
 

 

Review 

A Review of Current Coral Monitoring Tools/ 
Diagnostic Methods & Introducing a New Tool to the 
Coral Health Toolkit 

Jonathan Teague1*, Michael J. Allen2,3, John C.C. Day 1, Thomas B. Scott1 

1 Interface Analysis Centre (IAC), HH Wills Physics Laboratory, Bristol University, Tyndall Ave, Bristol BS8 

1TL 
2 Plymouth Marine Laboratory (PML), Prospect Place, The Hoe, Plymouth PL1 3DH 
3   College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, 

Exeter, EX4 4QD, UK 

* Correspondence: jt16874@bristol.ac.uk 

 

 

Abstract: Rapidly and repeatedly ascertaining the health status of coral reefs is an ever more 

pressing issue as part of activities to understand and monitor the damaging impacts of climate 

change. A combination of increasing ocean temperatures, acidity and frequency of extreme storm 

events continues to alter the marine environment beyond what sensitive organisms, such as coral, 

can cope with. It is therefore vital to establish technologies and validated methods to provide a 

metric or indication into the health of these organisms. There are currently many surveys and 

techniques used by coral scientists to uncover insights into the status and assessment of coral reefs, 

from colour wheels to multispectral satellite surveys. Here we outline an array of current techniques 

and methods focused specifically on coral monitoring and health diagnosis, ranging across the 

length scales from simple diver-based surveyance to satellite remote sensing. The technique of using 

hyperspectral fluorescence imaging is also introduced as a viable novel addition to aid and extend 

the current toolbox of available technologies. 
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1 .Introduction: Corals 

Coral reefs are critically important for the ecosystem goods and services they provide, especially 

to coastal tropical and subtropical nations (Moberg and Folke, 1999). Corals are susceptible to a 

number of diseases as they have low tolerance to variations in environmental conditions including 

temperature, salinity, and solar radiation. Coral disease is one of the highest causes of reef 

degradation and has been increasing worldwide since first observed in the 1970s, particularly in the 

Caribbean, Red Sea and Indian Ocean. Coral disease has been linked to declines in water quality 

and fish stocks, heat stress and, more recently, to ocean acidification driven by anthropogenic 

activity(Bongiorni and Rinkevich, 2005; Ravindran and Raghukumar, 2006; Cervino et al., 2008). 

Sustained periods of coral stress and disease can lead to colony-wide coral death, representing a 

significant concern for the 275 million people who live within 30 km of these ecosystems, and upon 

which livelihoods and food security is based (Lamb et al., 2014). Coral reefs have an evidenced 

intrinsic value,  provide an array of ecosystem services such as coastal defence, fisheries and a 

biomineralization sink for CO2; for example one small reef (10 × 20 km) in the Philippines was 

calculated to have an estimated economic value of $38 million USD/year(Cruz-Trinidad et al., 2011). 

This monetary value, whilst impressive, does not accurately reflect the global importance of coral 

reefs as a major source of irreplaceable dietary protein and a vital form of coastal protection for 

many developing countries(Woodley et al., 2015). Under the Intergovernmental Panel on Climate 
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Change (IPCC) representative Concentration Pathways (RCP) predictions both RCP4.5 & RCP8.5 

show that increased coral host susceptibility will be reached at a minimum of 90% of global reef 

locations by this year (2020)(Maynard et al., 2015), so especially now closer monitoring and 

protection of these extremely valuable natural assets is essential.  

Generally accepted causes of coral bleaching are external factors or triggers (stressors) such as 

water temperature fluctuation, changes in carbon chemistry, pollution or bacterial/viral 

infection(Glynn, 1993). However, bleaching is most commonly associated with environmental 

fluctuations caused by global climate change and increasing ocean temperatures, with higher than 

average sea surface temperatures (SSTs) and high solar radiation being the primary factor of large-

scale coral bleaching(Hoegh-Guldberg, 1999; Loya et al., 2001). Bleaching is defined by the loss of 

colour in any symbiotic partnership between zooxanthellae and marine benthic animals. It should 

be noted that numerous other animals besides corals share this relationship with zooxanthellae from 

sponges to nudibranch molluscs(Sheppard et al., 2017). The effects of bleaching is often evident with 

depressed growth and increased mortality in corals and is an adverse physiological response to the 

relatively extreme conditions being imposed by the surrounding environment(Douglas, 2003). 

Mass bleaching events were first scientifically described in 1984 by Glynn, since then 4 global 

bleaching events have been described in 1998, 2010, 2015, 2016 (Queensland University of 

Technology (QUT), 2017).Recent mass bleaching events (2015-16) affected up to 75% of the globally 

distributed locations surveyed(Hughes et al., 2017) and is comparable in scale with that of the 1997–

1998 event, where 74% of the same 100 locations surveyed bleached again after recovering. Global 

climate-driven bleaching events are more frequently coinciding with El Niño–Southern Oscillation 

(ENSO) because average tropical sea surface temperatures (SST) increase, as an effect of global 

warming, La Niña conditions are becoming warmer than those observed during El Niño events 30 

years ago(Hughes et al., 2017). This means that as global climate continues to exert a greater 

warming influence on the oceans, SST will continue to rise along with the number and frequency of 

extreme heating events on coral reef systems. Coral bleaching is not necessarily a death sentence for 

the corals concerned, as colony recovery can occur if some individuals in the colony retain some 

symbionts within their cells not expelled during the bleaching process.  From this small residual 

symbiont population, the coral can repopulate symbionts back to ‘normal’ levels once the stressor 

reduces or environmental conditions improve. However, corals in a bleached state are more 

susceptible to diseases and predation which is why mortality rates can be high(Castro and Huber, 

2010). 

Coral disease is an increasing cause for concern as a compound threat to already compromised 

coral reef communities and is primarily caused by infections from microbes such as viruses and 

bacteria sometimes introduced by pollutant marine plastics and with many of the causative 

pathogens currently undocumented. Coral disease is often conjunctive with a combination of 

factors, many of which are intricately linked with those that trigger the bleaching effect. Recent 

studies have suggested that ocean plastic pollution can help to promote microbial colonization of 

pathogens, with the likelihood of disease increasing from 4% to 89% when corals are in contact with 

plastics(Lamb et al., 2018). This presents an especially urgent concern as estimates suggest that 

plastics comprise 50–80% of the litter in the oceans (an approximate total 12.7 million 

tonnes)(Cressey, 2016). 

Distinguishing healthy from diseased coral is important for colony health monitoring. Diseased 

corals are frequently characterised by abnormal pigmentation of compromised tissue (Palmer, Modi 

and Mydlarz, 2009) versus healthy counterparts. A diversity of diseases have been observed 

(approximately 30 diseases and syndromes affecting 150 species worldwide(Green and Bruckner, 

2000; Sutherland, Porter and Torres, 2004)) that affect the health of different corals, commonly 

referred to as ‘syndromes or ‘band/lines diseases’, with the term ‘disease’ used to describe 
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symptoms arising from a known pathogen, while ‘syndrome’ refers to effects displaying from an 

unknown causative agent, whether it be a pathogen, pollutant or climate condition such as 

warming(Sheppard et al., 2017) 

 

White, brown, pink, yellow and black line diseases are just some of these diseases that have been 

described in more detail (see Table 1 for examples) (Bongiorni and Rinkevich, 2005; Ravindran and 

Raghukumar, 2006; Cervino et al., 2008; Muller and Van Woesik, 2012) and are distinguished on the 

basis of the alteration of colour that the disease invokes. The majority of banding diseases, excepting 

white and black, are usually specific to particular geographic regions or species (Table 1)(Galloway, 

Bruckner and Woodley, 2009). Many existing diver-based survey techniques already accommodate 

disease assessments as they are emerging as a major cause of reef degradation. The presence of the 

disease is often easily identifiable but large areas cannot be quickly or thoroughly covered by human 

divers, and a degree of subjectivity is imported to the survey results. Instead the use of automated 

Image-based techniques could also be utilised to more quantifiably observe and monitor diseased 

colonies on the basis of distinct optical measuring the differences between diseased and healthy coral 

tissue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1, Common Coral Diseases; description, location, species affected. Adapted from Bruckner, 

2009(Galloway, Bruckner and Woodley, 2009). 
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Condition  Location and Species affected   Description  Source  

White band disease  

Australia, Egypt, Guam, India, 

Mauritius, Oman, Papua New 

Guinea, Philippines, Saudi 

Arabia, United Arab Emirates  

18 genera; 37 species  

A distinct band of white demarking recently 

exposed skeleton between healthy tissue and 

skeleton. The white band forms a moving 

front that advances a few mm per day, the 

cause is not known but may be triggered by 

contact with cyanobacteria. 

Antonius, 1981;1988;

 

1985a; 1987; 1995 Coles, 

1994; Korrubel and Riegl, 

1998; Riegl, 2002. 

(Antonius, 1981, 1985b, 

1987, 1988; Coles, 1994; 

Korrubel and Riegl, 1998; 

Riegl, 2002) 

 

Black band disease  

Australia, Egypt, Fiji, India, 

Jordan, Papua New Guinea, 

Philippines, Saudi Arabia, 

Tonga, South Africa, 

Commonwealth of North 

Mariana Islands, Palau  

19 genera, 49 species; 

Pocillopora and Acropora most 

frequently affected  

A darkly pigmented mat/band 1-300 mm 

wide on the surface of the coral that separates 

healthy tissue from recently denuded white 

skeleton. Primarily caused by a bacterium 

called Phormidium corallyticum. 

Antonius, 1985b; 1987; 

Chesher, 1985; Glazebrook 

and Steiner, 1994; Littler and 

Littler, 1996; Miller, 1996; 

Korrubel and Riegl, 1998; 

Cervino, 1998; Jordan and 

Samways, 2001; Dinesdale, 

2000, Willis et al., 2004. 

(Antonius, 1985a; Chesher, 

1985; Gates, Baghdasarian 

and Muscatine, 1992; 

Glazebrook and Streiner, 

1994; Miller and others, 

1996; Goreau et al., 1998; 

Korrubel and Riegl, 1998; 

Dinsdale, 2000; Jordan and 

Samways, 2001; Willis, 

Page and Dinsdale, 2013) 

Brown band disease  

Australia  

Acropora Formosa 

A ciliate identified as a member of the 

subclass Scuticociliatia has been shown to 

ingest intact symbiotic algae and is 

responsible for the visible signs of this 

disease. (A variable brown band).  

Dinsdale, 1994; Sweet and 

Bythell, 2012; Bourne et al., 

2008.(Dinsdale, 2000) 

Pink line disease 

Papua New Guinea, Sri Lanka, 

Kavaratti Island, Indian Ocean  

Porites compressa, P. lutea  

Band of pink pigmented tissue separating 

recently killed skeleton and normal tissue. 

Can begin as a small ring and progress 

outward. Associated with a cyanobacteria 

infection.  

Ravindran et al., 2001; 

Goreau et al. 1998. (Goreau 

et al., 1998; Ravindran, 

Raghukumar and 

Raghukumar, 2001) 

Yellow band disease  

United Arab Emirates; Arabian 

Gulf; Iran 

4 genera, 12 species  

A broad band of denuded skeleton, yellow in 

colour, adjacent to decaying and sloughing 

tissue; the band advances 9-20 mm/week.  

Korrubel and Riegl, 1998; 

Eghtesadi-Araghi, 

2011.(Korrubel and Riegl, 

1998; Eghtesadi-Araghi, 

2011) 

 

 

 

2. Current methods for Monitoring coral Health 
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Many reef monitoring programs do not prioritise coral bleaching and disease assessment due to 

the costly and time-consuming nature of in situ coral health surveys(Willis, Page and Dinsdale, 2002; 

Page et al., 2009, 2017; Ruiz-Moreno et al., 2012). Instead, monitoring programmes focus on 

population distribution and zonation which in many cases can be gained remotely using time-lapse 

satellite imagery, covering large areas. However, there are many factors that can be considered 

when looking at coral reef monitoring programs such as biological (percentage cover of corals, 

species composition and distribution), physical (Temperature, water quality) and socio-economic 

parameters (marine protected areas, fishing communities)(Hill and Wilkinson, 2004), this present 

study focuses on monitoring only biological parameters. Globally standardised assessments of coral 

health require detailed examination of all coral colonies within a designated survey area, which 

often involves lengthy person-intensive field time (Raymundo et al., 2008). Accordingly, these types 

of survey do not occur with great frequency as this would be prohibitively expensive. 

Figure 1, examples of some of the techniques used to determine coral 'health' from diver-based 

techniques to unmanned underwater vehicles (UUV’s) to remote sensing.  

The following sections describe diver-based survey techniques, where represent the ‘classical’ 

approach to coral surveyance.  

2.1 Diver based Survey Techniques  

Many coral health surveys utilise divers as ‘Observers’ recording data such as percentage cover 

of live coral which is a widely used metric of coral reef condition and utilised in studies that record 

coral reef decline and recovery across large spatial scales (Bruno and Selig, 2007). Divers offer a 

versatile set of tools for coral monitoring, being highly manouverable, adaptable and able to deliver 

precise results (training permitting) conversely, divers are expensive from the standpoint of 

finances, logistics and time. There are a number of different survey techniques that divers can 

employ for assessing coral reef health which are as detailed as follows; 

 

Manta Tow Method 
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The manta tow method provides a percentage estimate of living hard and soft coral, versus dead 

hard coral. The method involves towing a snorkelling diver (observer) at a constant speed behind a 

boat. The observer holds on to a manta board (a buoyant float with handles) attached to the boat by 

a length of rope. The observer makes a visual assessment of specific variables during each short pass 

of the manta tow and records this data on a data sheet(Hill and Wilkinson, 2004). One advantage of 

manta tow survey is that it is very simplistic requiring minimal equipment but allows large areas of 

reefs to be surveyed quickly. However, it requires multiple passes over a reef and a trained diver to 

be able to identify different coral species as well as the use of boat, which can’t be deployed on very 

shallow reefs. The long-term effects of increased noise pollution from the boats engine also needs to 

be considered, with studies suggesting suggesting displacement of reef fish settlements (Simpson et 

al., 2016) and potential disruption of coral larval settlements(Vermeij et al., 2010). 

Rugosity 

Rugosity, which is the state of ruggedness or irregularity of a surface(Magno and Villanoy, 2006), 

is a commonly used measurement by coral reef biologists. It refers to areas of high substrate rugosity 

allowing coral attachment which are sufficiently high enough on the reef profile to be free from the 

influence of seafloor sediment movements. Marine ecologists can use this measurement to 

identifying areas of high rugosity on the reef which offer increased cover for reef fish from predation 

and more places for the attachment of sessile organisms such as invertebrates, algae and 

corals(Friedlander and Parrish, 1998; Mumby, 2006; Fuad, 2010).  

Rugosity can be measured using a chain laid over the surface of the reef; a rugosity index, C, can be 

calculated as: 

C=1-d/l 

Where d is the horizontal distance covered by the chain that follows the contours of the reef and 

l is the length of the fully extended chain(Knudby and LeDrew, 2007; Fuad, 2010). Tin foil can also 

be employed to measure the surface area of individual coral colonies(Marsh Jr., 1970) by wrapping 

the colony in a known quantity of foil where the weight per unit area of the foil is known, where 

surface area can be calculated from amount of foil area and weight(Veal et al., 2010). These are 

typically no longer performed in situ on reefs as it is potentially destructive and very time 

consuming. It is however sometimes deployed in laboratories for surface area calculations (wax 

dipping can also be used in labs but has no application in situ). These techniques give an idea of the 

reef topography, but it requires physical contact with the reef, making it an invasive method and 

potentially damaging to the reef. With the advances in camera photography and photogrammetry 

that have occurred within the last decade these in situ invasive techniques for rugosity 

measurements have now become outdated. Photogrammetry (outlined later) represents a more 

rapid and accurate method for rugosity calculations. Both techniques can be carried out far more 

accurately and non-invasively using underwater photogrammetric techniques.  

Coral Recruitment 

Recruitment is the process of larval settlement by new coral individuals becoming part of the 

adult population. The rate, scale, and spatial structure of larval dispersal drives population 

replenishment dynamics. Typically, plates of material (i.e. Limestone) are positioned around a reef, 

raised from the benthos, and left for recruitment to occur with periodic checking(Schmidt-Roach, 

Kunzmann and Martinez Arbizu, 2008). The plates can then be photographed in situ using a 

fluorescent light source in order to more easily observe coral juveniles than standard white light 

conditions (Piniak et al., 2005). This is because fluorescence more easily identifies the juveniles with 

observed coral recruits 20–50% higher than under white light (Baird, Salih and Trevor-Jones, 2006). 

Fluorescence techniques rely on the naturally high abundance of fluorescent pigments found in 
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many corals (Papina et al., 2002) but are only useful in regions where fluorescent taxa are dominant, 

such as most Indo-Pacific reefs(Baird, Salih and Trevor-Jones, 2006). At the end of the selected 

recruitment period the test plates are removed from the environment and treated with a chlorine 

solution to remove organic matter and left to air dry. Using a stereoscopic microscope,  settled coral 

specimens are recorded by measuring the diameter of the pedal disc (part of the coral anatomy 

which it uses to attach to substrates) as well as the number and identity of primary corallites 

(Schmidt-Roach, Kunzmann and Martinez Arbizu, 2008).This survey gives an indication of the 

growth and recovery rates of corals and therefore reef resilience as the recruits represent the 

continuation of the reef lifecycle. 

Transects 

 A transect is an arbitrary line across a whole or part of a habitat for the purpose of an ecological 

survey. Typical transect surveys record the percentage cover of different species to give an estimate 

of abundance. The transect is usually used in conjunction with Quadrats. A quadrat is typically a 

1m x 1m square, often made from PVC pipe, that is placed in a habitat of interest and the species 

within those quadrats are identified and recorded. There are several different variants on the 

transect method outlined below; 

Belt Transects (BT) 

Belt transects consist of sampling quadrats all the way down the transect line usually at a 

predetermined interval such as the length of a quadrat. All corals within a predefined area are 

counted and the incidence of bleaching or disease is recorded. This method can provide detailed 

assessments on health status, with long term data (from repeated transects over months & years) 

providing information on colony fate (bleaching/recovery).  

Line Intercept transects (LIT) 

This method consists of a transect line running across a reef system and any corals interacting 

directly with the survey line being recorded. This can provide detailed data on species prevalence 

based on a whole colony assessment, population dynamics, and health status. Multiple transects 

through each zone is required to gather sufficient data. The general assumption of this type of data 

collection is that the size of coral colonies are relatively small in comparison to the transect line, and 

the transect itself is small compared to the whole reef system represented by the survey(English and 

Baker, 1994). 

Point Count Transects (PCT)  

Point count transects or ‘intersects’ are very similar to belt transects but the sampling is typically 

randomised by selecting random numbers along the transect to sample, for instance, if the transect 

is 30m sampled locations could be at 2m,5m,16m,23m,26m. The sampling only includes the 

randomly selected points along the transect, these can be varied depending on the research question 

or focus (Roberts et al., 2016). These surveys are often used in conjunction with quadrat and are less 

time consuming than full LIT surveys. The survey requires multiple transects in each reef zone. 

With high diversity, high cover and abundant small corals, individual transects may require 

multiple dives to complete. 
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Figure 2, Diver Transect types; Belt Transects (BT), Line Intercept transects (LIT), Point Count 

intersects (PCT). 

Colour charts/ wheels 

The use of colour charts to quickly identify coral health is a commonly used survey methodology 

employed by divers. The technique involves a selection of colour hues on a card or dive slate that 

corresponds to a concentration of symbionts contained in coral tissue and to compare these two 

colours against one another. This requires bleaching experiments to be conducted to image corals at 

various states in the bleaching process and corresponding symbiont concentrations to be measured. 

One such study(Siebeck et al., 2006) utilised photography to image the corals against a standard of 

known colours in order to generate a colour chart. A further selection of common colour variations 

are used to help differentiate between the most common coral colour types. This complete chart can 

be them employed by a diver to look and compare the coral colours by eye. 

This technique represents a rapid low-cost approach for bleaching assessments but its subjective 

nature along with limitation of human eyesight mean that the results are qualitative at best. While 

performing such surveys using traditional digital camera images marks an improvement, the level 

of accuracy still remains an issue as only 3 broad colour bands are recorded (red, blue, green) by the 

camera sensor. 

Pulse-amplitude modulation (PAM) Fluorometry and underwater spectrometers 

Pulse amplitude modulation or PAM is a tool used to study photosynthesis in and under water. 

The device is a fluorometer which can be tuned to specifically look at chlorophyll fluorescence and 

electron transport rates (ETR) of photosynthetic organisms to provide a measurement of 

photosynthetic efficiency(Jones, Kildea and Hoegh-Guldberg, 1999). The diving PAM I & II (Walz) 

are the most commonly used devices in studies using this technique(Ralph, Gademann and Larkum, 

2001; Chauka, Steinert and Mtolera, 2016; Kurihara et al., 2018), although the device has limitations 
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with a maximum depth of 50m and a requirement to be held in near contact (<5 mm) to the sampled 

object for a set time in order to gain an accurate reading. Generally, the use of an irradiance sensor 

is used in conjunction with the sensor probe to obtain an incident light calculation. This, however, 

can be difficult to position on corals as well as the optical fibre use to measure the coral spectrum. 

More general underwater spectrometry is also used usually by waterproofing spectrometers 

similar to the PAM and recording radiance reflectance measurements to gain spectral data. These 

spectrometers are required to be held in position up to 10 mm away from the sample(Leiper et al., 

2009) much like the PAM. An accompanying reference measurement is required which utilises a 

Lambertian reflectance standard target (commonly a Spectralon [varying reflectance values 

available from 2% to 99% reflectant]) in order to characterise solar irradiance to provide relative 

spectral measurements. Data is often limited by the spectral range and spatial resolution of the 

spectrometer. 

In a marine setting both techniques are executed in a similar way. Data acquisition to cover a 

whole reef system is typically slow because of the sampling area of the probes. Often a random 

point sampling method is adopted in order to characterise large coral colonies in a more meaningful 

timescale. 

2.2 Image based techniques 

Underwater photographic surveys make up the bulk of modern reef monitoring and provide a 

means of rapidly surveying large reef areas (typically hundreds of m2). With the use of autonomous 

underwater vehicles this can be extended to cover many thousands of m2 (Patterson and Relles, 2008; 

Williams et al., 2012). A major advantage of image-based surveys is that the images created provide 

a permanent digital record of the habitat which reduces the dependency of infield coral experts and 

provides data that can be reanalysed or compared between repeat surveys.  

Photo-quadrats 

Surveys using photo-quadrats, imaged via high resolution digital cameras instead of manual 

counting and estimates provide a more accurate assessment of cover and can be archived for 

longevity (repeat) surveys. Using this technique also reduces diver ‘bottom time’, with data 

analysed in the laboratory rather than the field.  

Photogrammetry 

The use of underwater photogrammetric techniques is a rising field in coral health assessment 

as it is both quick and easy to conduct(Teague and Scott, 2017). The technique uses off the shelf 

cameras (either one or multiples depending on quality and use of the models), to take an array of 

overlapped images over a target area (60-80% overlap ideally)(Colomina and Molina, 2014). Images 

are run through structure from motion (SfM) software that stiches the images together and from 

“points of interest” creates 3D reconstructions(Teague and Scott, 2017). This technique can be 

applied to physical reef measurements such as rugosity as well as determining coral cover and 

distribution. Crucially, a wide variety of information can be extracted from the same data set, 

making it a very versatile technique which can be deployed by both divers and robots. With regards 

to mapping coral health, it is still limited by the use of traditional RGB cameras whereby the data 

that can be obtained from coral colour and fluorescence is limited by the three spectral recording 

bands of the device. This technique could however be combined with other visual data by creating/ 

overlaying layers of data using the 3D model as a topological base. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 August 2020                   doi:10.20944/preprints202008.0045.v1

https://doi.org/10.20944/preprints202008.0045.v1


 10 

 

Hyperspectral imaging 

Underwater Hyperspectral imaging (UHI) is a relatively new emerging technology with few 

instances of the application. Current diver operated hyperspectral systems such as the “HyperDiver” 

system, utilise hyperspectral and traditional imaging in combination to simultaneously capture high-

resolution colour and hyperspectral images as well as provide topographic profiles of the 

benthos(Chennu et al., 2017). This technique uses a push-broom hyperspectral imager (Pika 2, 

Resonon Inc.) with a spectral range of 400–900 nm sampled at ~1.5 nm resolution (480 fixed bands, 

640 spatial pixels)(Chennu et al., 2017).  Some potential applications of the UHI-based ‘objects of 

interest’ (OOI) identification technique, as described by Johnsen(Johnsen et al., 2016), include 

mapping and monitoring of seafloor habitats (minerals, soft versus hard bottom), seafloor pipeline 

inspections (type of material, cracks, rust and leakage), shipwrecks (type and state of wood, nails, 

rust and artefacts), deep-water coral reefs (species identification, area coverage and physiological 

state), deep water sponge fields (species identification, area coverage and physiological state), and 

kelp forests (species identification, area coverage, physiological state and growth rates of benthic 

organisms). This system is an improvement over traditional methods of monitoring, but the system 

is almost as large as the diver operating it. The system is roughly ~32 kg in air and is rated to a depth 

of 50m. Other lighter devices are available however these are mostly mounted on Underwater 

unmanned vehicles (UUV’s) and are often expensive and mainly used in oil and gas discovery. 

 

Diver-based methods require a lot of diver ‘bottom time’, require multiple dives, significant 

infrastructure investment and are thus slow and expensive. However, by taking the diver out of the 

equation and using Robots i.e. (Remotely operated vehicle or ROV) as a platform for data capture 

removes the two very limiting operational constraints ofdepth and bottom time(Nornes et al., 2015). 

This platform often means similar surveys require less time than a diver and do not require specific 

personnel, thus greatly reducing the expenses in a context where time and costs of intervention are 

extremely high(Drap, 2012; Teague and Scott, 2017). Such surveys also have an improved 

repeatabliltiy, which improves the quality of time-resolved (repeat-survey) data sets. 

2.2 Discussion of diver-based techniques 

Many of these surveys use a standardized sampling protocol so the data collected is comparable 

to other sites globally. Global standardised coral health surveys and assessments require thorough 

examination of all coral colonies within the survey area, which often involves large periods of 

survey data collection time(Hoegh-Guldberg et al., 2007). For example, as outlined in a survey by 

Willis et al. 2002(Willis, Page and Dinsdale, 2002), a 120-m2 area could take two trained SCUBA 

divers up to 2.5 h to survey if the section of reef had a high coral colony density and diversity(Page 

et al., 2017). This creates a high cost associated with collecting coral health data in situ and a reliance 

on skilled people with the experience to accurately and rapidly deliver a diagnosis. The use of 

SCUBA is often impractical or impossible for many surveys due largely in part to physical 

limitations (e.g. depth or currents) or the presence of unacceptable risks (e.g. hazards such as 

dangerous animals or environments). Diver based surveyance does not necessarily require much 

specialised equipment or post-survey data processing, but it does require that the diver has a highly 

specialised level of diagnostic expertise in coral taxonomy and disease identification(Page et al., 

2017). 
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Figure 3, Image based techniques and examples of the type of data produced from the main 

techniques. 

2.4 Remote Sensing Techniques 

Satellites 

The loss of pigmented zooxanthellae from corals during mass bleaching events results in an 

optical signal that can be strong enough for detection by remote sensing satellites in low Earth orbit. 

Satellite systems allow the surveys to cover vast areas quickly with the spatial resolution of the 

newest multi-spectral bands and panchromatic bands at 15-30 m. The data collectable is also limited 

by depth with satellite data only being able to generate accurate data to around 25m water depth. 

 

Global programs such as the coral reef watch (NOAA) utilise satellite technology to observe and 

monitor coral health over vast areas. Techniques include the use of Satellite-derived sea surface 

temperatures (SSTs) to derive the spatial extent of coral reef bleaching. By using existing data to 

monitor SST anomalies that typically occur during the warmest months of the year, often a 10C 

elevation above the monthly mean maximum can be observed to associate with bleaching(Strong et 

al., 1997). Coral Reef Watch’s HotSpot program utilises a newer technique that gives a "Satellite 

Bleaching Alert" or SBA. Based on satellite near-real-time HotSpot levels, Coral Reef Watch issues 

four levels of alerts for 24 reef sites in the tropics(Liu et al., 2014).This gives an early warning system 

of vulnerable coral reef systems based on the change in SST from the norm, this technique however 

is largely speculative as there is no actual data taken directly from the corals themselves. It can 

therefore be considered a predictive tool for bleaching events.  

 

Other satellites equipped with multispectral cameras can be used to monitor coral health such 

as the Landsat Thematic Mapper (TM) which has been used to map the geomorphology of Australia’s 

Great Barrier Reef(Joyce et al., 2004) .The Landsat TM and Enhanced Thematic Mapper Plus (ETM+) 

have been used to generate data to monitor changes in groups of coral reefs(Palandro et al., 2003) and 

more recently facilitated a detailed survey of the reefs in the Nansha Islands’ using the Landsat 8 

operational land imager (OLI)(Duan et al., 2016). More specialised remote sensors such as the 

Hyperspectral Imager for the Coastal Ocean (HICO), a camera which was installed on the 
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International Space Station in 2015, selected coastal regions and imaged them with full spectral 

coverage (380 to 960 nm sampled at 5.7 nm intervals). During its five years in operation HICO 

collected over 10,000 scenes from around the world (University, 2015). 

 

Accordingly, satellites can be a very useful tool for large area reconnaissance of coral reef health, 

albeit with a relatively poor spatial resolution and when cloud cover is limited. 

Aerial  

Another remote method for coral reef surveyance is the use of aerial surveys using light aircraft 

or a helicopter, flying at an elevation of approximately 150 m. In these surveys each reef is typically 

assigned a number by visual assessment from one of five categories associated with bleaching 

severity, using protocols set in aerial surveys conducted between 1998 and 2002(Berkelmans et al., 

2004): 0, <1% of corals bleached; 1, 1–10%; 2, 10–30%; 3, 30–60%; and 4, >60% of corals bleached. The 

accuracy of this still method requires an underwater ground-truthing to compare against (Hughes et 

al., 2017). Light aircraft can be used to image over large areas of coral reefs with higher resolution 

than satellites and flying below the cloud base. 

 

The resolution and cost can be further improved upon by the use of Drones (UAVs) carrying 

miniaturized hyperspectral cameras which can produce images with a spatial resolution of 15 

cm/pixel allowing for the identification and monitoring of individual corals. This method provides 

similarly large area cover with higher resolution than manned aircraft due to the lower flight altitude 

(30-100m). For example, a 2017 study by Queensland university of technology demonstrated that a 

UAV could photograph 40 ha of Reef in about 30 minutes  to study coral bleaching(Queensland 

University of Technology (QUT), 2017). 

Underwater unmanned vehicles (UUV’s) 

Underwater robotics can be used to replace the underwater human element of surveys thereby 

reducing cost and risk whilst also simultaneously improving repeatability. However, this is not yet 

routinely occurring. By replacing the human with a robot several limitations imposed by scuba 

reliance can be eliminated, for example, dive surveys require large amounts of time as there is a finite 

period a diver can spend underwater usually dependant on air tank capacity and depth (Standard 

air cylinder [12L/ 200 bar], lasts approximately 1 hour at 10m depth). The corresponding issue on 

UUV based surveys is battery life, of which multiple sets can be used to extend time. A UUV can also 

cover a larger distance in a shorter time, recording precise global position measurements as it does 

so. For example a 120-m2 area (as described in Willis et al. 2004(Willis, Page and Dinsdale, 2002)) may 

take two scuba divers up to 2.5 h giving the divers an average coverage of 0.13m2/s whilst a low cost 

remotely operated vehicle (ROV) at top speed can achieve 1m2/s (BlueROV2). 

 

ROV have proved in principle to be a very effective tool to study, with a non-destructive 

approach, the conservation status of corals around the world. Allowing for a lot of data to be achieved 

through video data on coral occupancy, density, colony size, and damage caused by anthropogenic 

activities(Bavestrello et al., 2014). With the emergence of the ever greater robotic autonomy and the 

ability to grid survey relatively large shallow marine areas with only limited supervision, enabled by 

various novel GPS solutions, the prospect for ever greater use of marine robotics for reef surveying 

looks strong.  

Underwater Hyperspectral imaging (UHI) on UUV’s 

The use of UHI on UUV’s is currently limited, very few studies have been conducted using this 

technique, one such study(Johnsen et al., 2013), used a prototype UHI for mapping of objects of 

interest (OOI) on the seafloor. The main aims of this study were to develop the technique to identify 
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and map OOI on the seafloor for the ultimate aim of automated seabed, habitat and OOI identification 

which could be applied to coral habitats. Other studies(Hochberg and Atkinson, 2000) specifically 

using hyperspectral imaging with corals, have mainly focused on coverage and benthic 

discrimination for machine learning applications to automatically classify corals, not necessarily 

assess health or disease. Hence there exists an opportune sweet spot for technology development and 

application. 

 

 

 

Figure 4, The types of data from each type of spectral system at the different levels from satellites to 

underwater systems. Images (Jet Propulsion Lab (JPL), 2020) & (Eric J. Hochberg, Bermuda Institute 

of Ocean Sciences).  

2. The Future of Coral Monitoring? Hyperspectral Fluorescence imaging (HyFi)  

Hyperspectral imaging has the potential to provide a new tool in rapidly assessing coral ‘health’. 

Here we define health as the intensity of spectral peaks derived from key symbiont pigments 

(Chlorophyll, Diatoxanthin, green fluorescent protein (GFP) etc.). Hyperspectral imaging is able to 

categorise and quantify colour so the process of coral bleaching can be recorded. Visibly bleached 

coral as identified by the human eye or basic optical systems (RGB Camera) has expelled around 70% 

or more of its symbionts(Fitt et al., 2000).By comparison  hyperspectral can provide detection within 

the 0-70%, range before it becomes visible to the eye as this is because the camera systems are far 

more sensitive to minute changes in colour(Teague, Willans, M. Allen, Scott, et al., 2019).  

 

To gain an even better assessment of coral health using UHI, a hyperspectral fluorescence 

imaging (HyFi) payload can be mounted onto an ROV system (or carried by a diver or mounted 

under a boat). The system utilises UV light emitting diodes (LEDs) to provide the illumination source 

to required to excite fluorescence of photosynthetic zooxanthellae and fluorescent proteins (FPs), 

these signals provide an insight into coral health(Teague, Willans, M. J. Allen, Scott, et al., 2019). The 

system combines the new immerging technologies of low-cost underwater robotics and hyperspectral 

imaging optics. For example,  fluorescence (FPs and chlorophyll) can successfully be excited using 

low power LEDS and coral bleaching can be detected using both hyperspectral reflectance and 

fluorescence measurements as markers for health(Teague, Scott, et al., 2019). Crucially, this technique 

can look at coral disease with greater spatial resolution as compromised or damaged tissue 

synonymous with disease will be spectrally different from that of healthy tissue. Indeed, 
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hyperspectral fluorescence imagery can reveal this much earlier than traditional RGB imagery or by 

eye. 

 

New techniques into hyperspectral imaging such as linear variable filter (LVF) 

technologies(Teague et al., 2020) allow for lower cost imagers to be produced reducing the financial 

risk of submerging spectral imagers whilst simultaneously allowing multiple data sets to be 

generated in one data collection process. Hypercubes generated from LVF filters using 

photogrammetric software can also provide us with 3D models of the reef that provide an insight 

into reef structure/morphology and if done regularly will provide the ability to monitor changes to 

the reef, providing a quick and very visual data set that is easily understandable. Due to the imagers 

compact design and weight they can easily be mounted on ROV’s or handheld by divers. 

3.Health determination 

From these different techniques/ methods coral health can be determined; derived from coral 

cover from diver or UUV surveys (image based or quadrat surveys) that gives an estimate of the 

distribution of the reef which can be useful when repeated regularly enabling population shifts and 

changes in distribution to be tracked. Previous work on this(Aronson et al., 1994), suggests it could 

be an important tool for coral ecophysiology and a very generalised health indication. 

 

In order to gauge the true extent of bleaching, an exact Symbiont density and chlorophyll-a 

content of individual coral samples needs to be quantified but this method is destructive, involving 

the removal of tissue. This is based on using the Johannes &Wiebe technique(Johannes and Wiebe, 

1970) outlining the use of fine jets of water to remove tissue (commonly referred to as “water piking”) 

and assessing coral health based on the composition of symbiodinium and chlorophyll content. This 

technique is not very practical in situ as it requires the removal of samples from the environment and 

is better suited to laboratory experiments to link effects of bleaching and pigment intensity. These 

experiments are valuable as they can help to link the levels of symbiont density to spectral peaks and 

approximate the stage of bleaching that can be determined using in situ hyperspectral imagery.  

 

Using the physical colour of a coral is a rapid and non-invasive method for the assessment of 

bleaching and therefore ‘health’ (as defined previously). For divers, a colour card is made for a species 

that uses a 6-point brightness/saturation scale within four colour hues to record changes in bleaching 

state(Siebeck et al., 2006). Colour wheels rely on bleaching experiments to gain the colours required 

to make the wheel and average colour hues linked to stages of bleaching, however this is not always 

straight forward as some coral species do exhibit colour variance. Hyperspectral imaging takes this 

similar concept but can more accurately record colour and minute variation’s in specific pigments 

not necessarily visible to traditional cameras (3 channel RGB) or the human eye. Satellites also use 

colour changes in the multispectral profiles to determine percentage bleaching and in the case of 

NOAA’s Coral Reef Watch (CRW) this is combined with sea surface temperature (SST) to give 

predictions of bleaching risks. Satellite imagery requires a correction to account for the interaction of 

light with the atmosphere and water’s surface. Any imaging method that is employed from above 

the water’s surface requires ground truthing to verify and quantify exact levels of bleaching events. 

When this is done, the UAV (Drone) surveying potentially provides the best quality survey data and 

is also more affordable. 

 

Hyperspectral Fluorescence imaging (HyFI) is a potentially invaluable new tool, capturing the 

characteristic of light signals emitted by fluorescent proteins (FPs). For laboratory pre-calibration, 

different coral species can be spectrally characterized and quantified non-invasively (Mazel, 1995; 

Myers et al., 1999; Roth and Deheyn, 2013) to underpin field data. Similarly, with reflectance 

hyperspectral imaging fluorescence reveals spectral peaks that are derived from pigments that are 

expelled during the bleaching process. Chlorophyll fluorescence (685nm) provides  a direct insight  
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into the symbiont density as chlorophyll is only contained within corals’ symbiotic partner thus  

providing a direct bleaching metric.  

 

GFP’s fluorescence is another metric that can be used as it is highly responsive to changes in 

heat(Desalvo et al., 2008; Rodriguez-Lanetty, Harii and Hoegh-Guldberg, 2009; Roth and Deheyn, 

2013) and due to the vibrant colours standout spectrally.  These measurements also require a 

baseline calibration that can be achieved either by conducting laboratory based bleaching 

experiments or by surveying the same samples/locations over a time period to observe relative 

changes in the recorded spectrum.  

4. Conclusion 

Current marine monitoring practices and surveys have many different approaches to the 

question of is coral ‘Healthy’? and many of these techniques complement each other as part of a large 

toolkit to help  build a fuller picture of assessments into the condition of reefs. Due to the  nature of 

coral reefs being such extraordinarily complex ecosystems, each different technique offers a different 

approach and piece of the puzzle shedding light on parameters pertaining to the overall system 

health. 

 

HyFI could prove to be powerful new tool in the diagnostic arsenal for coral health, with rapid 

non-destructive and repeatable measurements able to be taken across whole reef systems by the use 

of ROVs. The data obtained can be used in many different ways, making one tool capable of 

preforming several diagnostic measurements from health to population surveys.  Using the 

hyperspectral system in a number of different ways with little to no modification can potentially 

collect fluorescence data on coral host and symbionts, perform benthic mapping using ‘optical 

fingerprint’ analysis and identify ocean plastics to name just a few examples. 
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