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Abstract 
Telemetry is a key, widely-used tool to understand marine megafauna distribution, habitat 

use, behaviour, and physiology, however, a critical question remains: “how many animals 

should be tracked to acquire meaningful datasets?” This question has wide-ranging 

implications including considerations of statistical power, animal ethics, logistics and cost. 

While power analyses can inform sample sizes needed for statistical significance, they 

require some initial data inputs that are often unavailable. To inform the planning of 

telemetry and biologging studies of marine megafauna where few or no data are available or 

where resources are limited, we reviewed the types of information that have been obtained in 

previously published studies using different sample sizes. We considered sample sizes from 

one to more than 100 individuals and synthesized empirical findings, detailing the 

information that can be gathered with increasing sample sizes. We complement this review 

with simulations, using real data, to show the impact of sample size when trying to address 

various research questions in movement ecology of marine megafauna. We also highlight the 

value of collaborative, synthetic studies to enhance sample sizes and broaden the range, scale, 

and scope of questions that can be answered. 
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Introduction 
Tracking studies of marine animals have proliferated in recent years as a new generation of 

miniaturized, cost-effective and reliable telemetry tags are deployed on an ever increasing 

array of species (Figure 1) (Evans et al. 2013). These technological advances have led to a 

dramatic increase in the use of the Argos and GPS satellite systems to track highly migratory 

marine vertebrates (including the large-bodied marine megafauna) that surface to breathe or 

spend time on land (enabling transmitters to communicate with satellites). Simultaneously, an 

expansion of acoustic telemetry networks to track gill-breathing animals that remain 

submerged, like tunas or sharks, has occurred. These advances also have been coupled with 

an increasing diversity in the sensors available on tags and other bio-logging devices 

 (Hebblewhite and Haydon 2010, Hussey et al. 2015, Kays et al. 2015). Combined with 

advanced analytical techniques, these technological innovations have transformed our 

knowledge of movement patterns, behaviour, habitat use and ecophysiology of animals with 

movement data driving a series of positive conservation outcomes across multiple taxa such 

as the creation of marine protected areas and other conservation zones (Hays, 2019). However, the 

deployment of tags can involve procedures that stress the target animals (Wilson and McMahon 

2006), including capture and restraint, anaesthesia, chemical immobilization, and surgery (Harcourt 

et al. 2010). Further, costs and logistics associated with purchase and deployment of tags are 

considerable. For example, satellite-linked Argos tags cost several thousand $US per unit with on-

going operational costs for satellite time. Consideration of these various elements leads to a 

fundamental but complex question: what is the minimum number of animals that should be tagged 

and tracked for a given study to deliver sufficient data to address the research aims (Wilson and 

McMahon 2006, Hays et al. 2016), while ensuring the number of animals tagged complies with 

ethical pillars of the three R’s of Reduce, Replace and Refine (Russell and Burch 1959)? 

 

There are well-established metrics to determine sample size and provide the statistical 

power necessary to draw probability-based conclusions from datasets (e.g., Green 1989, 
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Johnson et al. 2015). Hence, answering the question of how many tags to deploy in any given 

study would seem straightforward. However, power analyses require some initial data or 

knowledge of the expected movements of animals, such as on the variance of the behaviour 

being studied, or on the movement range. This information is often not available because 

researchers are studying new species or working in new areas. Furthermore, an important 

caveat to the application of power analyses is that many of these studies are still in the 

 ‘discovery’ phase and the most interesting or relevant questions or observations are still 

unknown. Although it is always prudent to undertake power analyses when possible, here, we 

take a complementary approach to assist the planning of telemetry and biologging studies of 

marine megafauna where little or no prior data are available. We focus on marine megafauna 

and satellite tracking, given the growth of this area, but some of our conclusions are relevant 

to other biologging approaches. For example, data-storage tags that measure parameters such 

as diving and body acceleration, are widely deployed on marine megafauna and the 

increasing use of acoustic arrays, often in networks spanning 1,000s of km (Lennox et al. 

2017), means that acoustic tags are also widely used within this group including smaller life 

stages of some taxa, such as hatchling sea turtles (Thums et al. 2013). We do not focus on 

smaller bodied, commercial species because there are complexities associated with sample 

size for this size range that need separate consideration, for example their common fine scale 

stock structure (Righton et al. 2007). Here, we review the types of information that have been 

obtained by studies with different sample sizes of marine megafauna (Figure 2). In doing so, 

we provide guidance for researchers embarking on tracking studies of marine megafauna by 

summarizing what has been achieved with sample sizes from one to well over 100 

individuals. We provide examples of simulation exercises that can be used to estimate the 

sample size needed to address specific questions. We show evidence that significant advances 

can be made with small sample sizes while highlighting the benefits obtained from 

employing greater sample sizes, and supplement this review with simulations from real data 

to illustrate how the ability to answer specific research questions changes with the sample 

size of tracked individuals. We illustrate this, showing how different sample sizes are needed 

when addressing different questions of interest for the same taxa (using turtles as example), 

and also when addressing the same question (using home range or utilisation area as 

example) for multiple taxa (sharks, seabirds, seals). We also highlight the value of data- 

sharing and showcase some of the seminal discoveries made by combining data across 

studies to reach very large sample sizes. 

 

The value of different sample sizes is best exemplified in work from individuals who 

pioneered tagging on the same system or species, necessarily starting with the use small 

numbers of tags before attaining larger sample sizes that altered the scope of their work 

allowing new questions to be addressed. For example, a thread of work tracking leatherback 

turtles in the Atlantic began with n=3 (Hays et al. 2004a), progressed to n=21 (Fossette et al. 

2010), then n = 106 (Fossette et al. 2014) to recently become part of a study involving >2500 

tracked marine animals across multiple species (Sequeira et al. 2018). At each iteration, the 

questions that were addressed changed, and this increasing capability is reflected in the 

synthesis presented here. 

 

Dare to dream (sample size of one) 
136 Many researchers assert that tracking studies with sample sizes of one are of no value, but the 

137 history of animal tracking includes many startling discoveries made from tracking one 

138 individual. While, statistically, a sample size of one is expected to capture a ‘normal’ or 

139 common trajectory, the value of such studies actually lies in their ability to show that certain 

140 feats are possible. Examples of extraordinary feats detected in single animal studies include 
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141 the journey of >1000 km by a leatherback turtle (Dermochelys coriacea) tagged off South 

142 Africa (Hughes et al. 1998), and the discovery that white sharks (Carcharodon carcharias) 

143 can last more than a month on a single large meal (Carey et al. 1982, but see Semmens et al. 

144 2013). Additionally, despite multiple tags having been used in another white shark study, it 

145 was the track from a single white shark traversing an entire ocean basin while performing 

146 deep dives to nearly 1000 m (combined with photo ID data) that was central to the discovery 

147 that these sharks are not coastal obligates (Bonfil et al. 2005). A single tagged sea turtle was 

148 also found to routinely conduct sequences of dives each 6-8 h followed by short inter-dive 

149 surface intervals suggesting operation within its aerobic dive limit and fundamentally altering 

150 the expectations of the eco-physiological capacity for this species (Hochscheid et al. 2005). 

151 Individual tracks can also provide significant information with conservation implications. For 

152 example, the track of a single grey whale (Eschrichtius robustus) tagged within the feeding 

153 grounds of the critically endangered western stock off Sakhalin Island, Russia, and migrating 

154 to the breeding lagoons of the eastern stock in Baja California, Mexico, questioned whether 

155 these two stocks were indeed distinct (Mate et al. 2015). This individual whale also broke the 

156 world record (previously held by a humpback whale) for the longest known mammalian 

157 migration at 22,511 km. 

158 Data from one individual can also reveal aspects of behaviour linked to physical abilities, 

159 and if sampled at very high frequency, they can provide high resolution movement 

160 information. For example, flipper sensors attached to a turtle revealed how swimming effort 

161 was linked to depth-dependent, air-mediated buoyancy and swim angle (Hays et al. 2004c). 

162 Finally, and importantly, a sample size of one may provide critical proof of concept for novel 

163 equipment or attachment procedures, providing a starting point for follow up studies. For 

164 example, one of the first animals tracked by Argos satellite-linked tags was a plankton- 

165 feeding basking shark (Cetorhinus maximus) that oriented along thermal fronts for 17 days 

166 (Priede 1984). The species was studied further with increasing numbers of tags providing 

167 insight into other ecologically-relevant questions (Sims et al. 2003, Sims et al. 2005, Southall 

168 et al. 2006). 

169 As animal-borne tags are increasingly used to obtain data on the environment, single tags 

170 can also provide highly valuable data that would be difficult to obtain with any other 

171 observing system. For example, the use of a CTD (conductivity, temperature and depth) tag 

172 on a single southern elephant seal (Mirounga leonina) provided an 8-month hydrographic 

173 profile that allowed an assessment of the seasonal evolution of the upper ocean (Meredith et 

174 al. 2011). Similarly, a CTD tagged Weddell seal (Leptonychotes weddellii) provided some of 

175 the first data on the wintertime conditions over the Weddell Sea continental shelf (Nicholls et 

176 al. 2008). Indeed, marine mammals and particularly seals, now provide the bulk of the 

177 physical oceanographic observations in the polar regions and are a central component of the 

178 global ocean observing system (Treasure et al. 2017). Despite the common perception of the 

179 limited value of a sample size of one, the examples above show evidence that even a single 

180 tag can provide ground-breaking information allowing insights into population- and species- 

181 level ecology and guiding future studies. 
182 

183 Understanding variability (sample sizes up to 10) 
184 As sample sizes increase, so too does the probability that tags will reveal individual 

185 variability in the behaviour being observed. Statements based on such data can move from 

186 possible limits of animal performance to plausible and ecologically valuable metrics for the 

187 species, such as diving behaviour, home ranges and foraging areas. Variations in individual 

188 foraging patterns have been observed with surprisingly small sample sizes. For example, 

189 three distinct foraging patterns were detected in data derived from nine Galapagos sea lions 

190 (Zalophus wollebaeki) (Villegas-Amtmann et al. 2008), which were, in subsequent studies, 
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191 correlated with differences in the physiological capability of these animals (Villegas- 

192 Amtmann and Costa 2010). Sample sizes of only a few individuals may also be immensely 

193 valuable when high resolution temporal data are available. This is the case for diving data of 

194 marine vertebrates downloaded from the archive of recovered tags that are equipped with 

195 pressure sensors (e.g. SPLASH tags; pop-off satellite-linked archival transmitters, PSAT; and 

196 dive loggers), which allow for greater insight into the environmental and physiological 

197 drivers of movement patterns (e.g., Deutsch et al. 2003, Meekan et al. 2015). This type of 

198 high resolution temporal data is more easily collected for animals that return to areas that are 

199 predictable in space and time (e.g. breeding areas) and thus facilitate tag recovery. This is 

200 because the data that are transmitted to satellite are binned summaries only and the detailed 

201 patterns of vertical movements are only available in the tag archives. So, for animals that do 

202 not return to breeding or over-wintering sites, such as whale sharks (Rhincodon typus), the 

203 detailed patterns of vertical movements can only be obtained when detached tags are 

204 recovered by chance (e.g., when these sharks wash up on beaches). Such limitations to data 

205 acquisition, in addition to problems with tag failure and loss, need to be factored into the 

206 initial sample size of tags. Therefore, information on the expected return of data from all 

207 animals tagged is important when writing ethics approvals, to estimate the cost of the project 

208 and to define the research scope. 

209 Although larger sample sizes typically are recommended for many ecological questions, a 

210 sample size of up to 10 individuals may be immensely valuable for some applications. For 

211 example, when testing and developing new methods or technologies, deploying more than 10 

212 tags may lead to potentially unforeseen negative impacts on animals and waste financial 

213 resources. A sample size ≤ 10 may also be appropriate when studying critically endangered 

214 species. Indeed, in such cases, the limit of ≤ 10 might be enforced by permitting agencies. 

215 When generating hypotheses about unknown phenomena, a sample size of up to 10 tags 

216 could also be a good starting point, allowing this exploration phase to dictate if the 

217 phenomenon is worth exploring further. Also a sample size of ≤ 10 may be appropriate for 

218 species or questions that are difficult to study, such as following social groups on long 

219 migrations, or where high logistics costs for deployment may limit funds available for tags, as 

220 is the case, for instance, for killer whales (Orcinus orca) (Durban and Pitman 2012). 

221 An early example of the value of relatively small sample sizes is a satellite tagging study of 

222 six wandering albatrosses (Diomedea exulans), which revealed individuals travelling 

223 thousands of km in a single foraging trip during an incubation shift in the southwestern 

224 Indian Ocean (Jouventin and Weimerskirch 1990). Although such a small dataset might not 

225 provide sufficient precision to determine preferred foraging areas, the consistency of the 

226 distances covered provoked a fundamental shift in how researchers thought about habitat use 

227 by these birds. Similarly, for 50 years, basking sharks were thought to hibernate in deep 

228 waters of the North Atlantic Ocean during winter until satellite tracking of five individuals 

229 showed that they exhibit extensive horizontal and vertical movements at this time (Sims et al. 

230 2003). 

231 As sample size increases, variability in space use can be defined in more detail. For 

232 example, while a study of nine leatherback turtles in the Atlantic Ocean revealed individuals 

233 all moving in disparate directions (Hays et al. 2004b), the majority of nine grey reef sharks 

234 (Carcharhinus amblyrhynchos) in the Great Barrier Reef, Australia, showed fidelity to a 

235 single reef, while one individual undertook a 134 km movement across the deep open ocean 

236 (Heupel et al. 2010). Inclusion of nine individuals in the latter study indicated that although 

237 large movements were present, they were not representative. In contrast, the former study 

238 indicated that a larger sample size is required to fully understand patterns in movement for 

239 leatherback turtles. 

240 When a study species is rare or endangered, small sample sizes are unavoidable, but their 
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241 value is amplified because they may represent a larger proportion of the population 

242 (McMahon and Hays 2006). However, the scope of questions that can be addressed for such 

243 species through tracking and biologging are likely to be constrained by low sample sizes. 

244 Sample sizes of approximately ten tagged individuals have been useful in identifying 

245 responses to environmental variation, and possible drivers of movement of some species. For 

246 example, the diving behaviour of 10 satellite tracked female Antarctic fur seals 

247 (Arctocephalus gazella) highlighted their differential use of oceanographic features (Lea and 

248 Dubroca 2003). Insights into size or sex-based differences in behaviour can also become 

249 evident. For example, active acoustic tracking of only two male and two female benthic 

250 catsharks during a 14-day period (Sims et al. 2001) suggested sexual segregation by habitat. 

251 This result stimulated further studies that revealed the mechanisms underlying these sex 

252 differences in behavioural patterns (e.g., Wearmouth et al. 2012). 

253 To further exemplify how small sample sizes can lead to insightful sex-based differences in 

254 marine megafauna, we used a simulation exercise to explore how differences in breeding 

255 periodicity between male and female turtles can be detected with even small increments in 

256 sample size. Understanding these differences in breeding periodicity is important because 

257 turtles have temperature-dependent sex determination, and the rising incubation temperatures 

258 due to climate change will likely produce increasingly sex ratios skewed towards females. 

259 For our simulation, we used information published in a recent study for loggerhead turtles 

260 (Caretta caretta) in the Mediterranean, where males tend to return to breed after one year 

261 with probability of 0.76 (pmale=0.76) whereas females returned after longer intervals (i.e., the 

262 probability of returning to breed after one year pfemale=0.00) (Hays et al. 2014a). These 

263 probabilities were originally based on tracks from 25 individuals (17 males and 8 females) 

264 but we use them here to show the likelihood of the same biological conclusion being reached 

265 with smaller sample sizes. Using these probabilities, and assuming equal numbers of tracked 

266 males and females, we ran 1000 simulations for sample sizes ranging from 1 to 8 female and 

267 male individuals, randomly selecting the number of males and females that would be 

268 recorded to return after one year. When only three males and three females were tracked, the 

 

269 probability of recording a significant difference in numbers returning was only 0.331, but this 

270 rose to 0.983 when eight females and eight males were tracked (Figure 3A). This simulation 

271 exercise illustrates how researchers can use available data to optimise the number of 

272 deployments they need to address their question of interest. 
273 

274 Defining the norm (sample sizes of 10s up to 100) 
275 A better assessment of overall patterns of movement or behaviour at the population scale may 

276 be possible after tens of individuals of the same species have been tagged. While specifying 

277 the sample size needed for these types of studies is challenging, simulation exercises can be 

278 useful as exploratory tools to understand how much data are needed. Using another 

279 simulation exercise, we illustrate how confidence in observed results can be improved by 

280 sample sizes increasing from < 10 to a few tens of tags (Figure 3B). As an example of a study 

281 question, we focused here on what is the clutch frequency of turtles, i.e., the frequency with 

282 which eggs are laid within and among seasons, which is a critical life-history trait for 

283 quantifying population trends of turtles. The number of nesting females in a population is 

284 typically determined by counting tracks on beaches associated with nesting and then dividing 

285 by a nominal mean frequency of clutches. A recent study that tracked 10 green turtles 

286 (Chelonia mydas) in Diego Garcia, Indian Ocean, showed that their mean clutch frequency 

287 was six (Esteban et al. 2017), and led to the understanding that the population at this locality 

288 was about half the size of that estimated from previous studies that patrolled beaches on foot 

289 to intercept females when they nested. Using the probabilities obtained in Esteban et al. 
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290 (2017), we can simulate how the confidence limits on estimates of mean clutch frequency 

291 change with sample size. For each sample size (3 – 40), we ran 1000 simulations and then 

292 determined the standard deviation (SD) of the estimate for mean clutch frequency, which 

293 reflects the variation in the estimate of mean clutch frequency that might be recorded with 

294 that sample size (Figure 3B). When the sample size was three, the SD was ~ 1.20 (i.e., the 

295 95% confidence limit on the estimate of mean clutch frequency that might have been derived 

296 was +/- 3 clutches), but when the sample size was increased to 30, the SD reduced to 0.38, 

297 and to 0.34 when the sample size was 40 individuals (i.e., 95% confidence limit = +/- 0.11 

298 clutches). Examples of improvement on previous results through increased sample sizes are 

299 also found in published literature. For example, assessment of the diving behaviour of 13 

300 female northern elephant seals showed maximum dive durations of 106 minutes (Le Boeuf et 

301 al. 2000) and was confirmed as a good approximation in a later study with a sample of 211 

302 females aimed at identifying drivers of their large-scale distribution and inter-annual 

303 variability in foraging and breeding success (Robinson et al. 2012). Despite the different 

304 focus of these two studies, the later data confirmed that the earlier study had a large enough 

305 sample size to provide a general understanding of the dive behaviour of the species. 

306 Commonly, tagging studies aim to quantify space use and identify important utilisation 

307 areas (e.g., 50 % kernel densities). Such estimates are highly sensitive to sample size due to 

308 variability in movement among individuals, as shown by Gutowsky et al (2015) with 

309 albatrosses. That study demonstrated that the sensitivity of group-level space-use estimates 

310 stabilizes with increasing sample size of albatrosses, in that the areas covered by space use 

311 estimates generated from datasets comprising different individuals roughly approached an 

312 asymptote in median area estimates around a mean sample size of 17 – 21 individuals. 

313 However, the range of estimates remained large with the 95% and 50% contour area 

314 estimates varying by 7.2 and 1 million km2, respectively. For other seabirds, like European 

315 shags (Phalacrocorax aristotelis) and Black-legged kittiwakes (Rissa tridactyla), sample 

316 sizes of 39 and 83 have been used, respectively, to estimate space use (Soanes et al. 2013). 

317 Estimates of area utilisation are also highly dependent on the animal’s range and the context 

318 of habitat utilisation. For example, a sample size of 30 was sufficient for calculating the area 

319 used by flatback turtles (Natator depressus) during the nesting season but not for calculating 

320 the typically larger area used post breeding (Thums et al. 2018b). 

321 To demonstrate the effect of sample size on utilization area and kernel estimates for a 

322 range of species, we used a resampling approach to test whether an asymptotic relationship 

323 between sample size and monthly utilisation area estimates was attained. We did this for 

324 probability contours of 50% and 25% (typically considered of relevance to marine spatial 

325 planning) using tracking data from six different species in the Pacific Ocean (results detailed 

326 in Figure 4). Together, these studies demonstrate the power and limitations of a moderate 

327 number of tags to improve our understanding of animal movements. Another example 

328 showing how an increasing number of tracks can assist our understanding of animal 

329 movement was a study tracking 75 loggerhead turtles across the Mediterranean finding that 

330 they exhibit disparate dispersal patterns. The study highlighted that extending protected areas 

331 to include 10 of the core sites used by loggerhead turtles would result in better protection for 

332 64 % of the population (Schofield et al. 2013). 

333 To depict the effect of sample size on our understanding of dispersal of individuals from a 

334 population, we used a simulation of a hypothetical population of 100 individuals in location 

335 ‘X’ where tagging took place, and then assumed equal probabilities of 0.65, 0.30 and 0.05 for 

336 individuals to go to location ‘1’, ‘2’ and ‘3’, respectively (Figure 3C). Increasing the number 

337 of randomly tagged individuals from 5 to 50, and repeating this procedure 10,000 times, 

338 showed that accurate detection of movements to location ‘3’ was only possible at the higher 

339 number of tags (n ~ 40). Moreover, precision around the percentage of the population 
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340 travelling to each location increased with increasing numbers of tag deployments. In our 

341 example, 95% confidence intervals for the percentage of the population travelling to ‘1’ 

342 narrowed from between 61.0 – 69.1 % to between 64.1 – 66.0 % as sample size increased 

343 from 1 to 40 tags, with similar reductions obtained for the other locations. As we have 

344 demonstrated, power-analysis needs some understanding of the system to allow the model to 

345 be parameterised, and can be used to assess if there is further information likely to be 

346 obtained by tagging more individuals. However, it is important to highlight that simulation 

347 results only provide an idea of how many representative tracks are needed and do not account 

348 for the excess tags needed to account for potential problems with data acquisition, such as 

349 early tag failure or loss prior to exhaustion of battery, as mentioned earlier. So, interpretation 

350 of the results presented above are that little further detail would be gained after obtaining 

351 more than 40 representative tracks to answer a specific question about dispersal patterns. 

352 However, new and different questions may emerge to justify further tag deployments. 

353 Examples would include the need to assess inter-annual variability in movements or to 

354 address tagging sampling design to adjust not only for sample size but also sex ratio of 

355 animals tagged, size range, or range of capture and release sites. 

356 As sample size increases, improved evaluation of the use of marine protected areas (MPAs) 

357 also becomes possible. Although the following studies provide only examples of detected 

358 patterns for the sample size used, what is crucial here is that having a large enough sample 

359 size across different seasons, sites or stages (e.g., breeding versus non-breeding) allows 

360 detection of gradients across other variables of interest including environmental variables for 

361 habitat use detection. For example, acoustic tagging of 57 sharks showed that only half of the 

362 available protected space was used while sharks made excursions in and out of MPAs at 

363 consistent locations along the boundaries (Knip et al. 2012). Deployment of multiple tens of 

364 tags (simultaneous or staggered in time) can therefore, provide insight into the scale of 

365 spatio-temporal movements to assist tailoring MPA design for improved effectiveness. 

366 Similarly, tens of tags can assist the assessment of movement variability driven by changes in 

367 environmental conditions. For example, behavioural changes by 32 fur seals were associated 

368 with strong El Niño conditions (Lea et al. 2006), movement of 40 bonnethead sharks 

369 (Sphyrna tiburo) changed in association with decreased salinity due to freshwater discharge 

370 (Ubeda et al. 2009), and foraging success of 50 little penguins (Eudyptula minor) was shown 

371 to relate to boundary current anomalies in different years (Carroll et al. 2016). Detection of 

372 philopatry in highly migratory species has also been possible when using a sample size of 

373 tens of tags. Jorgensen et al. (2010) showed high philopatry in the migratory behaviour of 

374 white sharks based on the results from 68 satellite-linked tags and revealed a predictive 

375 migratory cycle within the same network of coastal hotspots for a genetically distinct 

376 population. The larger sample sizes used in these examples enabled researchers to claim that 

377 their results were representative of the wider population of these species. 

378 Although an individual study might include only a few tags, sample sizes in the 10’s (and 

379 greater) can be obtained by pooling data across studies, allowing researchers to pose new 

380 questions and search for general patterns. For example, the compilation of eight studies with 

381 low individual sample sizes (1 – 13 summing to 50 tags) across the Mediterranean Sea and 

382 the Pacific, Atlantic and Indian oceans confirmed previous concerns of high sea turtle 

383 mortalities by fisheries (Hays et al. 2003). The same applies for multispecies studies, where 

384 even low sample sizes for individuals of different species pooled together allow some level of 

385 inter-species comparisons. For example, informed comparison of vertical movement patterns 

386 and their statistical properties across taxa were obtained with data from 31 individuals from 

387 seven species (Sims et al. 2008). While the sample size of the later study was relatively small, 

388 the high resolution of the diving data contained in the tracks, which included over one million 

389 data points, allow for a comparative multispecies analysis. 
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390 

391 Defining population parameters (sample sizes approximately 100) 
392 With the implicit assumption that each tag results in an appropriate amount of data (e.g., 

393 number of locations and enough resolution), improved accuracy in our understanding of 

394 patterns (e.g., space use) can be obtained using a larger number of tagged animals (see 

395 examples of northern elephant seals and salmon sharks, Lamna ditropis, in Figure 4A). As 

396 sample sizes approach 100, it becomes possible to assess movement behaviour between 

397 populations of the same species and across large areas. For example, 101 tracks of 

398 leatherback turtles were used to define areas of high susceptibility to by-catch across the 

399 Atlantic Ocean (Fossette et al. 2014). In this example, a large sample size was necessary to 

400 encompass a range of different nesting populations, all of which foraged within the Atlantic. 

401 Likewise, Breed et al. (2006) investigated segregation of seasonal foraging habitats of grey 

402 seals from 95 tagged individuals. In cases where sex or age leads to segregated behaviour, the 

403 number of tags needed to detect specific patterns of movement will necessarily be inflated to 

404 identify potential behavioural mechanisms, and more so if a comparison across populations is 

405 to be completed. As the spatial scale under consideration increases, so too does the minimum 

406 number of tags, until even sample sizes of 100 may be insufficient. For example, when 

407 Sequeira et al. (2013) compiled all publicly available tracking data for whale sharks, they 

408 found that the existing ~100 tracks (average 90 d deployment with a range from hours to > 3 

409 years) were insufficient to reveal global migration patterns. 

410 Assessment of animal health and increasing anthropogenic impacts on movement is also 

411 highly relevant and urgently sought for many species. For example, data from 136 West 

412 Indian manatees was used to assess rehabilitation success following release (Adimey et al. 

413 2016). However, the large sample sizes needed for assessing effects at the species-level are 

414 not commonly available (but see Fossette et al. 2014), and pooling data across species of the 

415 same guild might provide the means to obtain relevant information. This was the case for a 

416 dataset of 113 oceanic sharks examined to detect spatial overlap with commercial fisheries. 

417 This dataset comprised tracks from 6 species (average of 17 tags per species) and led to the 

418 revelation that shark hotspots in the North Atlantic Ocean may be at risk from overfishing 

419 (Queiroz et al. 2016). Similarly, passive acoustic tracking of 116 reef sharks of five species 

420 (average of 17 tags per species) together with 25 hawksbill turtles (Eretmochelys imbricata) 

421 determined the long-term, fine-scale space use inside and outside a marine protected area 

422 (MPA) for each species. This study also revealed that a modest increase in MPA size could 

423 lead to a 34% increase in spatial coverage of these predator’s movements (Lea et al. 2016). 
424 

425 Moving toward big data analysis (very large sample sizes; >> 100) 
426 Common areas of space use at large spatial scales can be revealed using a large number of 

427 tagged individuals (>> 100). For example, Wakefield et al. (2013) used tracking data of 184 

428 northern gannets from different breeding areas to assess the levels of foraging area overlap 

429 around the British Isles. A much larger tracking dataset of 287 individual elephant seals led to 

430 an improved understanding of how these seals utilise the circumpolar habitat in the Southern 

431 Ocean (Hindell et al. 2016). Large datasets also allow application of big data approaches, 

432 which are scalable to very large numbers of tracks (e.g., as used in human mobility studies). 

433 A recent example of the application of such approaches to tracking data of 272 southern 

434 elephant seals showed that, despite idiosyncrasies in movement, a clear signature of directed 

435 movement emerged, highlighting the presence of intrinsic drivers of movement such as 

436 memory (Rodriguez et al. 2017). In addition, samples size in the hundreds can reveal 

437 correlated or coordinated movement patterns among individuals. An example is the coherent 

438 movement patterns suggested by the sonification of movement (i.e., the generation of sound 

439 based on the movement patterns in the tracking data) of over 300 northern elephant seals 
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440 tagged over ~ 10 years in the Northeast Pacific Ocean (Duarte et al. 2018). These studies 

441 show that the use of techniques that can deal with big data (Leek et al. 2017) might bring new 

442 insights to movement ecology. 

443 Very large sample sizes of single species can also be useful to increase the probability of 

444 defining events not commonly detected using tags, such as colonization of a new site or 

445 mortality (Hays et al. 2003). To illustrate this point, we extended the simulation exercise 

446 presented above to consider how many tags would be needed to detect a rare event with a 

447 probability of 0.001 and showed that hundreds of tags would be required (Figure 3E). 

448 For multiple species, the quantity of information returned climbs dramatically as sample 

449 size increases to many hundreds, particularly for assessing movement patterns in response to 

450 resource fields within the same geographical extent. For example, in east Antarctica, a 

451 compilation of 268 satellite tracks for six top predators including penguins, albatrosses and 

452 seals revealed areas of particular ecological significance for these multiple species (Raymond 

453 et al. 2015). Maxwell et al. (2013) used tracks from 685 individuals of eight species in the 

454 North Pacific, to show high variability in the distribution of cumulative impacts across 

455 species and highlight that effective spatial management will need to account for trade-offs 

456 among stressors. These individuals had been tagged as part of the Tagging of Pacific 

457 Predators (TOPP) project, a much larger collaborative effort under the Census of Marine Life 

458 field programme, which led to the deployment of an unprecedented number of tags (4,300). 

459 Of these, 1791 tracks were used in a single study to assess space use by multiple predatory 

460 species in the Pacific Ocean highlighting hotspots, migration pathways, and niche 

461 partitioning among species (Block et al. 2011), and was used to predict how climate change 

462 will affect the available habitat for different species (Hazen et al. 2013). Another subset of 

463 1,648 tracks representing 14 species was also used to show annual patterns of movements 

464 through the high seas and across geopolitical boundaries in the Pacific Ocean (Harrison et al. 

465 2018). Most recently, the coastal movements of 2181 individuals from 92 species including 

466 fish, sharks, turtles and marine mammals were used to identify four distinct functional 

467 movement classes in the coastal waters of Australia, with these classes emerging only 

468 through aggregating data across the entire dataset (Brodie et al. 2018). Finally, the Marine 

469 Megafauna Movement Analytical Program (MMMAP, mmmap.wordpress.com) used > 2,500 

470 individual tracks across 50 species of marine vertebrates including whales, sharks, seals, 

471 seabirds, polar bears, sirenians, and turtles, to show that, unlike terrestrial animals, movement 

472 patterns in marine animals are strongly conserved across species regardless of evolutionary 

473 history, with movements being more complex in the coastal than in the open ocean (Sequeira 

474 et al. 2018). As these large aggregated datasets increase further in size, their temporal and 

475 spatial coverage may become sufficient to retrospectively detect signals of climate change or 

476 other perturbations in the movement patterns of component species (Weimerskirch et al. 

477 2012). 

478 In the last decade, many tens of thousands of tags have been deployed on animals, and if 

479 shared, the resulting datasets will allow for powerful analysis at large spatio-temporal scales 

480 (Thums et al. 2018a). Such datasets can assist in answering topical questions (Hays et al. 

481 2016), refine conservation benefits (Allen and Singh 2016), and facilitate the use of big data 

482 approaches to enhance our understanding of animal movements (Meekan et al. 2017, 

483 Rodriguez et al. 2017). The advantages of data sharing for researchers are clear (Nguyen et 

484 al. 2017), and well-recognised in some fields of scientific inquiry such as molecular ecology 

485 and physical oceanography (ncbi.nlm.nih.gov/genbank; aoml.noaa.gov/envids/gld). 

486 Encouragingly, some tracking programs already have some type of open data policy, and a 

487 large range of online repositories are now available (Campbell et al. 2016), including: 

488 Zoatrack (Dwyer et al. 2015), Movebank (movebank.org), the Integrated Marine Observing 

489 System (IMOS; imos.org.au), and the Ocean Tracking Network (OTN; 
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490 oceantrackingnetwork.org). The increasing use of telemetry technology also supports 

491 unprecedented opportunities for collaboration among researchers studying different species. 

492 By combining satellite tracking with acoustic detection and making relatively minor 

493 compromises on equipment sampling parameters (i.e., scanning range of tag frequencies and 

494 using collaborative acoustic monitoring arrays), there is potential for researchers to expand 

495 the spatial and temporal range of tracking efforts and collect data for multiple species 

496 simultaneously (Lidgard et al. 2014, Aven et al. 2015). The big, but heterogeneous data 

497 acquired by pooling datasets from a variety of sources will present a challenge for analysis, 

498 data visualization and storage. Ways to overcome such challenges have already been 

499 addressed in other disciplines. For example, studies of human mobility interrogate massive 

500 and rapidly-growing databases of geolocations available from smart phones and internet 

501 records, which describe the movements of humans (Gonzalez et al. 2008). Although such 

502 studies focus on a single species (humans; Homo sapiens), they have shown the power of data 

503 encompassing tens of thousands of individuals to address questions associated with collective 

504 responses and with processes occurring at the population level. Great examples include the 

505 study of epidemics (see gleamviz.org), transmission of culture or mood (Mocanu et al. 2013), 

506 or the development of models describing mobility patterns (e.g., radiation model; Simini et 

507 al. 2012). 
508 

509 Conclusion 
510 The answer to “how many animals should be tracked?” is intrinsically dependent on the 

511 species of interest, on the tagging methods used, and – primarily – on the question that needs 

512 to be addressed, including spatial and temporal coverage (see examples in Table 1). We 

513 suggest that tracking studies usually develop in stages, including (i) an initial phase of 

514 ‘innovation and discovery’ that commonly involves small sample sizes (N ≤ 10), through to 

515 (ii) a stage of ‘confirmation and consolidation’ of results with intermediate sample sizes (10 

516 < N ≤ 100), and lastly to (iii) more synthetic, overarching, and inter-disciplinary studies for 

517 larger sample sizes (N >> 100). At each stage, the impact of the sample size on the key 

518 conclusions can be assessed (e.g. the proportion of individuals travelling to different sites) 

519 and the outcomes of this assessment can be used to objectively plan how the sample size 

520 needs to be increased to answer different questions with the required level of confidence. As 

521 sample size increases, both in relation to the number of individuals tracked and the length of 

522 individual tracks, there is improved ability to resolve a range of questions associated with 

523 movement, such as home-range estimates, migration patterns including identification of high- 

524 use corridors, migration distance and variability in destinations, and foraging search patterns. 

525 How large a sample size is needed to resolve these various movement components to a 

526 certain level of confidence will depend on the extent of individual variability and on the 

527 behaviour of the species being tracked. 

528 We caution that the same given number of tags can also lead to very different data 

529 depending on when the tags are deployed and the duration of the tag deployment. For 

530 example, for pinnipeds, tagging the individuals close to molting may result in a track of very 

531 short duration with the tag coming off before its battery is exhausted, while post-molt 

532 deployments will likely result in eight to nine months of tracking data (Treasure et al. 2017). 

533 For species that display different seasonal movement patterns, such as sirenians, differences 

534 in the data obtained with the same sample sizes can vary as much as detection of little 

535 movement in the peaks of summer or winter, to hundreds of kms of movement being captured 

536 in spring and fall (Aven et al. 2016). In the latter example, if a tag continues to function for 9- 

537 10 months, both high resolution local data and wider regional habitat use can be obtained. In 

538 such cases, the timing and duration of a small number of tags may yield more or better 

539 information than larger sample sizes deployed at the wrong time. Moreover, as variability 
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540 increases, so too will the sample size needed to resolve research questions. Similarly, 

541 variability has implications in studies pooling datasets across species and aiming to make 

542 inferences on comparisons across groups. In such cases, the number of individuals 

543 representing each specific group will affect the high-level inferences that can be made based 

544 on the pooled datasets. Comparing changes in space use over time is only as powerful as the 

545 smallest within-year group size, however, pooled datasets are generally useful to draw 

546 conclusions across groups. 

547 We suggest that the planning of a tracking study should include a thorough search of the 

548 published literature where similar questions have been addressed (even if for other species). 

549 For example, studies provided in Table 1 show the types of questions that have been asked 

550 for species of different guilds with increasing sample size, and can be used as guide for 

551 minimum numbers required by future studies. If prior information is available for the specific 

552 study species, then the use of simulation exercises similar to those presented in Figure 3 and 

553 Figure 4 (refer to code made available in SI) can be informative. Also, when estimating 

554 utilisation areas and kernel densities, a full evaluation of sensitivity to sample size should be 

555 carried out and results should be reported with the confidence estimates (Figure 4). 

556 It is often not possible to do a priori assessments of the importance of sample size as the 

557 various tracking outcomes are not known. In such cases, we suggest that the question to be 

558 addressed is explicitly defined so it becomes clear in which phase of research the question 

559 falls, i.e., ‘innovation and discovery’, ‘confirmation or consolidation’, or ‘synthetic, 

560 overarching, inter-disciplinary approach’. Depending on the phase, the relative sample size 

561 (small, intermediate or large) becomes easier to estimate. Once this target sample size has 

562 been identified, then it becomes useful to consult Table 1 to have an idea of the types of 

563 questions that have been addressed with specific sample sizes for different taxa. Generally, 

564 within each phase, the largest logistically feasible sample size should be employed, within 

565 ethical and logistical constraints. This is because larger sample sizes will provide greater 

566 confidence in species or population level inferences. However, sample sizes will necessarily 

567 be lower for rare or cryptic species, small or critically endangered populations, and when 

568 tagging may be too disruptive. The number of individuals tagged within populations, the 

569 amount and resolution of data, as well as, their accuracy also impact the types of questions 

570 that can be addressed. Therefore, in addition to the practical limitations in sample size in such 

571 situations, there will also be financial and research scope limitations. 

572 Recent advances made in the field of telemetry and bio-logging have led to an exponential 

573 increase in satellite telemetry studies (Thums et al. 2018a), with very large sample size (>> 

574 1000 tracks) recently starting to appear in the literature (e.g., Block et al. 2011, Brodie et al. 

575 2018, Sequeira et al. 2018). In spite of that, a sample size of one with sufficient track length 

576 can still lead to scientific insights. This is particularly relevant for species that have never 

577 been tracked before, when previous deployments have not been successful, or when testing 

578 new sensors (Lennox et al. 2017). In such situations, and where the current knowledge of a 

579 species’ movement is still in its infancy, any new insights from small sample sizes have the 

580 potential to significantly advance knowledge. In contrast, for species where tracking is well 

581 established (e.g., some seals or turtles and seabirds), the questions relating to population 

582 densities, biologically important areas, population structure or social networking will require 

583 tracks of many individuals, or can be addressed by retrospective analysis after combining 

584 existing data across studies and including multiple researchers. Clearly, there are many 

585 challenges to statistically estimate an appropriate sample size for telemetry studies across the 

586 many and varied contexts. Our review highlights these challenges and provides 

587 recommendations based on examples and data simulations to assist in decision making. 
588 
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Table 1: Summary of examples of information that has been captured using different sample sizes of tags (N) for seabirds, sharks, turtles, 

943 and pinnipeds, highlighting the types of questions that have been answered with different sample sizes. 

 

Table 1: Summary of examples of information that has been captured using different sample sizes of tags (N) for seabirds, sharks, turtles, 

and  pinnipeds, highlighting the types of questions that can be answered with different sample sizes. 

Question Birds Sharks Turtles Pinnipeds 

N = 1     

• Provide proof-of-

concept of 

methodology 

 

• Discovery of new 

behaviours 

 

• Demonstrated feasibility 

of satellite-based 

monitoring of 

movements of basking 

sharks (Priede 1984) 

• Detected >1000 km trip 

for leatherback turtles 

(Hughes et al. 1998) 

• Demonstrated the 

potential eco-

physiological capacity 

(aerobic limits) for 

loggerhead turtles 

(Hochscheid et al. 

2005) 

• Revealed link between 

swimming effort to 

depth-dependent, air-

mediated buoyancy and 

swim angle (Hays et al. 

2004c) 

• Proved that elephant seals 

could act as samplers of 

the environment 

providing an 8-month 

CTD hydrographic 

profile that allowed an 

assessment of the 

seasonal evolution of the 

upper ocean (Meredith et 

al. 2011) 

• First free ranging heart 

rate recorded for an adult 

female southern elephant 

seal during the post-

breeding migration 

(Hindell and Lea 1998) 

N <= 10     

Initial insights into: 

- Individual 

variability  

•  Revealed wandering 

albatrosses travel 

thousands of km in 

• Revealed that 

basking sharks exhibited 

extensive horizontal and 

• Recorded the first dive 

profiles outside the 

nesting season based on 

• Revealed the vertical 

distribution of southern 

elephant seal’s prey is 
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- scale of 

movements 

- drivers of 

movement 

 

Generate hypotheses 

foraging trips during an 

incubation shift 

(Jouventin and 

Weimerskirch 1990) 

vertical movements during 

winter rather than 

hibernating (Sims et al. 

2003) 

• Provided evidence 

for reverse diel vertical 

migration in basking 

sharks (Sims et al. 2005) 

• Revealed diel 

vertical migration for 10 

individuals (Sims et al. 

2006) 

3 individuals (Hays et 

al. 2004a) 

• Revealed that 9 

individuals all moved in 

disparate directions in 

the Atlantic Ocean 

(Hays et al. 2004b) 

tightly related to light-

level (Jaud et al. 2012) 

• Identified three distinct 

foraging patterns for 

Galapagos sea lions 

(Villegas-Amtmann et al. 

2008) 

10 < N < 100     

• Estimate space-use 

 

• Characterise spatio-

temporal patterns 

 

• Identify specific 

behaviours (e.g., sex 

and age differences) 

•  Defined space use for 

albatrosses (Gutowsky 

et al. 2015), shags and 

kittiwakes (Soanes et al. 

2013) 

• Showed that foraging 

success of penguins 

relates to boundary 

current anomalies in 

different years (Carroll 

et al. 2016) 

• Used to quantify the 

annual space-use 

patterns of basking 

sharks within political-

economic zones in the 

north-east Atlantic  

• Demonstrated that 

basking sharks 

seasonally migrate to 

mesopelagic tropical 

waters 

•  Confirmed that the 

species does not travel 

long distance (based on 

12 individuals) 

• Used to assess spatio-

temporal foraging 

patterns in the Northern 

Atlantic based on 21 

turtles (Fossette et al. 

2010) 

• Calculated the area used 

by flatback turtles while 

nesting (Thums et al. 

2018b) 

• Identified the 

probability of individual 

turtles using disparate 

foraging areas across 

the Mediterranean 

(Schofield et al. 2013) 

• Used to estimate the 

extent of movements and 

spatio-temporal habitat 

use for weaner southern 

elephant seals 

(McConnell et al. 2002) 

• Revealed diving 

behaviour showing 

maximum dive durations 

of 109 minutes (22.3 min 

± 4.6 SD and 312 m ± 

117 (SD) with a 

maximum depth of 1380 

m) for northern elephant 

seals (Le Boeuf et al. 

2000) 
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(Rodriguez-Cabello et 

al. 1998) 

• Revealed pronounced 

philopatry of female 

basking sharks (Sims 

2003) and of white 

sharks Jorgensen et al. 

(2010) 

• Confirmed high 

mortalities of sea turtles 

by fisheries (Hays et al. 

2003) 

• Identified the water 

bodies in the Southern 

Ocean where elephant 

seals improved their body 

condition (Biuw et al. 

2007) 

N ~ 100 or >> 100     

• Quantify habitat use 

over large spatial 

scales 

 

• Assess shifts in space 

use with time, among 

sub-populations or 

with gender, age class 

and period (e.g., 

breeding cycles) 

 

• Estimate 

susceptibility to 

interactions with 

human activities 

 

• Assessed the levels 

of foraging area overlap  

for northern gannets from 

different breeding areas 

Wakefield et al., (2013) 

•  

• Revealed that oceanic 

shark hotspots may be at 

risk from overfishing 

(Queiroz et al. 2016) 

• Used to define areas of 

high susceptibility for 

fisheries by-catch at the 

scale of the Atlantic 

Ocean based on 106 

tracks (Fossette et al. 

2014) 

• Led to a better 

understanding of how 

seals use the circumpolar 

habitat in the Southern 

Ocean based on 287 seals 

(Hindell et al. 2016). 

• Allowed application of 

big data approaches to 

show memory as an 

intrinsic driver of 

movement for southern 

elephant seals (Rodríguez 

et al. 2017) 

• Reveal correlated or 

coordinated movements 

from a 10-year  

movement dataset of 

northern elephant seals 

suggested through 
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• Allow multispecies 

assessments at large 

spatial scales 

sonification (Duarte et al. 

2018) 

• Revealed areas of particular ecological significance for these multiple species (Raymond et al. 2015) 

• Showed high variability in the distribution of cumulative impacts across multiple species Maxwell et al. (2013) 

• Highlighted hotspots, migration pathways, and niche partitioning among multiple species in the Pacific Ocean 

(Block et al. 2011) 

• Showed that movement patterns in marine animals are strongly conserved across species regardless of evolutionary 

history (Sequeira et al. 2018) 
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945 Figure legends 

946 Figure 1: Across a broad range of species and habitats, electronic tags are used to assess 

947 patterns of animal movement. Across studies a prevailing question is “how many animals 

948 need to be tagged?” To illustrate the breadth of tracking studies (a) shows an ocean sunfish 

949 (Mola mola) fitted with a satellite tag, (b) a jellyfish (Rhizostoma octopus) equipped with a 

950 time-depth recorder, (c) a hatchling green turtle (Chelonia mydas) equipped with a miniature 

951 acoustic tag, (d) a juvenile loggerhead sea turtle (Caretta caretta) equipped with an Argos 

952 satellite tag, (e) a ruddy turnstone (Arenaria interpres) equipped with a light-based 

953 geolocator tag on its leg, (f) a harbor seal (Phoca vitulina) with a “mobile phone tag” that 

954 relays Fastloc-GPS locations via the mobile phone network. In each panel the scale bar is 10 

955 cm. Photographs courtesy of Graeme Hays, Gower Coast Adventures, Joan Costa, George 

956 Balazs, Erik Kleyheeg and Paul Thompson. 
957 

958 Figure 2: Examples of tracking studies using various sample sizes to understand different 

959 animal movement and behaviours. A) Track of a great white shark showing a transoceanic 

960 migration from South Africa to north-western Australia (adapted from Bonfil et al. 2005); B) 

961 Track from a leatherback turtle revealing that the species was able to travel > 1000s of km 

962 (adapted from Hughes et al. 1998); C) Tracked movement of eight green turtles equipped off 

963 Diego Garcia, Chagos, used to evaluate effectiveness of marine protected areas in the region 

964 (adapted from Hays et al. 2014b); D) Movements of grey reef sharks in the Great Barrier 

965 Reef, Australia, showing site fidelity to single reefs (adapted from Heupel et al. 2010); E) 

966 Comparison of vertical movement patterns across taxa showing levy-like scaling laws 

967 (adapted from Sims et al. 2008); F) Satellite tag location estimates from great white sharks 

968 tagged along the central California coast, showing patterns of site fidelity and seasonal 

969 variations in movements (adapted from Jorgensen et al. 2010); G) Habitat use patterns of 

970 pelagic sharks in the North Atlantic Ocean, used to examine key areas of spatial overlap with 

971 longline fisheries (adapted from Queiroz et al. 2016); H) Networks of species-specific 

972 detections obtained from passive acoustic tracking of blacktip reef sharks, used to evaluate 

973 and subsequently update a marine protected area in the Seychelles (adapted from Lea et al. 

974 2016); I) Trajectories obtained for 272 southern elephant seals (left) and resulting occupancy 

975 map (right), used to identify movement patterns that indicated memory may play a role in the 

976 movement patterns of this species (adapted from Rodriguez et al. 2017); J) Global map of 

977 tracking dataset used to quantify the movement patterns of > 50 marine vertebrate species, 

978 showing movement patterns are strongly conserved across species and vary based on the 

979 habitats the animals move through (adapted from Sequeira et al. 2018). 
980 

981 Figure 3: Simulation examples to understand the effects of sample of size when addressing 

982 different key questions for the same guild (i.e., turtles). A) Probability of finding differences 

983 in breeding periodicity of loggerhead turtles by simulating the number of males and females 

984 that would be recorded to return after 1 year and then testing if there is a significant 

985 difference (p < 0.05) in the numbers of returning males and females for increasing sample 

986 sizes up to 10 individuals. B) Standard deviation of the estimate for mean clutch frequency 

987 for green turtles reflecting the variation that might be recorded for the mean estimate with 

988 different samples sizes. C) Percentage of individuals perceived to travel to locations ‘1’, ‘2’ 

989 and ‘3’ shown in the schematic representation displayed in the centre of the figure as the 

990 number of tags deployed increases from 5 to 40. The central scheme depicts movement 

991 dispersion and probabilities of detection of dispersion to different locations and detection of a 

992 rare event, with arrow width proportional to probability of dispersion from the tagging 

993 location X to each of the locations ‘1’, ‘2’ and ‘3’ (0.65, 0.30, and 0.05) for a population of 
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994 100 individuals. D) Percentage of the population expected to travel to each of the locations A, 
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995 B and C depicted in the central scheme showing a decrease in the confidence intervals as the 

996 number of tags increases. E) Representation of the confidence intervals for detection of 

997 possible rare events such as colonization of a new site. 
998 

999 Figure 4: Effects of sample size on estimates of utilisation area at core probability contours 

1000 (50%, and 25%) as function of sample size for six marine predator species. Bootstrapped 

1001 estimates of area (100,000 km2) as a function of sample size (number of individuals tracked) 

1002 of the 50% (light blue) and 25% (dark blue) contours of population utilization distributions 

1003 calculated for electronically tracked marine animals. A) Estimates for five migratory marine 

1004 predators for the month of September pooled across years (2002-2009; available sample sizes 

1005 varied across species). B) Monthly estimates for white shark (pooled across years, 2000- 

1006 2007, available sample sizes varied across months). Circles represent mean values and lines 

1007 represent standard deviations. Adapted from Harrison (2012) using data from the Tagging of 

1008 Pacific Predators project (Block et al. 2011). The evaluated dataset consisted of 604 

1009 individual tracks and sample sizes varied across species (12 to 231 individuals) and across 

1010 months (1 to 114 individuals). Plots show means and standard deviation of home range area, 

1011 with mean estimates initially increasing as a function of the number of individuals tracked 

1012 (the home range area of one individual is likely much smaller than the utilization distribution 

1013 of 10 individuals). Once most of the variability in the population is captured, the estimate of 

1014 space use of the population stabilizes resulting in an asymptote in the plot. Estimates of home 

1015 range size approached an asymptote for Northern elephant seals and salmon sharks (species 

1016 with datasets 57 to 108 individuals) at sample sizes of 20-40 individuals in most months at all 

1017 contour levels. In contrast, for estimates calculated from samples sizes between 10-30 

1018 individuals for (A) black-footed albatross, Laysan albatross, sooty shearwater, and Pacific 

1019 bluefin tuna that were recorded to undertake their trans-Pacific migration, and (B) white 

1020 sharks from June through September), the sample size was insufficient to observe an 

1021 asymptote in estimates of utilisation area (especially at the largest probability contours that 

1022 would capture rare events). There were also large confidence intervals around the area 

1023 estimates for these species’ datasets, implying that larger datasets were needed to increase the 

1024 precision and accuracy of the estimates. 
 

1025 Figure 1: Across a broad range of species and habitats, electronic tags are used to assess 

1026 patterns of animal movement. 

1027 Across studies a prevailing question is “how many animals need to be tagged?”. To illustrate 

1028 the breadth of tracking studies (a) shows an ocean sunfish (Mola mola) fitted with a satellite 

1029 tag, (b) a jellyfish (Rhizostoma octopus) equipped with a time-depth recorder, (c) a hatchling 

1030 green turtle (Chelonia mydas) equipped with a miniature acoustic tag, (d) a juvenile 

1031 loggerhead sea turtle (Caretta caretta) equipped with an Argos satellite tag, (e) a ruddy 

1032 turnstone (Arenaria interpres) equipped with a light-based geolocator tag on its leg, (f) a 

1033 harbor seal (Phoca vitulina) with a “mobile phone tag” that relays Fastloc-GPS locations via 

1034 the mobile phone network. In each panel the scale bar is 10 cm. Photographs courtesy of 

1035 Graeme Hays, Gower Coast Adventures, Joan Costa, George Balazs, Erik Kleyheeg and Paul 

1036 Thompson. 
 

1038 Figure 2: Examples of tracking studies using various sample sizes to understand different 

1039 animal movement and behaviours 

1040 A) Track of a great white shark showing a transoceanic migration from South Africa to north- 

1041 western Australia (adapted from Bonfil et al. 2005); B) Track from a leatherback turtle 
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1042 revealing that the species was able to travel > 1000s of km (adapted from Hughes et al. 

1043 1998); C) Tracked movement of eight green turtles equipped off Diego Garcia, Chagos, used 

1044 to evaluate effectiveness of marine protected areas in the region (adapted from Hays et al. 

1045 2014b); D) Movements of grey reef sharks in the Great Barrier Reef, Australia, showing site 

1046 fidelity to single reefs (adapted from Heupel et al. 2010); E) Comparison of vertical 

1047 movement patterns across taxa showing levy-like scaling laws (adapted from Sims et al. 

1048 2008); F) Satellite tag location estimates from great white sharks tagged along the central 

1049 California coast, showing patterns of site fidelity and seasonal variations in movements 

1050 (adapted from Jorgensen et al. 2010); G) Habitat use patterns of pelagic sharks in the North 

1051 Atlantic ocean, used to examine key areas of spatial overlap with longline fisheries (adapted 

1052 from Queiroz et al. 2016); H) Networks of species-specific detections obtained from passive 

1053 acoustic tracking of blacktip reef sharks, used to evaluate and subsequently update a marine 

1054 protected area in the Seychelles (adapted from Lea et al. 2016); I) Trajectories obtained for 

1055 272 southern elephant seals (left) and resulting occupancy map (right), used to identify 

1056 movement patterns that indicated memory may play a role in the movement patterns of this 

1057 species (adapted from Rodriguez et al. 2017); J) Global map of tracking dataset used to 

1058 quantify the movement patterns of > 50 marine vertebrate species, showing movement 

1059 patterns are strongly conserved across species and vary based on the habitats the animals 

1060 move through (adapted from Sequeira et al. 2018). 

 
 

1062 Figure 3: Simulation examples to understand the effects of sample of size when addressing 

1063 different key questions for the same guild (i.e., turtles). 

1064 A) Probability of finding differences in breeding periodicity of loggerhead turtles by 

1065 simulating the number of males and females that would be recorded to return after 1 year and 

1066 then testing if there is a significant difference (p < 0.05) in the numbers of returning males 

1067 and females for increasing sample sizes up to 10 individuals. B) Standard deviation of the 

1068 estimate for mean clutch frequency for green turtles reflecting the variation that might be 

1069 recorded for the mean estimate with different samples sizes. C) Percentage of individuals 

1070 perceived to travel to locations ‘1’, ‘2’ and ‘3’shown in the schematic representation 

1071 displayed in the centre of the figure as the number of tags deployed increases from 5 to 40. 

1072 The central scheme depicts movement dispersion and probabilities of detection of dispersion 

1073 to different locations and detection of a rare event, with arrow width a proportional to 

1074 probability of dispersion from the tagging location X to each of the locations ‘1’, ‘2’ and ‘3’ 

1075 (0.65, 0.30, and 0.05) for a population of 100 individuals. D) Percentage of the population 

1076 expected to travel to each of the locations ‘1’, ‘2’ and ‘3’ depicted in the central scheme 

1077 showing a decrease in the confidence intervals as the number of tags increases. E) 

1078 Representation of the confidence intervals for detection of possible rare events such as 

1079 colonization of a new site. 
 

1081 Figure 4: Effects of sample size on estimates of utilisation area at core probability contours 

1082 (50%, and 25%) as function of sample size for six marine predator species. 

1083 Bootstrapped estimates of area (100,000 km2) as a function of sample size (number of 

1084 individuals tracked) of the 50% (light blue) and 25% (dark blue) contours of population 

1085 utilization distributions calculated for electronically tracked marine animals. A) Estimates for 

1086 five migratory marine predators for the month of September pooled across years (2002-2009; 

1087 available sample sizes varied across species). B) Monthly estimates for white shark (pooled 

1088 across years, 2000-2007, available sample sizes varied across months). Circles represent 

1089 mean values and lines represent standard deviations. Adapted from Harrison (2012) using 

1090 data from the Tagging of Pacific Predators project (Block et al. 2011). The evaluated dataset 
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1091 consisted of 604 individual tracks and sample sizes varied across species (12 to 231 

1092 individuals) and across months (1 to 114 individuals). Plots show means and standard 

1093 deviation of home range area, with mean estimates initially increasing as a function of the 

1094 number of individuals tracked (the home range area of one individual is likely much smaller 

1095 than the utilization distribution of 10 individuals). Once most of the variability in the 

1096 population is captured, the estimate of space use of the population stabilizes resulting in an 

1097 asymptote in the plot. Estimates of home range size approached an asymptote for Northern 

1098 elephant seals and salmon sharks (species with datasets 57 to 108 individuals) at sample sizes 

1099 of 20-40 individuals in most months at all contour levels. In contrast, for estimates calculated 

1100 from samples sizes between 10-30 individuals for (A) black-footed albatross, Laysan 

1101 albatross, sooty shearwater, and Pacific bluefin tuna that were recorded to undertake their 

1102 trans-Pacific migration, and (B) white sharks from June through September), the sample size 

1103 was insufficient to observe an asymptote in estimates of utilisation area (especially at the 

1104 largest probability contours that would capture rare events). There were also large confidence 

1105 intervals around the area estimates for these species’ datasets, implying that larger datasets 

1106 were needed to increase the precision and accuracy of the estimates. 
1107 
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