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Microbial colonization and degradation of particulate organic matter (POM)
are important processes that influence the structure and function of aquatic
ecosystems. Although POM is readily used by aquatic fungi and bacteria,
there is a limited understanding of POM-associated interactions between
these taxa, particularly for early-diverging fungal lineages. Using a model
ecological system with the chitin-degrading freshwater chytrid fungus Rhizo-
closmatium globosum and chitin microbeads, we assessed the impacts of
chytrid fungi on POM-associated bacteria. We show that the presence of chy-
trids on POM alters concomitant bacterial community diversity and
structure, including differing responses between chytrid life stages. We pro-
pose that chytrids can act as ecosystem facilitators through saprotrophic
feeding by producing ‘public goods’ from POM degradation that modify
bacterial POM communities. This study suggests that chytrid fungi have
complex ecological roles in aquatic POM degradation not previously con-
sidered, including the regulation of bacterial colonization, community
succession and subsequent biogeochemical potential.

Particulate organic matter (POM) in aquatic ecosystems acts as ‘hotspots” for
bacteria [1-3] and fungi [4,5]. Microbial processing of POM has impacts on eco-
system functioning, including the biological carbon pump in the open ocean [6]
and carbon transfer through freshwater food webs [7].

Bacteria-POM studies have characterized the microscale interactions
between bacteria and particles, including the composition of colonizing com-
munities [8-10], interactions between attached bacteria [11] and the dynamics
of POM degradation [9-12]. Laboratory-based incubations with chitin micro-
beads as model POM have identified bacteria that colonize and degrade
POM using extracellular enzymes, producing a pool of more freely available
substrates, including dissolved organic matter (DOM), considered ‘public
goods’ for other bacteria in the community to utilize [8].

Dikaryan fungi (Ascomycota and Basidiomycota) also attach to and
degrade POM [13-18]. Given that POM-degrading fungi also use extracellular
degradation mechanisms [19,20], it is likely that they produce ‘public goods’
for the wider community to exploit. Studies of freshwater leaf-degrading dikar-
yan fungi show that as bacteria lack key enzymes associated with plant
polymer degradation [21], the production of low and intermediate weight
DOM by fungi [22] may support enhanced bacterial growth on allochthonous
leaf litter [21].

The roles of early-diverging saprotrophic fungal lineages, such as the Chy-
tridiomycota (chytrids), in POM-associated processes are poorly understood.

© 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.


http://crossmark.crossref.org/dialog/?doi=10.1098/rsbl.2020.0368&domain=pdf&date_stamp=2020-09-23
mailto:micnli@mba.ac.uk
https://doi.org/10.6084/m9.figshare.c.5120417
https://doi.org/10.6084/m9.figshare.c.5120417
http://orcid.org/
http://orcid.org/0000-0003-0265-8714
http://orcid.org/0000-0002-7109-3721
http://orcid.org/0000-0002-7244-5960
http://orcid.org/0000-0002-6716-3555
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Downloaded from https://royal societypublishing.org/ on 19 August 2021

(a) —24h Oh +2h (b)
~_ 7 ~ 45
-y U 40] ¢
\ \ = + "
gL g 235
¥ ; 2 < f §
~ ,\Bﬁ & =
- v v E30 $
7‘ v Vs v +
£~ f% - {’% 25
& y '
* o %} \ g&: o

timepoint (h)

9

(©)
— 0.05 - L]
] a
+ . °o
: [ ]
+ + I 01 % e ‘e
2% A
a e g
b2 Y 7
% A
—0.051 &% a
+ %\ ‘stress =0.098
24 34 -0.10 -0.05 0 0.05 0.10
NMDS1

Figure 1. (a) Schematic summary of experimental design. Experimental treatments: Control = yellow, Zoospores = blue, Established = red. (b) Bacterial diversity
measured as the Shannon’s H index of treatments over time. Bars represent standard error and asterisks denote level of significance as follows: **p < 0.01, ***p <
0.001. (c) NMDS plot of bacterial community structure based on weighted UniFrac dissimilarity between bacterial communities found with treatment over time.

Chytrids are widespread fungi that produce motile zoospores
to search for substrates to colonize, including allochthonous
and autochthonous POM such as pollen [4], chitin-rich exu-
viae [23] and zooplankton carcasses [24], as well as living
substrates, such as amphibian epidermises [25] and phyto-
plankton [26]. Once attached, a zoospore loses its flagellum
before developing a walled sporangium with a rhizoid net-
work, which attaches to and penetrates the substrate [27].
Chytrids subsequently feed saprotrophically via the rhizoids,
which secrete extracellular enzymes to degrade POM to low
molecular weight substrates for uptake and assimilation [28].
Even though chytrids and bacteria coexist in aquatic eco-
systems, knowledge of chytrid—bacteria POM interactions is
limited to niche overlap [4] and infection-associated dynamics
on amphibian epidermises [29,30]. To our understanding, there
is no current research on the direct influence of chytrids on
POM-attached bacterial diversity and community structure.
To address these knowledge gaps, we used the chitinophilic
Rhizoclosmatium globosum in an experimental study with
chitin microbeads to assess the interactions between chytrids,
bacteria and POM. Using chitin microbeads as a POM exper-
imental system removes the complex heterogeneity of natural
particles (e.g. age and composition) while retaining ecological
relevance since chitin is an important POM component in
aquatic ecosystems [8]. We aimed to explore how the different
chytrid life history stages (i.e. attaching zoospores versus estab-
lished sporangia with rhizoid networks) impact concomitant
attaching bacterial diversity and community structure.

2. Material and methods

(a) Experimental set-up

R. globosum JEL800 was maintained on PmTG agar [31] as
described previously [27]. To harvest zoospores, established
plates were flooded with 4 ml distilled H,O and incubated at
room temperature under laminar flow for 90 min. The zoospore
suspension was passed through a 10 pm cell strainer and the con-
centration determined using a coulter Counter (Beckman Coulter,
Us).

Magnetic chitin microbeads (New England Bio) were used
for the experiments using protocols adapted from [8]. Pond
water containing a natural bacterial assemblage was collected
from Efford Marsh pond (Plymouth, UK) and passed through
a 40 pm mesh to remove detritus and large eukaryotes. Three

experimental treatments were set up as follows: ‘Control’,
40 pm filtered pond water and chitin microbeads; “Zoospores’,
R. globosum zoospores, 40 pm filtered pond water and chitin
microbeads; and ‘Established’, R. globosum grown initially on
chitin microbeads for 24 h in 0.2 pm filtered pond water before
addition of experimental 40 pm filtered pond water (figure 1a).

For each treatment, 23.5 ml pond water was added to a 25 ml
vented culture flask. Each treatment was conducted with three
replicate flasks per timepoint that were sampled destructively.
Chitin microbeads were added to the flask and inverted several
times to ensure even distribution. For chytrid treatments, zoospores
were added to a concentration of approximately 3 x 10* cells ml™".
Flasks were incubated in the dark at 22°C with mixing at 50 rpm.
After 2 h, a washing step took place in the chytrid treatments,
with the water replaced to ensure that the experiments proceeded
with microbead-attached chytrids only (‘Established’ 40 + 14.9 chy-
trids microbead ™" and “Zoospores’ 37 + 15.8 chytrids microbead ™).
After 2 (i.e. the wash step), 9, 24 and 34 h, all chitin microbeads from
each flask were harvested using a magnet. The residual water was
discarded, retaining the chitin microbeads, which were frozen in
liquid nitrogen and stored at —80°C.

(b) DNA extraction, 16S rRNA gene sequencing and

bioinformatics

DNA was extracted from the chitin microbeads using the Zymo
Research  Quick-DNA™  Fecal/Soil Microbe Microprep Kit
(Zymo Research, USA) following the manufacturer’s instructions.
The V4-V5 region of the 165 rRNA gene was amplified using pri-
mers 515FB and 926R [32], and sequenced using the Illumina
MiSeq platform. Sequences were processed in R [33] using the
DADA?2 pipeline [34]. Demultiplexed reads were filtered and
trimmed to remove primers and low-quality sequences. The
DADA?2 algorithm was used to infer amplicon sequence variants
(ASVs) [34]. Paired-end reads were merged to obtain full denoised
sequences. Chimeric sequences were removed, before taxonomy
was assigned using the SILVA database (release 128) [35]. ASVs
assigned as chloroplasts and mitochondria were removed. A maxi-
mum likelihood phylogenetic tree was estimated using the
phangorn package (v.2.5.5) [36] and combined with the ASV
table, taxonomic assignment and experimental metadata into a
phyloseq object using the phyloseq package [37]. Sequences were
rarefied to 4955 reads before further analysis.

(c) Data processing and statistical analyses
Shannon’s index (H) was used to calculate diversity, and the effect
of treatment and time on diversity was assessed using a two-way
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Figure 2. Bacterial community composition. Bacteria are grouped by the top 10 most abundant orders; orders outside this are grouped as ‘other’.

ANOVA with Tukey’s HSD. Differences in community structure
between samples (beta diversity) were calculated using a
weighted UniFrac [38] distance matrix and visualized through
non-metric multidimensional scaling (NMDS) ordination. Permu-
tational multivariate analysis of variance (PERMANOVA) [39] was
used to test the effect of treatment and time on community
structure using the ‘adonis’ function in the R package vegan [40].

3. Results

The diversity of the bacterial communities attached to chitin
microbeads in all treatments followed the same pattern of
decline in the first 9 h of the experiment (figure 1b). After 9 h,
bacterial diversity in the control treatment continued to decrease
for the remainder of the study. Conversely, bacterial diversity in
the presence of chytrids increased after 9 h compared with the
control treatment (Tukey’s HSD p <0.05). Attached bacterial
diversity was greater in the zoospore treatment compared with
the established chytrid treatment, although this trend was not
statistically significant (Tukey’s HSD p = 0.08).

Bacterial community composition varied significantly
between treatments and timepoints, with a significant inter-
action between these variables (PERMANOVA, all p <0.001).
After 2 h, the bacterial communities attached to the chitin
microbeads in the established treatment were distinct from
the other treatments (figure 1c), dominated by Burkholderi-
ales, Chromatiales and to a lesser extent Neisseriales and
Pseudomonadales (figure 2). Conversely, bacterial commu-
nities in the zoospore and control treatments were similar
(figure 1c) and dominated by Burkholderiales (figure 2).

As the experiment progressed, the structure of the bacterial
communities in the zoospore and established chytrid treat-
ments converged, while bacterial communities in the control
treatment remained distinct and with relatively limited vari-
ation through time (figure 1c). At 24 h, Cellvibrionales were
also dominant in both the zoospore and established treat-
ments, while Burkholderiales remained dominant in the

control treatment (figure 2). Together, these results suggest
that the presence of chytrids on chitin particles impacts both
initial bacterial colonization and community succession, with
the effects specific to the chytrid life stage.

4. Discussion

Understanding microbial-POM interactions has been largely
dominated by bacteria-focused studies. Limited work has
been conducted on fungi-bacteria-POM interactions, and
the roles of early-diverging fungal lineages in these inter-
actions remains unresolved. Here we show that chytrid
fungi impact POM colonizing bacteria and community suc-
cession, suggesting that chytrids play a role in shaping
POM microbial communities, with implications for carbon
cycling in aquatic ecosystems.

Community diversity across all treatments initially
declined, following previously reported patterns of bacterial
colonizing communities on chitin microbeads [8], suggesting
that early colonization here was also governed by known
mechanisms (e.g. attachment ability). However, as the pres-
ence of the established chytrids with developed rhizoids
showed an initially distinct bacterial community structure
from the zoospore treatment, this suggests that life-stage
dependent ecological interactions occur between chytrids
and bacteria that govern particle colonization.

Chitin degradation can result in the release of DOM in
aquatic systems [41,42]. Prior to the addition of the bacteria,
when the chytrids attach to and degrade the chitin micro-
beads, they likely produce extracellular N-acetylglucosamine
(NAG) as a potential ‘public good’. Bacteria, including
NAG-using bacteria that are unable to degrade chitin (i.e.
‘cheaters’), may be supported by this pool of ‘public goods'.
Community-wide bacterial growth on chitin does not necess-
arily require chitin degradation by all community members
and can be stimulated by the utilization of secondary degra-
dation products including NAG [43,44]. Previous
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experimental work has suggested that POM-derived DOM
utilization involves a diverse assemblage of bacteria, with no
single group dominating the consumption of NAG [45]. The
initial structure of the colonizing bacterial community in the
established treatment suggests that the bacteria present may
be using a source of DOM, such as the proposed NAG pool,
and that chytrids may play a role in DOM production from
POM degradation in aquatic systems.

The temporal change in bacterial community composition
may indicate the decline of the potential NAG pool, and a
switch towards a chitin-degrading community at 24 h. As
there is a similar switch in community composition seen in
the zoospore treatment, this could have been stimulated, in
part, by chitin degradation products from the chytrids acting
as chemotactic signals for degraders [46,47]. Furthermore, R.
globosum JEL800 rhizoids form grooves on the outer surface
and penetrate chitin microbeads [27], modifying the POM struc-
ture and providing increased surface area for bacterial
attachment and promoting chitin degradation. It is also possible
that, because the chytrid cell wall also contains chitin, the differ-
ences in diversity between chytrid and control treatments could
be due to an increased relative abundance of chitin-degrading
bacteria using chitin from living chytrids or necromass. The pre-
dicted function of bacterial communities in this study
approximated using Piphillin [48] provides support to this sug-
gestion, showing a convergence in the established and zoospore
treatments and divergence from the control treatment, which
were distinct over time (electronic supplementary material,
figure S1). Piphillin analysis predicted an initially elevated
abundance of the NAG transporter gene in the established treat-
ment only that declined over time, presumably as the NAG pool
was depleted (electronic supplementary material, figure S2E).
Subsequently, there was a predicted increase in chitinase and
chitin-oligosaccharide transport genes [49] at 24 h in the estab-
lished and zoospore treatments (electronic supplementary
material, figure 52). Future studies should attempt to unravel
the exact nature of the chytrid-bacteria interactions reported
here, including the impacts of bacteria on saprotrophic chytrids
and the direct assessment of bacterial function, such as through
enzyme assays or metatranscriptomics.

POM degradation by microbes may also result in the
indirect generation of diverse carbon substrates such as cell
debris and metabolic by-products (e.g. organic acids) [8].

Enhanced chemical heterogeneity of these alternative
carbon sources produced by both chytrids and bacteria
could support the colonization of bacteria that use these
products and drive the community dynamics reported here.
As the colonization of these bacteria on the particle is likely
to invoke competitive interactions, such as for space, the col-
lective community function may diverge from a directly
chitin-degrading community towards one that relies on
secondary production, as shown in bacteria-only studies [8].

Chytrids have established roles in aquatic ecosystems,
including parasitizing hosts and transferring resources via
lipid-rich zoospores to higher trophic levels through the
mycoloop [50]. Overall, our data indicate that independent
of life stage, chytrids also influence the diversity and commu-
nity structure of POM-colonizing bacterial communities.
Increased diversity of bacteria associated with chytrids
suggests that chytrids may produce DOM as a pool of
‘public goods’ supporting the growth of ‘cheaters’” and/or
encouraging the chemotaxis of chitinolytic bacteria. The
potential stimulation of bacterial chitin degradation by the
presence of established chytrids, coupled with their own
inherent degrading capability, implies that saprotrophic chy-
trids may have complex roles in regulating POM and DOM
processing in aquatic ecosystems that are not yet considered.
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