity. Our overall aim 
was to quantify primary productivity rates for L. digitata in 
the UK and to explore more generally to what degree this 
species conforms to the ACH.

Methods

Survey design

Here, we aimed to characterise how L. digitata’s perfor-
mance changes between sites at its range centre (RC) and 
trailing edge (TE). Sampling across large geographical 
scales and attributing differences to particular variables is 
challenging as many local factors can affect performance 
and obscure regional patterns. To address this, we picked 
sites that were similar in local environmental factors so that 
we could attribute changes to either temperature or light that 
co-vary with latitude.

Following a nested design, we chose three sites at L. 
digitata’s range centre and three at its trailing edge (Fig. 1). 
Based on neutral markers and common garden temperature 
stress assays, King et al. (2019) showed there is little gene 
flow between these regions and trailing edge populations 
may represent distinct thermal ecotypes. Mean annual sea 
surface temperatures within the RC region are ~ 2.3 °C lower 
than those within the TE region. These regional temperature 
differences become more apparent in summer where dif-
ferences between regions are ~ 3.3 °C (Table 1). To mini-
mise local effects of wave exposure on kelp performance 
and morphology (Gerard and Mann 1979; Blanchette et al. 
2002; Fowler-Walker et al. 2006; Millar et al. 2019) only 
fully exposed shores were selected. Wave exposure was 
measured using log wave fetch derived from summing fetch 
values calculated for 32 angular sectors surrounding each 
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study site (see Burrows 2012). Flow rates were greater at 
trailing edge sites but all still represented low flow sites for 
L. digitata (< 0.4 m s−1; see Millar et al. 2019). Nutrients 
were not directly measured but UK coastlines are not char-
acterised by major upwelling regimes and nutrients do not 
vary greatly with latitude (Painting et al. 2013). Moreover, 
previous studies have shown no significant difference in 
nutrient concentrations between our study regions (Smale 
et al., 2016; Pessarrodona et al. 2018). 

Growth rates of L. digitata exhibit pronounced season-
ality, with a period of rapid biomass accumulation occur-
ring from February to June, followed by a period of reduced 
growth from August to January. This pattern coincides with 
regeneration of nutrients in spring and their depletion in 
summer and is triggered by changes in photoperiod (Kain 
and Jones 1969; Davison and Stewart 1984) and onset of 
fertility (Buchholz and Lüning 1999). During summer, pho-
tosynthetic products are stored as carbohydrates, which are 
later remobilised as new growth is initiated in the spring 
(Schaffelke and Lüning 1994). Therefore, surveys were 
conducted during peak growth, March–April (2015), and 
reduced growth, August–September (2015), periods to 
encompass the different phases of biomass accumulation in 
L. digitata (Table S9).

Measuring individual performance

Population demographics: Kelp density was quantified 
at each site by haphazardly placing eight 1 m2 quadrats 
within the kelp forest and recording the number of mature 
individuals (defined as dominate space occupiers with 

Fig. 1   Sampling sites for Laminaria digitata. Shaded area indicates 
approximate distribution of L. digitata in UK, Ireland and France. RC 
range centre, TE trailing edge
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a stipe length > 30 cm). Sampling was conducted in the 
middle of the L. digitata zone (~ 0.5-0.8 m above chart 
datum) during periods of low tide emersion. Due to logis-
tical challenges, it was only possible to obtain density 
data during sampling in the peak growth season. How-
ever, L. digitata is a perennial species, persisting for up 
to ~ 6 years, and seasonal surveys conducted on other UK 
populations have shown that densities are relatively stable 
throughout the year (Hereward et al. 2018). Morphologi-
cal and biomass estimates were taken for ~ 20 individuals 
at each site. Note: these are the same individuals used for 
growth estimates (see below). The age of individual plants 
was not determined.

Blade elongation and biomass accumulation: Like most 
Laminariales, L. digitata exhibits a ‘conveyor belt’ growth 
strategy, with new tissue formed by the meristematic area 
at the base of the blade and older material translocating 
towards the distal tips of the blade. Therefore, elongation 
rate, estimated by punching of a hole and measuring its 
distance travelled, has been used as a reliable measure 
of relative growth rates (Parke 1948). An adaptation of 
this method allows the quantification of the actual biomass 
laid down by taking into account morphology (Mann and 
Kirkman 1981; Krumhansl and Scheibling 2011). At each 
sampling period, 20 individuals were randomly selected 
from within the L. digitata stand. Two holes were punched 
into the central digit of the blade of each individual, at 5 
and 10 cm from the junction between the stipe and the 
meristem. After 4–6 weeks, individuals were relocated 
and returned to the laboratory for analysis. Lamina exten-
sion was calculated as the sum of the distance between 
each hole and the stipe/meristem junction at the end of the 
growth period, minus the initial distance of the holes from 
the base of the blade.

To convert elongation rates (cm) to daily biomass accu-
mulation (g), three 5 cm wide (running perpendicular to 
the kelp blade) basal segments were cut from above the 
meristem (Fig. S1).

The relationship between weight and position along the 
blade is constant around a maximum value past an initial 
area of regrowth where weight increases with distance 
from the meristem. To ensure we did not underestimate 
performance we used the heaviest segment (basal segment 
3 in all cases) to calculate individual daily biomass accu-
mulation (g FW day−1) using Eq. (1):

where e is lamina extension (cm), W is fresh weight of the 
heaviest basal segment (divided by 5 to give g cm−1 of 
lamina) and t is the number of days between initial hole-
punching and kelp collection.

(1)B = e ×
W

5
∕t

Converting to site level productivity

To attain site level estimates of primary productivity from indi-
vidual biomass accumulation rates we used conversion factors 
to firstly convert FW to dry weight (DW) and then to carbon 
(C) biomass. FW:DW was not measured at our study sites 
and so conversions were obtained from monthly sampling of 
independent populations of L. digitata from two sites in Plym-
outh Sound, SW England (West Hoe, 50.363045, − 4.139226; 
Mount Batten, 50.356469, − 4.127217) (Table S9). Monthly 
FW:DW relationships were determined by drying the heavi-
est basal segment for biomass accumulation at 60 °C for 48 h. 
For tissue carbon, 5 basal segments were randomly selected 
from individuals used for growth estimates. These were frozen 
(− 20 °C), subsequently dried and then ground to a fine pow-
der and C content quantified with a standard elemental ana-
lyser (CHN Analyser, EA1110, EE Instruments Ltd, Wigan).

Site level standing stock of carbon (g C m−2) was quantified 
using Eq. (2):

where SS is the standing stock, w is the mean individual 
plant weight (g FW), d is the mean population density (m2) 
of canopy forming individuals (stipe length > 30 cm), x is 
the FW:DW conversion factor (based on reference sites in 
Plymouth Sound) and c is the C content conversion factor 
(site level estimate).

For each sampling period, we then calculated site level net 
daily primary productivity (g C m−2 day−1) using Eq. (3):

where sNPP is the site Net Primary Productivity, B is the 
mean daily biomass accumulation, d is the mean popula-
tion density, x is the FW:DW conversion factor (based on 
reference sites in Plymouth Sound) and c is the C content 
conversion factor (site level estimate).

To extrapolate from our two sampling periods to annual 
rates of productivity we needed to determine the relative con-
tributions of our observation periods to the total annual growth 
cycle. L. digitata’s annual growth cycle was characterised at 
the two reference sites in Plymouth Sound and assumed to 
represent L. digitata’s growth cycle throughout our study area. 
At the two reference sites, productivity was measured monthly 
(using the same technique described above) and each month’s 
contribution to total productivity calculated (Table S9). The 
percentage contribution of April (Peak) and August (Reduced) 
to annual productivity (g C m−2 year−1) was used to determine 
annual using Eq. (4):

(2)SS = (w × d)x × c

(3)sNPP = (B × d)x × c

(4)aNPP =
(

B ×
(

M

P

))

× 100



Marine Biology (2020) 167:137	

1 3

Page 5 of 12  137

where aNPP is the annual net primary productivity, B is the 
mean daily biomass accumulation, M is the standard month 
(30.5 days) and P is the percentage contribution of sam-
pling month to overall annual productivity (determined from 
reference sites in Plymouth Sound; Table S9). aNNP was 
calculated independently using measurements from both the 
peak (April) and the reduced (August) growth periods and 
annual estimates are a mean of the two values (Table S11). 
Finally, we generated first-order estimates of the total areal 
standing stock of C and NPP for L. digitata stands in the 
UK. The spatial extent of suitable habitat was determined 
by summing the length of coastline in the UK dominated by 
rock or cobble habitat that is semi-to-fully exposed to wave 
action (Burrows et al. 2008), which represents favourable 
conditions for L. digitata (Burrows 2012). Based on sur-
veys and observations, L. digitata was assumed to inhabit 
a ~ 20 m wide band along the low intertidal/subtidal fringe 
(depth range ~ 0–0.7 m above chart datum) of this section 
of coastline. To gain UK wide estimates of aNPP and total 
areal standing stock, L. digitata’s spatial extent (km2) was 
multiplied by the study wide mean estimates of site level 
standing stock (g C m−2) and aNPP (g C m−2 year−1).

Statistical analysis

Variability in individual kelp (length, blade weight, elon-
gation, weight of heaviest basal segment, biomass accu-
mulation and tissue carbon) and site level (abundance, 
standing stock) metrics were determined using univari-
ate Permutational Analysis of Variance (PERMANOVA), 
using the PERMANOVA module (Anderson 2001) within 
Primer 6 software (Clarke and Gorley 2001). A similarity 
matrix was generated for each metric based on Euclidean 
distance and variability tested with 9999 permutations 
untransformed data under a reduced model.

For length, weight, elongation, weight of heaviest basal 
segment, biomass accumulation and tissue carbon, model 
factors consisted of Region (fixed factor; 2 levels: Range 
Centre, Trailing Edge), Site (random factor, 3 levels 
nested within Region) and Season (fixed factor; 2 lev-
els: Peak and Reduced). For density, the model consisted 
of Region (fixed factor; 2 levels: Range Centre, Trailing 
Edge) and Site nested within region. For standing stock, 
replication was at the site level so the model consisted 
of Region (fixed factor; 2 levels: Range Centre, Trailing 
Edge) and Season (fixed factor, 2 levels: Peak, Reduced). 
Differences in mean annual estimates of primary produc-
tivity between regions was determined using a t test. All 
values are presented as means + standard error (SE).

Results

The mean density of canopy forming individuals per site 
ranged from 6.5 (± 1.5 SE) ind. m−2 to 9.4 (± 3.5 SE) ind. 
m−2 and did not differ between sites (nested within regions) 
or between regions (Table S1; Fig. 2). All individual met-
rics (i.e. length, fresh weight biomass, elongation, weight of 
heaviest basal segment and biomass accumulation) exhib-
ited significant Season × Site(Region) interactions. This 
means there was significant variability between sites from 
the same region but only in one season. In all cases, this was 
driven by greater variability in the peak growth season. For 
example, in the range centre region, average blade length 
between sites varied from 142.4 (± 10.4 SE) cm (RC3) to 
223.5 ± 13.5 cm (RC2) (range 81.1 cm), whereas in the 
reduced growth season length varied from 96.4 (± 3.97 SE) 
cm (RC3) compared to 111.8 ± (6.95 SE) cm (RC1) (range 
15.4 cm). Similarly, fresh weight biomass varied from 573.2 
(± 44.8 SE) g (RC2) to 999.5 ± (106.5 SE) g (RC3) (range 
426 g), whereas in the reduced season weight profiles var-
ied from 267.1 ± (62.6 SE) g (RC2) to 398.3 (± 61.1 SE) g 
(RC3) (range 131.2).

Overall, for blade length, we found no effect of region 
but lengths differed between seasons. In the peak growth 
season, blade length was 166.2 ± (4.8 SE) cm com-
pared to 107.9 (± 2.8 SE) cm in the reduced growth sea-
son (Table S2). For fresh weight biomass, we detected 
an interaction between Region and Season (Table S3). 
Whilst there was considerable within region variability 

Fig. 2   Mean (± SE) density of canopy (> 30  cm stipe length) and 
sub-canopy (< 30 cm stipe length) L. digitata across study sites. n = 8 
quadrats per site



	 Marine Biology (2020) 167:137

1 3

137  Page 6 of 12

in the peak growth season, all values at range centre sites 
were greater than trailing edge sites, indicating clear direc-
tional generality. In the peak growth season, individual 
fresh weight biomass in the range centre region was 810.9 
(± 58.8 SE) g compared to 235.5 (± 10.9 SE) g in the 
trailing edge region. These regional differences were not 
apparent during the reduced growth season where indi-
vidual fresh weight biomass was similar between regions 
at 336.6 (± 33.3 SE) g in the range centre region and 251.5 
(± 18.9 SE) g in the trailing edge region. Daily elongation 
rates varied markedly between sites but were comparable 
across regions, and exhibited pronounced seasonal vari-
ability (Table S4; Fig. 3c). During the peak growth season, 
mean daily blade elongation was 0.71 (± 0.08 SE) cm but 
fell to 0.13 (± 0.02 SE) cm during the reduced growth 
period. The weight of the heaviest basal segment also var-
ied considerably between sites (Fig. 3d). In particular, RC3 

was over twice as heavy as other sites within the same 
region, during the peak growth season. The weight of the 
heaviest basal segment differed between regions but there 
was no main effect of season (Table S5). The weight of the 
heaviest basal segment was 23.9 (± 1.8 SE) g FW in the 
range centre region compared to 12.1 (± 0.3 SE) g FW in 
the trailing edge region.

For fresh weight biomass accumulation, we detected 
an interaction between Region and Season. Whilst there 
was considerable within region variability, there was clear 
directional generality with range centre sites larger than 
trailing edge sites (Table S6; Fig. 4a). During the peak 
growth season, mean biomass accumulation was 3.6 (± 0.2 
SE) g FW day−1 in the range centre region compared to 1.7 
(± 0.1 SE) g FW day−1 in the trailing edge region (Fig. 4b). 
In the reduced growth season, biomass accumulation was 
similar between regions at 0.45 (± 0.04 SE) g FW day−1 

Fig. 3   Mean (+ SE) population demographics of canopy form-
ing Laminaria digitata (stipe length > 30 cm) across study sites and 
growth season. a Total blade length, b Total blade weight, c Blade 

elongation rate and d Weight of heaviest basal segment. While 20 
individuals were tagged, the number of individuals harvested for sam-
pling varied between 9 and 17 (Table S10)
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in the range centre and 0.28 (± 0.01 SE) g FW day−1 in the 
trailing edge (Fig. 4b).

For % tissue carbon, we found no effect of region but 
there was a seasonal effect. In the peak growth season, 
tissue carbon was 30.2 (± 0.19 SE) % compared to 33.7 
(± 0.31 SE) % in the reduced growth season (Table S6). 
Standing stock of C exhibited a significant Region × Sea-
son interaction (Table S8; Fig. 4c and d). In the peak 
growth season, C standing stock in the range centre region 
was 278 (± 59 SE) g C m−2 compared to 79 (± 11 SE) g C 
m−2 in the trailing edge region. During the reduced growth 
season, average C stocks were similar between regions at 

166.9 (± 4.6 SE) g C m−2 in the range centre region and 
113.1 (± 29.4 SE) g C m−2 at the trailing edge (Fig. 4d).

Our site-level estimates of annual NPP varied markedly 
between sites, ranging from 135 to 402 g C m−2 year−1 
(Fig. 5a). Overall, annual NPP rates were significantly 
greater in the range centre region, at 344 (± 33 SE) g C 
m−2 year−1 compared to the trailing edge region, at 181 
(± 34 SE) g C m−2 year−1 (t = 2.65, p = 0.05) (Fig. 5b). 
We calculated that across the UK, approximately 4270 km 
of coastline met the criteria of being both dominated by 
hard substrata and semi-to-fully exposed to wave action. 
Based on L. digitata existing within a 20 m vertical band 

Fig. 4   Site (a + c) and region (b + d) level estimates of biomass accu-
mulation (a + b) and carbon standing stock (c + d) for L. digitata in its 
peak (non-hatched bars) and reduced (hatched bars) growth season. 

c Represents individual site values from Eq.  (2) and as such has no 
error. All other values are mean ± SE
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along these shorelines, this translates to an estimated areal 
extent of 85 km2.

Based on study-wide mean values for standing stock and 
annual NPP of 159 g C m−2 and 262 g C m−2 year−1, respec-
tively, we estimate that L. digitata populations in the UK 
hold at least 13,515 t C and turnover 22,270 t C each year.

Discussion

Understanding the role that macroalgae play in carbon 
cycling has gained increased attention in recent years, yet 
robust estimates of primary productivity and carbon fluxes 
in marine environments have been hindered by a lack of reli-
able data, particularly across large spatial scales. For L. digi-
tata, our study wide estimates of standing stock ranged from 
62 to 397 g C m−2 with a mean of 159 g C m−2, which is 
comparable to estimates for L. digitata in both France (162 g 
C m−2, Gevaert et al. 2008) and Nova Scotia (120 to 420 g 
C m−2, Krumhansl and Scheibling 2011). However, this is 
considerably lower than standing stock estimates for many 
other kelp populations, including the subtidal congeneric 
species, Laminaria hyperborea, in the NE Atlantic (e.g. 
721 g C m−2, Smale et al. 2016; 770 g C m−2, Pedersen et al. 
2020). This is likely driven by differences in stipe morphol-
ogy with L. hyperborea possessing a much larger, heavier 
and more rigid stipe compared to L. digitata. Annual esti-
mates of NPP ranged from 135 to 402 g C m−2 year−1, with a 
mean of 262 g C m−2 year−1, which is again markedly lower 
than estimates for L. hyperborea in the NE Atlantic (Kain, 
1971; Sheppard et al. 1978; Pedersen et al. 2020) and for 
many other macroalgal stands globally (Krause-Jensen and 
Duarte, 2016). In temperate regions of the NE Atlantic, L. 
digitata is restricted to a narrow band within low intertidal/

shallow subtidal habitats, as it is competitively inferior to 
L. hyperborea in most subtidal environments (Hawkins and 
Harkin, 1985). Even so, L. digitata is widespread and often 
abundant on rocky shores in the British Isles (Yesson et al. 
2015) and along the wider northwest European coastline 
(Raybaud et al. 2013), it can penetrate into deeper waters in 
polar regions (Hop et al. 2012) and is likely to be an impor-
tant contributor to benthic primary production.

Whilst the abundance of L. digitata was fairly consist-
ent across our study sites, ecological performance (in terms 
of growth and productivity) varied between our northern 
range centre and southern trailing edge populations. During 
the peak growth season, biomass accumulation was lower 
at trailing edge sites and individuals had up to three times 
less biomass, suggesting conditions in this region are less 
favourable for growth. Laboratory experiments have shown 
L. digitata can grow over a broad range of temperatures with 
optimum growth occurring between 10 and 15 °C (Bolton 
and Lüning 1982; tom Dieck 1992). Temperatures experi-
enced in both regions during the springtime period of peak-
growth fall within this optimal temperature range, whereas 
during the summertime period of reduced-growth both water 
and air temperatures experienced at trailing edge sites can 
induce considerable stress (Hargrave et al. 2017; Hereward 
et al. 2020). The trailing edge region also receives more 
sunshine hours than the range centre, and as such, likely 
receives higher amounts of harmful UV radiation, causing 
additional stress (Bischof et al. 2006). This means resources 
at the trailing edge may be allocated towards maintenance 
and repair at the cost of growth. On top of this stress gradi-
ent, mean summer day lengths are approximately 2 h longer 
at the range centre. This is important as long days in sum-
mer are used to store sugars to be mobilised the following 
spring when new growth is initiated (see Rinde and Sjøtun, 

Fig. 5   Site (a) and region (b) level estimates of annual net primary productivity for L. digitata. a Represents individual site values from Eq. (4), 
and as such, has no error. b Represents mean ± SE
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2005 and references therein). It seems despite evidence for 
local adaptation to greater temperature stress for L. digitata’s 
trailing edge populations (King et al. 2019), performance is 
aligned with the Abundant Centre Hypothesis, likely through 
a combination of stressful temperatures and less time for 
photosynthesis in summer. However, as growth patterns in 
L. digitata are entrained by photoperiod (Gomez and Lün-
ing 2001) and photoperiod differs between range centre and 
trailing edge regions, our observed regional differences in 
productivity may also, in part, be due to regional differences 
in L. digitata’s circannual rhythmicity. Future studies fully 
characterizing annual growth patterns between regions cou-
pled with in situ measures of stress will be able to fully 
resolve this. It is important to note that regional differences 
in performance were not related to rates of elongation or 
total blade length but rather transient morphologies observed 
during the peak growth season. In general, total blade bio-
mass and maximum weight of basal segments was greater at 
range centre compared with trailing edge sites, particularly 
during the peak growth season. Whilst elevated flow rates 
can increase productivity and overall biomass in L. digitata 
(e.g. Millar et al. 2019), it is unlikely flow is responsible 
for our observed differences in regional performance as 
patterns run counter to our results i.e. despite lower flow 
rates, range centre individuals are larger and more produc-
tive. Moreover, the transient nature of our suggested mor-
phological differences between regions is not conducive to 
persistent regional differences in hydrodynamic regime. As 
growth can occur laterally in Laminaria spp (e.g. Calvin 
and Ellis 1981), regional differences in performance in the 
peak growth season may be driven by regional differences 
in lateral growth and subsequent width at this time. We did 
not explicitly measure width, and examples of temperature 
mediated lateral growth are lacking in L. digitata. However, 
elevated lateral growth has been observed at cooler parts of 
a kelps range (Mabin et al. 2013), at cooler depths (Boden 
1979) and in cooler common garden mesocosm treatments 
(Okada et al. 1985 as cited in Bartsch et al. 2008) and, based 
on our qualitative observations, may explain some of the 
regional variability reported here. Differences in maximum 
weight of basal segments were likely related to blade width, 
thickness and mass by unit area. Northern range centre pop-
ulations may have also formed thicker blades, with greater 
concentration of storage compounds, pigments and other 
products, under more favourable conditions.

Our results have clear implications for understanding 
coastal carbon cycling in the face of climate change, par-
ticularly ocean warming. So far, the majority of climate 
change research on kelp species has focussed on either 
predicting (e.g. Müller et al. 2009; Raybaud et al. 2013; 
Franco et al. 2018; Assis et al. 2018; Khan et al. 2018) or 
documenting species’ range shifts (Wernberg et al. 2011; 
Smale et al. 2015), including population losses at trailing 

edges (e.g. Wernberg et al. 2016; Arafeh-Dalmau et al. 
2019). In contrast, far less is known about how ocean 
warming may alter ecological performance and carbon 
dynamics within any given species range (but see Pes-
sarrodona et al. 2018). We documented marked variabil-
ity in primary productivity rates across a ~ 2.5 °C aver-
age sea temperature gradient. Similar trends have been 
observed for kelp population structure (Smale et al. 2016), 
kelp forest composition (Smale and Moore 2017), detrital 
production rates (Pessarrodona et al. 2018) and primary 
productivity (Smale et al. in review) in subtidal habitats 
along the same temperature gradient. Given this temper-
ature gradient is comparable to the magnitude of ocean 
warming predicted for the NE Atlantic by 2100 (Philip-
part et al. 2011), tentative predictions of changes in the 
coming decades can be drawn. While future temperatures 
may remain within L. digitata’s growth optimum in the 
peak growth season, increased stress during summer may 
reduce overall productivity to levels currently seen at 
trailing edge sites. Moreover, should L. digitata undergo 
a range contraction at the trailing edge, as has been pre-
dicted (Raybaud et al. 2013), both standing stock and ben-
thic NPP would decline dramatically within our warmer 
trailing edge region. Ocean warming has had, and will 
continue to have, major impacts on kelp populations and 
the ecosystems they underpin in many regions around the 
world (Smale et al. 2020). Our results suggest that their 
role within coastal carbon cycles will also be affected in 
coming decades.

In conclusion, we quantified standing stock and NPP of 
L. digitata stands at its range centre and trailing edge sites in 
the UK, and identified clear differences in demography and 
ecological performance between thermally distinct regions. 
Understanding variability in primary productivity between 
populations and regions is necessary to better predict cur-
rent and future responses to environmental change, particu-
larly ocean warming. More generally, our estimate of spa-
tial extent suggests that L. digitata stands occupy ~ 85 km2 
(i.e. 8500 ha) of coastal habitat, which is ~ 6 times that of 
maerl beds (Burrows et al. 2014), ~ 1 times that of seagrass 
meadows (Green et al. 2018) and ~ 1/5 that of salt marsh 
(Beaumont et al. 2014) coverage in the UK. Given that these 
stands store and release significant amounts of particulate 
C (i.e. 13,515 t C and 22,270 t C year−1 respectively), it is 
important to advance understanding of the pathways and 
ultimate fate of this material, to fully appreciate the role 
these habitats play in C cycling and as potential blue car-
bon donors. If even only a fraction of this material reaches 
and resides within carbon storage habitats, as has been sug-
gested (Krause-Jensen and Duarte 2016; Pessarrodona et al. 
2018; Ortega et al. 2019), then the process of C donation has 
elevated importance and the implications of climate change-
carbon cycling feedbacks may be considerable.
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