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Abstract
Mycoplankton are widespread components of marine ecosystems, yet the full extent of their functional role remains poorly
known. Marine mycoplankton are likely functionally analogous to their terrestrial counterparts, including performing
saprotrophy and degrading high-molecular weight organic substrates using carbohydrate-active enzymes (CAZymes). We
investigated the prevalence of transcribed oceanic fungal CAZyme genes using the Marine Atlas of Tara Ocean Unigenes
database. We revealed an abundance of unique transcribed fungal glycoside hydrolases in the open ocean, including a
particularly high number that act upon cellulose in surface waters and the deep chlorophyll maximum (DCM). A variety of
other glycoside hydrolases acting on a range of biogeochemically important polysaccharides including β-glucans and chitin
were also found. This analysis demonstrates that mycoplankton are active saprotrophs in the open ocean and paves the way
for future research into the depth-dependent roles of marine fungi in oceanic carbon cycling, including the biological
carbon pump.

Even though our understanding of marine fungal diversity is
increasing [1, 2], a comprehensive knowledge of their active
functional ecology remains limited, especially in the open
ocean [1]. Fungal activity has been detected in corals, deep
sea and coastal sediments, and associated with phyto-
plankton blooms, including parasites [1, 2], but the full
extent that fungi are functionally active throughout the open
ocean water column is yet to be established.

Many terrestrial fungi occupy key roles as saprotrophs by
decomposing and recycling biogenic matter, making them
intrinsic components of healthy functioning ecosystems [3].
In coastal waters there is evidence that planktonic fungi
(mycoplankton) degrade and utilise phytoplankton-derived
carbohydrate-rich matter in broadly analogous functional
modes [4]. However, the extent that carbohydrate-based
fungal saprotrophy occurs in the open ocean remains largely
speculated [1].

Glycoside hydrolases (GHs) are a widespread group of
carbohydrate-active enzymes (CAZymes) [5] that degrade
complex polysaccharides and are categorised into substrate-
specific families. In terrestrial fungi, secreted CAZymes
are key to the functional potential of saprotrophs and are
the primary mode of degradation of high-molecular weight
(HMW) polysaccharides (e.g. cellulose). Coastal sapro-
trophic mycoplankton also employ secreted GHs to degrade
phytoplankton-derived HMW carbohydrate-based sub-
strates [4], but the prevalence and identity of the specific
GH families of active open ocean mycoplankton are
unknown.

Metagenomes from the Tara Oceans project have been
used to assess mycoplankton diversity [6, 7], but the asso-
ciated metatranscriptomes are yet to be fully explored from
a fungal perspective. We interrogated the Marine Atlas
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of Tara Ocean Unigenes (MATOU) metatranscriptomic
occurrences database [8] for transcribed fungal GH genes to
explore broad-scale depth-dependent structuring in the
oceans. The MATOU database consists of all unique
eukaryotic genes assembled from the Tara Oceans meta-
transcriptomes (unigenes), their associated taxonomy and
occurrence within samples (full methods described in [8]).

To identify GHs within the MATOU database, refer-
ence libraries were created for 61 fungal GH families and
clustered using CD-Hit [9]. The MATOU unigenes were
searched against these libraries using Diamond v.0.9.22
[10], yielding a database where each positive unigene

match represents a unique GH (similar genes clustered
when similarity < 95% over 90% of the smallest sequence
[8]). The database was screened for non-fungal unigenes
using the MATOU taxonomy (Fig. 1a, Supplementary
Fig. 1). After removal of redundant matches (i.e. where
multiple GHs matched to a single unigene), 1,326 unique
fungal GH unigenes were found (~0.001% of the entire
unigene catalogue) that occurred 44,386 times in all Tara
Oceans samples.

The top ten GH families containing the greatest number
of unique genes were determined by ranking the sum of all
unigene occurrences from all samples for each family
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Fig. 1 Bioinformatics pipeline
and glycoside
hydrolase unigene abundance.
(a) Pipeline describing the steps
involved in identifying fungal
CAZymes within the Tara
Oceans MATOU database.
A fungal GH protein sequence
reference database was created
from all the 61 characterised GH
subfamilies found in fungi. The
database was consolidated by
clustering sequences at 95 %
identity using CD-Hit before
Diamond BLAST databases
were generated for each
subfamily. Unigenes were
searched against each of these
61 databases using the following
thresholds: e value > 1e−30,
score > 1, subject Cov > 75%,
keeping only the best
alignments. Positive matches
were then screened using the
MATOU taxonomy to
discriminate between fungal and
non-fungal unigenes.
Occurrences of each unigene
within the Tara Oceans
transcriptomes were returned.
(b) Fungal GH groups found in
the MATOU database ranked by
abundance over all Tara Oceans
samples. (c) Total numbers and
taxonomy (including
Ascomycota (green),
Basdiomycota (orange), and
Unassigned (yellow)) of unique
fungal unigenes from the ten
most abundant GH groups.
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Fig. 2 Depth distribution of fungal glycoside hydrolases in the
global oceans. (a) Global map indicating Tara Oceans stations
searched for fungal GH unigenes in the surface, deep chlorophyll
maximum (DCM) and mesopelagic. (b) Mean unique unigenes/

station for each of the major oceanic regions sampled. (c) Depth-
dependent partitioning of fungal GH unigenes in the surface (SUR),
DCM and mesopelagic (MES).

Depth-dependent mycoplankton glycoside hydrolase gene activity in the open ocean—evidence from the Tara. . . 2363



(Fig. 1b). Overall, the greatest number of unique GHs were
involved in cellulose/hemicellulose degradation (GH7).
Other substrates of the most abundant GH families included
β-glucans (GH17 and GH72), β-glycans (GH5, GH16,
GH3), α-glucans (GH13), chitin (GH18), N-/O-glycans
(GH47) and xylan (GH43). Fungal GHs were dominated by
genes originating from the Ascomycota, except for the
abundant GH7s, many of which were unclassified fungal
genes (Fig. 1c).

Transcribed fungal GH genes were recovered from
66 stations (Fig. 2). The number of unique GH7s was
greatest in the surface and deep chlorophyll maximum
(DCM), especially in high productivity areas such as the
Mediterranean Sea and the Indian Ocean (Fig. 2b). At sta-
tions where concomitant samples were available from the
surface, DCM and mesopelagic, a distinct drop in the
number of unique GH7s was seen in the mesopelagic. The
number of unique unigenes in other abundant GH groups
was more heterogeneous between sites (Fig. 2c).

The high prevalence of unique GH7 transcribed genes in
surface waters is likely a response to increased ‘fresh’
phytoplankton-derived matter in the photic zone. Cellulose
is a key structural component of many phytoplankton cells
[11]. Polysaccharides, such as cellulose, also represent a
primary source of particulate organic carbon (POC) [12]. Of
the enzymes responsible for cellulose degradation, those
within the GH7 family are typically the most active, and are
important in biomass degradation by terrestrial fungi [13].
The decline in the number of unique GH7 genes below the
DCM in the mesopelagic zone in the six sites sampled
suggests a shift in mycoplankton functionality due to
depletion of readily available phytoplankton-derived carbon
sources, and corresponds with the decrease in overall
polysaccharide concentrations between surface waters and
the mesopelagic zone [14].

Amongst the other major GH groups, the greatest num-
ber of unique genes was in the GH17 family, a group of
CAZymes that degrade β-glucans. Cladosporium myco-
plankton isolated from coastal waters have been shown to
secrete GH17 β-1,3-glucosidase when utilising laminarin
[4], which is an algal-derived β-glucan that is a major
POC component [15]. Also prevalent were GH18 genes,
responsible for degrading chitin, another major poly-
saccharide and important component of zooplankton and
some phytoplankton, suggesting that chitin degradation is a
functional role of marine mycoplankton, as with fungi in
freshwater lake ecosystems [16].

While the number of transcribed GHs is a strong indicator
of active carbohydrate metabolism in mycoplankton com-
munities, the identity of these fungi remains uncertain. The
extent of GH7 genes with unresolved fungal taxonomy opens
interesting questions about the phylogeny of these taxa. The
majority of the other GHs were affiliated to the Ascomycota,

in line with phylogenetic studies that show the phylum
dominates open ocean mycoplankton diversity [6]. However,
there is a lack of early-diverging taxa (e.g. Chytridiomycota)
within the MATOU database. Since Chytridiomycota para-
sitism of phytoplankton takes place in the open ocean [17]
their absence highlights outstanding gaps in our under-
standing of the functional ecology of marine fungi.

The vertical flux of POC in the open ocean is an essential
feature of the biological carbon pump (BCP), sustaining the
oceans capability to sequester carbon [18]. Biogeochemical
models of the BCP do not currently consider fungi (e.g.
[19]). Given that marine snow is an apparent hotspot for
fungi [20], and that here we show differences in fungal GH
expression suggesting depth-dependent resource partition-
ing in relation to POC-associated substrates, the recently
proposed ‘mycoflux’ [2] should be considered within a
contemporary view of the BCP.
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