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SUMMARY
Diatoms are a diverse and globally important phytoplankton group, responsible for an estimated 20% of car-
bon fixation on Earth. They frequently form spatially extensive phytoplankton blooms, responding rapidly to
increased availability of nutrients, including phosphorus (P) and nitrogen (N). Although it is well established
that diatoms are common first responders to nutrient influxes in aquatic ecosystems, little is known of the
sensory mechanisms that they employ for nutrient perception. Here, we show that P-limited diatoms use a
Ca2+-dependent signaling pathway, not previously described in eukaryotes, to sense and respond to the crit-
ical macronutrient P. We demonstrate that P-Ca2+ signaling is conserved between a representative pennate
(Phaeodactylum tricornutum) and centric (Thalassiosira pseudonana) diatom. Moreover, this pathway is
ecologically relevant, being sensitive to sub-micromolar concentrations of inorganic phosphate and a range
of environmentally abundant P forms. Notably, we show that diatom recovery from P limitation requires rapid
and substantial increases in N assimilation and demonstrate that this process is dependent on P-Ca2+

signaling. P-Ca2+ signaling thus governs the capacity of diatoms to rapidly sense and respond to P resupply,
mediating fundamental cross-talk between the vital nutrients P and N and maximizing diatom resource
competition in regions of pulsed nutrient supply.
INTRODUCTION

Marine phytoplankton contribute almost half of global primary

production and are a major sink for rising atmospheric CO2.
1

Diatoms are a critically important phytoplankton group, ac-

counting for approximately 40% of organic carbon exported

to the ocean interior.2 A key attribute contributing to the

environmental significance of diatoms is their ability to form

spatially extensive algal blooms.3 Diatoms frequently dominate

the primary phase of spring blooms, outcompeting other phyto-

plankton taxa by rapidly responding to environmental cues,

including increased nutrient availability.3 In coastal systems,

where diatoms thrive, nutrient supply can vary dramatically

over diverse spatiotemporal scales, e.g., due to riverine inputs,

turbulent mixing, upwelling, or microscale cell lysis pro-

cesses.4–6 The ability of diatoms to dominate phytoplankton

assemblages in such regions of pulsed nutrient supply

suggests that they possess sophisticated mechanisms for

nutrient sensing. However, the sensory mechanisms enabling

diatoms to rapidly respond to nutrient resupply remain poorly

understood.
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This is an open access article und
Phosphorus (P) is amajor factor controlling ocean productivity.7

Limitation by this nutrient is documented in a variety of marine en-

vironments,8,9 including coastal ecosystems.10 This has been

exacerbated by anthropogenic activities causing shifts from nitro-

gen (N) to P limitation in certain coastal waters.11 Certainly, bloom

simulation experiments have demonstrated the importance of

phosphate in controlling bloom dynamics.12,13 Additionally, in

highly productive photic benthic biofilms, the distribution of phos-

phate can be patchy.14 The selective chemotaxis of diatoms to-

ward phosphate (but not nitrate)15 suggests phosphate may be

an important driver of biofilm community structure too.

Diatoms show numerous adaptive strategies for coping with

P limitation. Upregulation of phosphate transporters is well docu-

mented.16 Moreover, enhanced expression of alkaline phospha-

tases and/or phosphodiesterases, increasesP scavenging capac-

ity.16–21Diatomsalso substitute phospholipidswith non-P forms to

decreasecellulardemand.22,23A transcriptional regulator,distantly

related to phosphate starvation regulator protein (PSR1) of

Chlamydomonas,24 was recently found to coordinate such meta-

bolic adaptations in diatoms.25 However, these studies primarily

focus on mechanisms underpinning P limitation responses.
2, March 8, 2021 ª 2020 The Authors. Published by Elsevier Inc. 1
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Comparatively little is known about the short-term recovery re-

sponses of P-limited diatom cells to resupply and how they are

regulated. Certainly, lipid remodeling occurs within just one cell di-

vision following phosphate amendment in Thalassiosira.23 Yet the

sensory systems coordinating rapid cellular recovery to newly

available phosphate in diatoms are completely unknown. As these

mechanisms likelyunderpincompetitivebloomdynamics, this rep-

resents a major knowledge gap.

New insights into nutrient perception mechanisms in other eu-

karyotes are emerging. Vascular plants use the versatile second

messenger Ca2+ for sensing nitrate26,27 and K+.28 For instance,

nitrate resupply to N-limited Arabidopsis plants induces [Ca2+]cyt
elevations, which triggers several nitrate-associated regulatory re-

sponses, orchestrated via Ca2+-dependent protein kinases.26

However, although Ca2+-signaling mechanisms have been identi-

fied for sensing several nutrients in eukaryotes, a role for Ca2+ in

phosphate sensing has not been reported. The work described

raises important questions about the role of Ca2+ signaling in

nutrient sensing in eukaryotes more broadly. Certainly, diatoms

use Ca2+ signaling for perception of several abiotic and biotic

stimuli.29–31 Moreover, our recent identification of a novel class

of voltage-gated channels in diatoms (EukCatAs) demonstrates

that they have evolved unique mechanisms for environmental

perception in the oceans.31 Here, we report the discovery of a

P-Ca2+-signaling pathway that is essential for P sensing and accli-

mation in P limited diatoms.

RESULTS

Discovery of a P-Ca2+ Signaling Mechanism for Sensing
Phosphate Resupply
To investigate the role of Ca2+ signaling in nutrient sensing in dia-

toms, we used a transgenic Phaeodactylum tricornutum line

(PtR1), encoding the genetically encoded fluorescent Ca2+

biosensor, R-GECO1.31,32 This Ca2+ reporter offers heightened

sensitivity33 and single-cell resolution compared to aequorin that

has been used previously in P. tricornutum.29 PtR1 cells were

grown in f/2 medium34,35 made up in natural seawater (NSW) but

with reduced concentrations of phosphate, nitrate, or f/2 trace

metals (STAR Methods). We then monitored single-cell

R-GECO1fluorescenceofnutrientdepletecells following resupply

with each respective nutrient. We observed that cells grown in

phosphate-limited conditions (1.8 mM) for 4 days exhibited rapid,

transient elevations in cytosolic Ca2+ following perfusion with

seawater containing phosphate restored to 36 mM (29 out of 33

cells exhibited an increase in F/F0 fluorescence above a threshold

valueof 1.15; Figures 1Aand 1B).Nosuch responsewasdetected

in phosphate-replete cells. Nor did we detect Ca2+ elevations in

cells grown with limiting nitrate, or f/2 metals, following resupply

with these nutrients (Figures 1C and S1). These data suggest

that a specific Ca2+-signaling pathway, which is activated only

under P limitation, may be involved in regulating rapid cellular

acclimation to phosphate resupply. By comparison, we found no

evidence for a role for Ca2+ signaling in sensing nitrate (or trace

metals), which is distinct fromwhat has beenobserved in plants.26

As only P-limited cells exhibited [Ca2+]cyt elevations following

phosphate resupply, we examined further the relationship be-

tween P depletion and phosphate-Ca2+ signaling. We grew

PtR1 cells in different phosphate regimes: (1) phosphate replete
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(Preplete) (36 mM); (2) phosphate limited (Plimited) (1.8 mM); or (3) no

phosphate amendment (P0) over 11 days (Figure 1D). We

observed that exogenous phosphate concentrations in the

medium decreased from 1.8 mM to 0.1 mM within just 2 days in

Plimited cells (initial concentrations in P0 [NSW] medium were

already very low, at 0.2 mM; Figure 1E, inset). Furthermore,

growth of cells in P0 and Plimited treatments was significantly

impaired compared to Preplete conditions after 3 and 4 days,

respectively (Figure 1D). Similarly, Fv/Fm values (a measure of

the efficiency of Photosystem II)36 were also reduced in the

low P treatments (Figure S2A). Phosphate resupply experiments

at different time points revealed that, after just 1 day of growth in

P0 conditions, cells exhibited the phosphate-Ca2+ signaling

response following phosphate resupply (Figure 1E). Maximal

amplitude of the response was exhibited on day 2 and gradually

decreased at subsequent time points. By comparison, Plimited

cells exhibited the response after 4 days, when cell division

slowed (Figure 1D). We did not detect phosphate-Ca2+ signaling

in Preplete cells at any of the time points. Thus, only P. tricornutum

cells experiencing phosphate limitation exhibit phosphate-

induced Ca2+-signaling responses.

The P-Ca2+ Signaling Response Is Sensitive to
Environmentally Relevant Concentrations and Forms of
P
Ambient phosphate concentrations can vary significantly in

coastal waters. Levels in the Western English Channel, where

diatom blooms are seen frequently, can reach �0.8 mM in

February/March to lower than 0.05 mM in July.37 Transitory

spikes up to 0.97 mM during summer phosphate concentration

minima likely due to mixing and/or riverine inputs have also

been reported,5 providing phosphate resupply opportunities in

P-limited phytoplankton populations. To determine the sensi-

tivity of the phosphate-Ca2+ signaling response, we carried out

a dose-response experiment. Exposure of 4-day Plimited PtR1

cells to resupply revealed that cells responded to environmen-

tally relevant phosphate concentrations as low as 0.9 mM (Fig-

ure 2A). Our control condition (artificial seawater [ASW] without

phosphate) did not induce a response. The described phos-

phate-Ca2+ signaling pathway thus exhibits high sensitivity to

inorganic phosphate concentrations within the range of those

seen in natural ecosystems.

P in the oceans can exist in numerous forms. This includes

both inorganic (e.g., phosphate and polyphosphate) and organic

forms. Dissolved organic phosphorus (DOP) can exceed ortho-

phosphate concentrations,38,39 with phosphoesters often the

dominant class.40 We tested the efficacy of different P forms

for activating the Ca2+-signaling response in 4-day Plimited PtR1

cells. Treatment with equimolar concentrations (36 mM) of phos-

phomonoesters (adenosine triphosphate [ATP] and D-glucose-

6-phosphate [G6P]) or inorganic polyP all led to transient eleva-

tions in cytosolic Ca2+, similar to those evoked by phosphate

(Figure 2B). In contrast, the phosphodiester bis(p-nitrophenyl)-

phosphate (b-NPP) did not. We found that P. tricornutum can

grow unimpaired on all of the different P forms examined, albeit

at a significantly reduced specific growth rate with b-NPP (Fig-

ure 2C). These results indicate that exposure of Plimited cells to

P forms besides phosphate (with the exception of b-NPP) can

evoke [Ca2+]cyt elevations. However, it is unclear whether this
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Figure 1. Increases in Environmental Phosphate Levels Trigger Rapid [Ca2+]cyt Elevations in P-Limited Phaeodactylum tricornutum

Cells

(A) Time-lapse images of PtR1 P. tricornutum cells grown for 4 days in f/2 medium in natural seawater (NSW) in either phosphate-limited (1.8 mM) or phosphate-

replete (36 mM) conditions, following resupply with phosphate (36 mM). Cells were pre-perfusedwith standard NSW f/2mediumwithout phosphate for 30 s prior to

perfusion with f/2 medium (including 36 mM phosphate). Time stamps indicate the time (s) from the beginning of the perfusion experiment; scale bar: 10 mm. An

image of the cell just prior to phosphate resupply (i.e., at 29 s) is shown (left). The initial signal represents chloroplast auto-fluorescence. The experiment was

conducted at least three times on independent samples (with a minimum of n = 8 cells examined in total) with similar results.

(B) Representative fluorescence traces of PtR1 cells for the experiment shown in (A), where F/F0 represents the change in fluorescence intensity of R-GECO1,

calculated by normalizing the fluorescence intensity of each frame by the initial value (F/F0).

(C) Mean maximal fluorescence (F/F0) of PtR1 cells grown for 4 days with limiting concentrations of either phosphate (1.8 mM), nitrate (44 mM), or (0 mM) of metals

(Met) (Figure S1; STARMethods), exposed to NSWwith phosphate, nitrate, or Met restored to full f/2 concentrations.34,35 Cells were pre-perfused with seawater

for 30 s prior to nutrient amendments. Number (n) of cells examined over 3 independent replicate experiments carried out with a different sample of cells for each

replicate is shown in parentheses above each bar; error bars represent SEM.

(D) Growth over time of PtR1 cells in standard f/2 medium with phosphate-replete (Preplete) (36 mM), phosphate-limited (Plimited) (1.8 mM), or no phosphate

amendment (P0) conditions (n = 3; Mean ±SEM; note the error bars are smaller than the markers on the plot).

(E) Mean (±SEM) maximal fluorescence (F/F0) of PtR1 cells grown in different concentrations of phosphate over 8 days (including Preplete, Plimited, and P0

treatments with 36 mM, 1.8 mM, and 0 mMof phosphate for each treatment, respectively), following phosphate resupply (with 36 mM). Three independent replicates

each with a different sample of cells were set up per treatment, with a sample of nR6 cells examined per independent replicate. Inset displays the concentration

of phosphate (Pi) measured in the external medium for P0 and Plimited cells after 0, 2, and 4 days (mean ± SEM; n = 3).

See also Figures S1 and S2.
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is because the P-Ca2+ signaling pathway can perceive these

forms directly or whether phosphoesterases convert them to

inorganic phosphate prior to detection. Extracellular ATP is

also a well-known signaling molecule in plants and animals,

which can trigger Ca2+-dependent signaling pathways, regard-

less of P status.41 We therefore tested the efficacy of these com-

pounds on Preplete cells. We did not detect Ca2+ elevations in

response to any of these P forms in Preplete cells (Figure 2D).

Moreover, treatment of 4-day Plimited cells with a poorly hydrolys-

able form of ATP, adenosine 50-(3-thiotriphosphate) (ATP-g-S),42

did not yield [Ca2+]cyt elevations (Figure 2E).

Although these results do not exclude the possibility that

different P forms can directly trigger the P-Ca2+ signaling
pathway, they strongly suggest that phosphate-starved

P. tricornutum cells can rapidly liberate phosphate from

organic P forms (likely via extracellular phosphatases),16,21,43

which subsequently evoke a Ca2+ response. This is further

supported by our evidence that b-NPP did not evoke a

[Ca2+]cyt elevation. Hydrolysis rates are reportedly consider-

ably slower for b-NPP than for phosphomonoesters in

P. tricornutum.44 Thus, longer term processes appear to be

necessary to liberate b-NPP, as is supported by the reduced

growth rate of P. tricornutum on this substrate (Figure 2C).

Taken together, these data indicate that P-Ca2+ signaling

can be evoked, albeit indirectly, via a range of environmentally

abundant P forms.
Current Biology 31, 1–12, March 8, 2021 3
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Figure 2. The P-Ca2+ Signaling Response Is Sensitive to Environ-

mentally Relevant Concentrations and P Forms

(A) Maximal intensity (F/F0) of PtR1 cells grown in Plimited conditions with 1.8 mM

phosphate for 4 days following resupply with different concentrations of

phosphate (note cells were grown on NSW, but artificial seawater [ASW] was

used for the phosphate resupply experiments to abolish additive effects from

ambient phosphate in NSW). Prior to resupply, cells were pre-perfused for 15 s

with ASW medium without phosphate or other nutrients. Cells (n) examined

over 3 independent experiments each with a different sample of cells are

shown in parentheses above each bar (mean ± SEM).

(B) Maximal intensity (F/F0) of PtR1 cells grown in Plimited conditions with 1.8 mM

phosphate for 4 days following resupply with 36 mM of different P forms,

including phosphate (Pi), adenine triphosphate (ATP), D-glucose 6-phosphate

(G6P), polyphosphate (PolyP), or bis(p-nitrophenyl)phosphate (b-NPP). Cells (n)

examined over 3 independent experiments, eachwith a different sample of cells,

are shown in parentheses above each bar (mean ± SEM).

(C) Specific growth rate (h�1) of PtR1 cells grown in f/2 medium with 36 mM Pi,

ATP, G6P, PolyP, or b-NPP as a P source (n = 3; mean ± SEM). Asterisks (*)

indicate statistically significant differences (ANOVA; ***p < 0.001; **p < 0.01)

compared to the phosphate control.

(D) Mean maximal fluorescence (F/F0) of PtR1 cells grown for 4 days in stan-

dard f/2 medium (i.e., Preplete conditions) in response to f/2 medium without

inorganic phosphate but amended with 36 mM ATP, G6P, PolyP, or b-NPP.

Cells were pre-perfused with standard f/2 (natural seawater) medium without

phosphate for 30 s prior to perfusion with f/2 medium (including 36 mM of the

P form being tested). Number (n) of cells examined over 3 independent repli-

cate experiments is shown; error bars represent SEM.

(E) Comparison of maximal fluorescence (F/F0) response of 4-day old, Plimited

cells in response to 36 mM ATP versus the poorly hydrolyzable ATP-g-S form.

Number (n) of cells examined over 3 independent replicate experiments is

shown using a different sample of cells for each replicate in parentheses above

each bar; error bars represent SEM (Student’s t test: ***p < 0.001).
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P-Ca2+ Signaling Is Also Exhibited by the Ecologically
Abundant Bloom-Forming Centric Diatom, Thalassiosira
pseudonana

We have demonstrated that P-limited cells of the model pennate

diatom P. tricornutum can detect environmentally relevant con-

centrations and forms of P via a previously undescribed Ca2+-

signaling pathway. However, diatoms represent one of the

most diverse groups of algae comprising two major lineages,

including the pennate (e.g., P. tricornutum) and centric species

(e.g., T. pseudonana45).46 We therefore wanted to investigate

whether centric diatoms also employ P-Ca2+ signaling. We

generated a transgenic strain of T. pseudonana expressing

R-GECO1 (TpR1) (Figure 3A). Unlike P. tricornutum, we found

that not all (only 57% of) cells within the clonal population ex-

hibited R-GECO1 fluorescence (Figure 3A; STAR Methods). To

test the ability of the R-GECO1 line to report intracellular Ca2+

levels, we exposed TpR1 cells to a hypo-osmotic shock treat-

ment, which is known to induce substantial increases in cytosolic

Ca2+ in P. tricornutum.29,31 We observed large Ca2+ elevations in

response to a 50% hypo-osmotic shock (34%; 14 out of the 41

cells examined in total; Figure 3B). Moreover, elevations were

only observed in those cells clearly exhibiting R-GECO1 fluores-

cence prior to the shock, suggesting that the absence of

response in many cells was due to poor R-GECO1 expression.

To examine whether TpR1 cells exhibit P-Ca2+ signaling in

response to P resupply, we grew cells for 4 days in standard f/

2 NSWmedia with limiting concentrations (0.9 mM) of phosphate.

Resupply of 36 mMphosphate to P-limited TpR1 cells led to tran-

sient elevations in intracellular Ca2+ (32%; 10 out of the total of 31

cells examined; Figure 3C; STAR Methods), albeit maximal in-

creases in fluorescence intensity (F/F0) were significantly lower

(Student’s t test; p < 0.05) than those seen for the 50% hypo-

osmotic treatment (1.4 ± 0.06 SEM, n = 14 versus 1.2 ± 0.02

SEM, n = 10, respectively; Figure 3B). Notably, similar to

P. tricornutum, no such response was observed in P replete cells

(0/63 of cells responded to P resupply; Figure 3C). These findings

demonstrate that P-Ca2+ signaling is present in a representative

pennate (P. tricornutum) and centric (T. pseudonana) species.

Rapid Cross-Talk between P and N Metabolism
Following Phosphate Resupply Revealed by
Comparative Proteomics and Stable-Isotope Tracer
Experiments
To determine how the P-Ca2+ signaling pathway regulates

cellular acclimation to phosphate amendment, we employed a

comparative proteomics approach to identify early recovery re-

sponses from P limitation in P. tricornutum following phosphate

resupply. Whereas previous studies have examined longer term

changes in gene expression (e.g., after 4 days) following P resup-

ply in P. tricornutum,16 we detected significant improvements in

the growth rate of Plimited cells just 24 h following phosphate re-

supply (Figures S2B and S2C). We therefore sought to examine

shorter term proteomic responses occurring within hours of P

addback. We grew PtR1 cells in Preplete (33 cultures) and Plimited

treatments (6 3 cultures) for 4 days. We then resupplied 36 mM

phosphate to three of the Plimited cultures (for the ‘‘Presupply’’

treatment) and harvested all cultures 4 h later. Total proteins

were then extracted for comparative proteomics analysis.

From the 1,505 identified proteins (Data S1), 443 were
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Figure 3. P-Ca2+ Signaling Is Also Exhibited by the Ecologically

Abundant Bloom-Forming Centric Diatom, Thalassiosira pseudo-

nana

(A) Epifluorescence microscope image of T. pseudonana TpR1 cells demon-

strating R-GECO1 fluorescence in the cytosol (yellow), along with chlorophyll

auto-fluorescence (red). Cells exhibiting high, low, and no detectable (absent)

R-GECO1 fluorescence were observed in the clonal TpR1 line. A differential

interference contrast (DIC) image is also displayed (left). Scale bar: 10 mm.

(B) Representative fluorescence trace (F/F0) of a TpR1 cell showing increases

in intracellular Ca2+ levels in response to 50% hypo-osmotic shock. Cells

grown for 4 days in f/2 medium (made up with NSW) were pre-perfused with

100%NSW for 15 s, prior to perfusion with NSW diluted 50%with ddH2O. The

experiment was carried out on three independent occasions with a different

sample of cells, and a total of 14/41 cells responded in this manner (with an

increase in F/F0 fluorescence R 1.15).

(C) Representative fluorescence trace (F/F0) of TpR1 cells grown for 4 days in

(1) Plimited (containing 0.9 mMphosphate; light blue line) or (2) Preplete conditions

(with 36 mM phosphate; dark blue line) in response to resupply with 36 mM

phosphate. Cells were pre-perfusedwith 100%NSWwithout nutrients for 15 s,

prior to perfusion with NSW + 36 mM phosphate. A total of 10/31 Plimited cells

showed an increase in F/F0 fluorescenceR 1.15, compared to 0/61 of Preplete

cells, over three independent experiments.
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differentially expressed (exhibiting a log2 fold change R 1; %

�1; Q < 0.05) in Plimited versus Preplete cells (215 were more abun-

dant and 228 were less abundant). By comparison, 232 proteins

had significantly altered abundance in Presupply versus Plimited

cells (63 increased and 169 decreased abundance; Figure S3;

Data S2 and S3). We classified differentially expressed proteins

into specific metabolic pathways, using Mercator-based ana-

lyses.47 This identified broad-scale impacts of phosphate regime

on proteins associated with protein, nitrogen, DNA and RNA, cell

division, photosynthesis, and signaling (Figure S3; Data S2 and

S3), consistent with previous studies.16,48

As expected, we observed significant enhancement of puta-

tive phosphate acquisition and recycling proteins in Plimited

versus Preplete cells.16,18 Indeed, under P limitation, the four

most highly expressed proteins included a predicted glycero-

phosphoryl diester phosphodiesterase and three putative

alkaline phosphatases (Data S3). In the Presupply treatment, these

proteins remained highly expressed 4 h following phosphate re-

supply. Notably, by comparison, some of the most significantly
altered proteins in the Presupply treatment compared to Plimited

cells related to N uptake/assimilation. This included upregulation

of a predicted nitrate transporter (NRT) that showed a striking 5.7

log2 fold increase, alongside five other N metabolism proteins

(Figures 4A and 4B). These data suggest that a major immediate

response to phosphate resupply in diatoms is the upregulation of

N assimilation and metabolism.

To directly examine the impact of phosphate resupply on N

uptake over time, we characterized changes in total cellular N

content, and 15N-nitrate uptake, in PtR1 cells experiencing

different P regimes (Preplete, Plimited, and Presupply). We grew

Preplete and Plimited cultures for 4 days, as described previously

for the proteomics sampling. Prior to phosphate resupply (to

Plimited cells for the Presupply treatment), we added 15N-nitrate

(to a concentration 10% of ambient nitrate) to all the cultures

and acclimated cells for 1 h. We then quantified the total N con-

tent and 15N enrichment (expressed as atom% 15N) over 24 h

following phosphate resupply. At T0 (i.e., just prior to phosphate

resupply), Preplete cells had 2.9 times more total N than Plimited

cells (Figure 4C). However, upon phosphate resupply, significant

increases in total N content were detected within just 8 h, and

levels exceeding those in Preplete cells were measured in 24 h.

By comparison, the cellular N content of Plimited cells remained

low. Moreover, the increases in total N content were accompa-

nied by approximately 9-fold increases in atom% 15N levels

within 24 h following phosphate resupply (Figure 4D). By com-

parison, the levels in Plimited cells only increased modestly

beyond initial values. Moreover, absolute nitrate uptake rates

were twelve times greater in Presupply compared to Plimited cul-

tures and 1.5 times more than the Preplete cells over 24 h (Fig-

ure 4E). These data demonstrate that the proteomic changes

observed in the abundance of predicted N-transport-associated

proteins, as a consequence of P resupply, result in rapid and

substantial increases in N uptake.

Enhanced N Transport Is a Primary Acclimation
Response Driving Recovery from P Limitation
We have observed enhanced N transport in Plimited cells within

just 8 h of phosphate amendment. N is a major constituent of

proteins, nucleic acids, and chlorophyll. Alongside proteomic

changes in N assimilation machinery, we observed concomitant

increases in numerous proteins of protein metabolism in Presupply

versus Plimited cells. This included the increased abundance of 19

predicted synthesis proteins and decreased abundance of 13

putative degradation proteins (Figure S3; Data S2). We

confirmed that total protein content was significantly reduced

in Plimited compared to Preplete cells and subsequently recovered

following phosphate resupply after 24 h (Figure 5A), when in-

creases in growth rate were also detectable (Figures S2B and

S2C). The abundance of 13 photosynthesis-related proteins

were also altered in Presupply versus Plimited cells, including four

predicted light harvesting complex proteins, cytochrome B6

(PetB), and two predicted photosystem II proteins (PsbC and

PsbA) that exhibited decreased abundance in the Presupply treat-

ment compared to Plimited cells (Data S2). However, the majority

of predicted fucoxanthin chlorophyll a/c binding proteins de-

tected (23/29 proteins) did not exhibit differential abundance in

the Presupply treatment compared to Plimited cells (log2 fold

changeR 1;%�1) at this time point. Certainly, we only detected
Current Biology 31, 1–12, March 8, 2021 5
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Figure 4. Rapid Cross-Talk between P and

N Metabolism following Phosphate Resup-

ply

(A) A cohort of proteins predicted to be associated

with N uptake and assimilation exhibited altered

abundance after 4 h in Presupply compared to

Plimited cells. This included increased abundance

of a putative nitrate transporter (NRT) (JGI protein

identifier: 26029/54101), urea transporter (UreaT)

(20424/768), nitrate reductase (NR) (54983),

NAD(P)H-dependent nitrite reductase (NirB)

(13154), chloroplast-targeted glutamine synthe-

tase (GSII) (51092), and ferredoxin-dependent ni-

trite reductase (Fd-NiR) (12902). We also saw

decreased abundance of a putative glutamate

dehydrogenase (GD) (45239) and the chloroplast-

targeted glutamate synthase (Fd-GOGAT)

(56605).

(B) Bar graph of protein fold changes of putative N

metabolism proteins described in (A) in response

to phosphate resupply (relative to Plimited cells;

log2 fold change R 1; Q < 0.05 labeled purple).

The log2 fold changes of proteins exhibiting

significantly altered abundance in Plimited cells

relative to Preplete cells are also shown. Asterisks (*)

indicate statistically significant differences (Stu-

dent’s t test q-value; ***q < 0.001; **q < 0.01; *q <

0.05).

(C and D) Total N uptake (mmol N cell�1; C) and

atom% 15N (D) in Preplete, Plimited, and Presupply

treatments following phosphate resupply to P-

limited cells over 24 h (mean [n = 3] ± SEM).

(E) Absolute nitrate uptake rates (pN) mmolN cell�1

h�1 of Preplete, Plimited, and Presupply cultures

following phosphate resupply to phosphate-

limited cells over 24 h (mean [n = 3] ± SEM). As-

terisks (*) indicate statistically significant differ-

ences (one-way ANOVA; ***p < 0.001; **p < 0.01)

compared to the phosphate-replete control.

See also Figure S3 and Data S1, S2, and S3.
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increases in Fv/Fm values and total chlorophyll within 24 h

following P resupply (Figures 5B and 5C). Additionally, a rapid

reduction in non-photochemical quenching (NPQ), a vital

photo-protection mechanism, was seen 6 h following phosphate

resupply (Figures 5D and 5E). Notably, the observed reductions

in NPQ, which occurred on a time frame similar to the changes

observed for N transport (Figures 4C and 4D), occurred concom-

itantly with an increase in electron transport rates (ETRs) (mmol e

m�2 s�1) of Presupply cells (Figure 5D, red). This could therefore

serve to enhance photosynthetic reducing power to drive other

vital processes, including N assimilation.

A key response of diatoms to P limitation is the accumula-

tion of neutral lipids, including triacylglycerides (TAGs), and

substitution of membrane phospholipids.16,22 However, we

detected just five proteins of lipid synthesis/metabolism ex-

hibiting differential abundance (log2 fold change R 1; Q <

0.05) in Presupply versus Plimited cells (Data S2). This included

the decreased abundance two putative fatty-acid biosyn-

thesis enzymes: enoyl-coenzyme A (CoA) hydratase (ECH1)

and acetyl-CoA carboxylase (ACC1) that catalyze the synthe-

sis of precursors for TAG biosynthesis.49 The downregulation

of these proteins corresponded with the recovery of TAG
6 Current Biology 31, 1–12, March 8, 2021
levels to those similar to Preplete cells, 24 h following phos-

phate resupply (Figure S4).

Together, our evidence demonstrates that the substantial

increases in N uptake (alongside NPQ adjustments) following

P resupply are among some of the first detectable metabolic re-

sponses of P-limited P. tricornutum cells to P amendment. These

adaptations, which occur within 8 h, precede recovery of cellular

protein, TAG and chlorophyll content, Fv/Fm, and growth. The

primary adaptations of Nmetabolism thus likely underpin subse-

quent cellular adaptations necessary to kick-start cellular growth

following phosphate amendment.

P-Ca2+ Signaling Is Necessary for Primary Adaptations
in Nitrate Metabolism following Phosphate Resupply
We have characterized early physiological adaptations under-

pinning P limitation recovery and identified an important role

for N uptake and NPQ adaptation within hours of phosphate re-

supply. However, alongside acclimation of primary metabolism,

we saw increased abundance of numerous Ca2+-signaling-

related proteins in Plimited versus Preplete cells, including several

Ca2+/calmodulin-dependent protein kinases that could serve

as sensors for phosphate-induced Ca2+ elevations (Data S3;
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Figure 5. A Succession of Metabolic Accli-

mation Responses Drive Recovery from

Phosphate limitation

(A–C) Changes over time of (A) total protein con-

tent (mg cell�1), (B) Fv/Fm, and (C) total chlorophyll

a (chl a) content (mg cell�1) of P-limited (Plimited)

(1.8 mM) cultures following resupply (Presupply) of

phosphate (36 mM), compared to Preplete (36 mM)

and Plimited grown cells.

(D) Changes in non-photochemical quenching

(NPQ) and electron transport rate (ETR) (mmol

electrons m�2 s�1) in Plimited cells in response to

phosphate resupply over 6 h.

(E) NPQ values of Preplete, Plimited, and Presupply prior

to (0 h) and 4 h after phosphate resupply. All values

plotted are mean (n = 3) ± SEM.

See also Figures S3 and S4.
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Figure S5), as has been documented in the nitrate-Ca2+ signaling

response of Arabidopsis.26 These findings uncover putative

mechanistic components of the pathway and add further evi-

dence to the importance of Ca2+ signaling in P sensing and likely

role in regulating metabolic adaptations to P resupply.

To examine whether the P-Ca2+ signaling pathway mediates

downstream recovery responses from P limitation following

phosphate resupply, we investigated the source of the phos-

phate-induced Ca2+ signal and its sensitivity to pharmacological

inhibitors, with the aim to identify avenues to inhibit phosphate-

Ca2+ signals. Treatment of Plimited cells to phosphate resupply in

ASW made up without Ca2+ (+200 mM EGTA) completely

abolished the phosphate-induced Ca2+ elevation (Figure 6A),

indicating dependency of the response on external Ca2+. This

suggests that plasma membrane localized Ca2+ channels are

involved. P. tricornutum encodes a number of Ca2+ channel ho-

mologs,50 for which there has been little/no functional character-

ization. This is with the exception of a novel class of channels that

we recently characterized in diatoms (EukCatAs).31 We therefore

examined whether Pteukcata1 knockout mutant lines31 are

impaired in phosphate-Ca2+ signaling. All lines tested evoked

phosphate-induced [Ca2+]cyt elevations comparable to PtR1

(Figure 6B), indicating that PtEUKCATA1 is not involved in the

primary Ca2+ response to phosphate. We also adopted a
pharmacological approach, testing the

effect of Ca2+ channel blockers on phos-

phate-Ca2+ signals. These experiments

revealed that, whereas pre-treatment of

cells with verapamil (L-type Ca2+ channel

inhibitor) did not disrupt the phosphate-

Ca2+ signal (Figure S6A), 5 mMRuthenium

Red (RuR) (inhibits a range of Ca2+ chan-

nels)51 inhibited the response (Figure 6C).

By comparison, 5 mMRuR did not disrupt

Ca2+ signaling responses to hypo-os-

motic stress (Figures S6B and S6C).

Thus, RuR does not interfere with the ca-

pacity of R-GECO1 to report Ca2+ or

cause broad disruption of Ca2+ signaling

processes within the cell.

We therefore investigated the effect of
inhibiting the phosphate-Ca2+ signaling pathway on early pri-

mary adaptations (i.e., N uptake and NPQ) to phosphate

amendment in Plimited cells. We first examined the impact of

RuR inhibition on the nitrate uptake response, limiting exposure

of cells to RuR to 8 h. As previously observed, we saw substan-

tial increases in atom% 15N in the Preplete treatments in the

absence of RuR (Figure 6D, left). This was also the case in

the presence of 5 mM RuR, albeit to a lesser extent (Figure 6D,

right). These results indicate that nitrate uptake can still occur in

the presence of RuR. However, we detected a significant in-

crease in atom% 15N following P resupply within 8 h, which

was completely absent in P-limited cells (Figure 6D, left). By

comparison, in the Presupply treatment +5 mM RuR, no increases

in atom% 15N levels were observed at all. To examine whether

the altered nitrate uptake in the Presupply +RuR treatment was

due to reduced cell health following incubation with RuR, we

measured Fv/Fm values. However, exposure of Presupply cells

to 5 mM RuR for 8 h did not reduce Fv/Fm values, compared

to the �RuR control (Figure S6D). Finally, we tested the impact

of RuR on NPQ under different P regimes, including following

phosphate resupply (Figure S6E). The fast reductions in NPQ

were still observed in the presence of RuR following P resupply

(Figure S6F). Therefore, RuR-treated Plimited cells still exhibit

phosphate-induced NPQ recovery responses.
Current Biology 31, 1–12, March 8, 2021 7
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Figure 6. Phosphate-Ca2+ Signaling Is Necessary for Nitrate Uptake following Phosphate Resupply

(A) Average maximal fluorescence (F/F0) of 4-day PtR1 cells grown in ASW with limited phosphate (1.8 mM) exposed to phosphate resupply (36 mM) either +Ca2+

(in standard ASW containing 10 mM CaCl2) or �Ca2+ (in ASW without 10 mM CaCl2 + 200 mM EGTA). No. of cells (n) examined over 3 independent experiments

each with a different sample of cells is shown in parentheses above each bar (mean ± SEM; Student’s t test; ***p < 0.001).

(B) Comparison of average maximal fluorescence (F/F0) values of phosphate-Ca
2+ signaling response in PtR1 cells versus three independent PteukcatA1mutant

lines in a PtR1 background.31 Cells were grown in standard f/2 medium (with NSW) with low phosphate (1.8 mM) prior to the experiment. Cells (n) examined over 3

independent experiments per line each with a different sample of cells are shown in parentheses above each bar (mean ± SEM).

(C) Average fluorescence trace of the phosphate-Ca2+ signaling response in PtR1 cells pre-treated for 5 min with 10 mM RuR, compared to control (no inhibitor).

Prior to phosphate resupply, cells were pre-perfused for 30 s with NSWmedium without RuR, phosphate, or other nutrients. Inset displays average maximal F/F0
values of the phosphate-Ca2+ signaling response without inhibition (�) and following treatment with 5 mMRuR and 10 mMRuR (n = 17, 19, and 13 cells over three

independent experiments; mean ± SEM).

(D) Atom% 15N measured in cells under different phosphate regimes in the absence or presence of 5 mM RuR. The atom% 15N measured at T = 0 (prior to

phosphate resupply) and 8 h post-phosphate resupply is shown (n = 3; mean ± SEM; experiments were repeated twice with similar results).

(E) Schematic model for the P-Ca2+ signaling pathway. Ca2+-independent components are indicated with dashed arrows (TF, transcription factor).

See also Figures S5 and S6.
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Together, our findings demonstrate that the rapid changes

in NPQ capacity can occur in a Ca2+-independent manner,

potentially responding directly to increased cellular P quotas

detectable within hours following phosphate resupply in

P. tricornutum.52 By comparison, fundamental increases in ni-

trate uptake in Plimited cells following phosphate resupply are

dependent on phosphate-induced [Ca2+]cyt elevations (Fig-

ure 6E). Thus, the P-Ca2+-signaling pathway is vital for regulating

primary metabolic recovery from P limitation and also serves to

maximize acquisition and resource competition for the vital

limiting nutrient N.

DISCUSSION

We report the discovery of a Ca2+ signaling pathway in diatoms

to sense and rapidly respond to increases in P availability (Fig-

ure 6E). We show that the addition of phosphate to phosphate-
8 Current Biology 31, 1–12, March 8, 2021
limited diatom cells results in cytosolic Ca2+ elevations within

seconds of resupply (Figure 1). This response was detectable

in the pennate P. tricornutum (that exhibits both benthic and

planktonic modes of life)53 and the ecologically abundant

planktonic bloom-forming centric species T. pseudonana

(Figure 3), indicating that P-Ca2+ signaling is employed by

evolutionarily diverse diatom taxa for P sensing. Moreover, in

P. tricornutum the response is evoked by environmentally rele-

vant phosphate concentrations and (indirectly) by different P

forms (Figures 2A and 2B). Importantly, inhibition of P-Ca2+

signaling completely blocks a critical component of cellular re-

covery from phosphate limitation (nitrate uptake; Figure 6) that

underpins subsequent physiological responses (Figure 5).

Although RuR was able to block P-Ca2+ signaling, it did not

impair the Ca2+-signaling response of P. tricornutum to hypo-

osmotic shock (Figure S6). Nevertheless, the specificity of

RuR against the diatom Ca2+-signaling toolbox more broadly



ll
OPEN ACCESS

Please cite this article in press as: Helliwell et al., A Novel Ca2+ Signaling Pathway Coordinates Environmental Phosphorus Sensing and Nitrogen Meta-
bolism in Marine Diatoms, Current Biology (2020), https://doi.org/10.1016/j.cub.2020.11.073

Article
is not fully understood. Future work is therefore necessary

to identify the specific molecular machinery underpinning the

P-Ca2+ signaling pathway and determine how the observed

cross-talk between P and Nmetabolism is mediated. Our study

suggests that P-Ca2+ signaling is critical to P-limited diatom

cells for sensing and rapidly responding to P resupply in

dynamic nutrient environments (e.g., in upwelling and coastal

systems).5 More broadly, these findings provide much needed

insight into the molecular mechanisms employed by eukaryotic

algae for sensing P resupply, which until now have remained

enigmatic.20

Importantly, our work highlights that fundamental cross-talk

between the essential nutrients P and N drive ecological

acclimation to P availability in diatoms. Evidence suggests

that P-limited cells invest primarily in phosphate acquisi-

tion,16,18 scavenging,10,17 and reallocation,23 diverting re-

sources away from vital processes, such as N assimilation.

Meanwhile, activation of the P-Ca2+ signaling machinery

readies cells for detection of P resupply. This activation is first

evident after 4 days of growth in P-limited conditions (1.8 mM

phosphate; Figure 1E), even though the extracellular phosphate

concentrations became fully depleted after only 2 days in

this treatment. This suggests that intracellular phosphate sta-

tus, rather extracellular phosphate concentrations, mediate

P-Ca2+ signaling activation. By comparison, induction of

P. tricornutum alkaline phosphatase was detectable when

ambient phosphate concentrations were% 3.6 mM.54 The rapid

phosphate-driven induction of N uptake and assimilation pro-

teins allows P-limited cells to control the allocation of resources

to priority cellular functions, which must then be rapidly rewired

when conditions change. This rapid coordination between P

and N metabolism, via the P-Ca2+ signaling, enables diatoms

to immediately exploit another vital limiting nutrient within hours

of being released from P limitation, driving enhancements in

growth rate detectable within 24 h (Figures S2B and S2C).

The timescale of such changes could promote the competitive

ability of diatoms in regions of pulsed nutrient supply, such as

upwelling ecosystems,6 in which favorable wind conditions

can drive nutrient upwelling events lasting 1 to 2 weeks.55,56

As phosphate resupply events (e.g., due to riverine inputs, up-

welling, or microscale cell lysis)6 often occur simultaneously

with enhanced nitrate abundance,57 by upregulating N assimi-

lation, the P-Ca2+ signaling pathway primes the cell to antici-

pate improved nutrient conditions more generally and enables

the balanced acquisition of P and N. Notably, N-transport

and assimilation genes are key indicators of phytoplankton N

status58 and can also exhibit rapid responsiveness to N resup-

ply.59 However, we found no evidence for a role of Ca2+

signaling in nitrate sensing in N-limited P. tricornutum cells (Fig-

ure 1C). Together, these data highlight that multiple environ-

mental drivers coordinate resource-responsive gene expres-

sion in diatoms via complex regulatory networks.

From an ecological standing, the rapid draw-down of N, medi-

ated by P-Ca2+ signaling, enables diatoms to adapt rapidly to ac-

quire another major vital nutrient and enhance their ability to

compete for resources in highly dynamic nutrient regimes.

Certainly, evidence from the Western English Channel demon-

strates that diatoms frequently outcompete other phytoplankton

taxa when P supply is intermittent. Summer diatom blooms
dominated by pennate diatoms have been observed in these re-

gions in response to pulses of phosphate in the surface waters

(which also co-occurred with small increases in nitrate and

ammonium concentrations).60 This provides important evidence

that diatoms are particularly successful competitors under fluc-

tuating P regimes. This ecological success must in some part be

attributed to their sensory mechanisms, which enable them to

rapidly respond to environmental P concentrations. Although lit-

tle is known about how other eukaryotic phytoplankton sense

P resupply and whether or not they also employ P-Ca2+

signaling, diatom P-Ca2+ signaling is certainly distinct from the

P sensory systems characterized in other marine microbes. For

instance, the marine cyanobacterium Synechococcus sp.

WH7803 employs a two-component mechanism analogous to

the PhoR-PhoB system of Escherichia coli.61 In these bacterial

systems, a histidine protein kinase protein (PhoR) senses P avail-

ability.62 Under low P, PhoR activates the response regulator

(PhoB), which directly binds to upstream sequences of

P-responsive genes to activate P starvation responses. Howev-

er, in eukaryotic diatom cells (that can range from 2 mm [e.g.,

Minidiscus] to up to 3 mm [e.g., Ethmodiscus] in diameter),

Ca2+-dependent P-sensing mechanisms likely confer several

advantages. The significant electrochemical gradient for Ca2+

across cellular membranes allows very rapidmodulation of intra-

cellular Ca2+ concentrations that can span whole diatom cells

within seconds. Furthermore, Ca2+ can rapidly and reversibly

bind to numerous downstream protein targets to simultaneously

modulate their conformation and activity directly.50 These prop-

erties render Ca2+ signaling particularly suitable for eukaryote

signal transduction pathways and may explain the evolution of

distinct mechanisms for P sensing between prokaryotic and

eukaryotic marine microbes.

On a final note, this study expands the portfolio of biological

functions of Ca2+ signaling known. Diatoms are evolutionarily

divergent from plants and animals, in which Ca2+ signaling

research is well established. By broadening our study to impor-

tant taxa outside of ‘‘crown’’ eukaryote groups, with fundamen-

tally different ecologies, we can gain a more comprehensive

understanding of the role and evolution of Ca2+ signaling across

eukaryotes. By taking this approach, we have identified that

distinct mechanisms for nutrient perception have arisen.

Diatom-like P-Ca2+ signaling is apparently absent in plants:

phosphate-induced [Ca2+]cyt elevations were not detected in

P-limited Arabidopsis.63 Similarly, unlike Arabidopsis,26 nitrate

resupply did not evoke a Ca2+-signaling response in N-limited

Phaeodactylum cells. Nevertheless, diatom P-Ca2+ signaling

does share features with Ca2+-dependent nitrate sensing in Ara-

bidopsis.26 Both pathways coordinate expression of N-related

genes via Ca2+. In Arabidopsis, this is orchestrated by Ca2+

sensor kinases that phosphorylate NIN-LIKE PROTEIN (NLP)

transcription factors (TFs). Intriguingly, NLP TF genes are absent

from diatom genomes.64 However, we did find four Ca2+ sensor-

kinase genes upregulated during P limitation. Notably, these

genes contain recognition motifs for the P-starvation TF,

PtPSR.25 Our work thus paves the way to future advances in

our understanding of the genetic components, evolutionary

distribution, and broader roles of phosphate-Ca2+ signaling in

controlling recovery from P limitation in diatoms and potentially

eukaryotes more broadly.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains and cultivation of P. tricornutum and T. pseudonana

P. tricornutum strain CCAP1055/1 was obtained from the Culture Collection of Algae and Protozoa (SAMS limited, Scottish Marine

Institute, Oban, UK). T. pseudonana (strain CCMP1335) was kindly donated by Thomas Mock (University of East Anglia, UK). The

transgenic line of P. tricornutum expressing R-GECO132 (PtR1) was generated as described by Helliwell et al., (2019)31.

P. tricornutum and T. pseudonana cultures were maintained in natural seawater (NSW) supplemented with f/2 nutrients34,35, with

100 mM Na2SiO3.5H2O (but not vitamins for P. tricornutum) unless stated otherwise, and illuminated with 50-80 mmol m-2 s�1 light,

on a 16:8 h light:dark cycle at 18�C. For experiments with artificial seawater (ASW), the following recipe was used: 450 mM NaCl,

30 mMMgCl2, 16 mMMgSO4, 8 mM KCl, 10 mM CaCl2, 2 mM NaHCO3, and 97 mMH3BO3), with f/2 nutrients + Si (but not vitamins

for P. tricornutum). For the Ca2+ free (-Ca2+) ASWmedium used for experiments displayed in Figure 6A, the same recipe for ASWwas

used, but without 10 mMCaCl2 (and 200 mMEGTA was added). For all physiology and signaling experiments P. tricornutum cultures

were inoculated to a cell density of 3 3 104 cells ml-1 in liquid culture.

For the nutrient (N, P, f/2 metals) limitation treatments for nutrient resupply experiments described in Figure 1C, cells were grown in

f/2 medium made up with NSW, but with concentrations of nitrate or phosphate reduced to one twentieth of those typically found in

standard f/2 medium (44 mM and 1.8 mM of nitrate and phosphate, respectively)34,35, and no f/2 metals for the trace metal limitation

treatment (Met).

METHOD DETAILS

Generation of T. pseudonana R-GECO1 constructs
To generate the T. pseudonana R-GECO1 construct (pTp-fcp/R-GECO1), we synthesized (GenScript, Piscataway, NJ) the 1251 bp

coding sequence for R-GECO1 (accession AEO16866.1), and sub-cloned it into the pTp-fcp/nat vector66, using the restriction sites

SphI and NotI. This construct was then co-transformed into WT T. pseudonana (CCMP1335), with the pTp-fcp/nat plasmid66 confer-

ring resistance to nourseothricin (NTC), via biolistic transformation.

Biolistic transformation of T. pseudonana
T. pseudonana was co-transformed via biolistic particle bombardment, as previously described by Hopes et al., (2016)68. Briefly,

50 mL of 60 mg/ml M10 Bio-Rad tungsten microcarriers were washed three times with Milli-Q water (via repeated centrifugation (at

10,000 rpm, for 15 s, at 21�C), and resuspension steps). The tungsten particles were then resuspended in 50 ml of Milli-Q water,

and combined with plasmid DNA (including 5 ml each of 1 mg/ml pTp-fcp/R-GECO1 and 1 mg/ml Tp-fcp/nat), followed by 50 ml of

CaCl2 2.5 M and 20 mL of 0.1 M spermidine, while continuously vortexing. Particles were then washed with 250 ml of 100% ethanol

and collected via centrifugation (10,000 rpm, for 15 s, at 21�C). The resulting pellet was then resuspended in 50 m 100% ethanol and

transferred onto a macrocarrier disk, and left to dry.

A total of 53 107 T. pseudonana cells were harvested in mid-exponential growth phase via centrifugation (4,000 rpm, 10 mins, at

21�C), resuspended in 100 ml of f/2 medium (made up with 50% diluted NSW), and transferred onto a 47 mm/0.2 mm filter. The filter

paper was then placed on the center of a 50% salinity f/2 medium plate containing 1.8% agar without antibiotics and set to incubate

for 30 mins.

Biolistic delivery was carried out with a 1350 psi rupture disk positioned at a 7 cmdistance from the plate. Following a 24 h recovery

phase under standard growth conditions, cells were gently rinsed from the filter paper in 25ml of ½ salinity f/2medium. The cells were

then spread on 2-3 selection plates (50% salinity f/2medium 0.8%agar + 300 mg/ml NTC). Dark-brown colonies were transferred into

a 24-well plate containing standard f/2 medium and NTC (300 mg/ml).

Epifluorescence imaging in P. tricornutum and T. pseudonana

P. tricornutum and T. pseudonana cells grown in standard liquid culture for four days were placed in a 35 mm glass-bottomed dish

(In Vitro Scientific, Sunnyvale, CA, USA) coated with 0.01% poly-L-lysine (Sigma-Aldrich, St Louis, MO, USA). Cells adhered to the
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bottom of the dish were imaged at 20�C using epifluorescencemicroscopy with a Nikon Eclipse Ti microscope with a 1003 , 1.30 NA

oil immersion objective and detection with a Photometrics Evolve EM-CCD camera (Photometrics, Tucson, AZ, USA). Excitation of

R-GECO1 (PtR1 and TpR1) cells was performed using a pE2 excitation system (CoolLED, Andover, UK) with 530-555 nm excitation

and 575-630 nm emission filters. Images were captured using NIS-ELEMENTS v.3.1 software (Nikon, Japan) with a 300 ms camera

exposure (frame rate of 3.33 frames s�1). Images were processed using NIS-ELEMENTS v.3.1 software. The mean fluorescence in-

tensity within a region of interest (ROI) over timewasmeasured for each cell by drawing an ROI encompassing thewhole cell. Change

in fluorescence intensity of R-GECO1 was then calculated by normalizing each frame by the initial value (F/F0).

During imaging, cells were continuously perfused with natural seawater (3 ml min�1). The P resupply treatments were delivered by

switching the perfusion from f/2 mediumwithout phosphate (NaH2PO4) to f/2 mediumwith phosphate (typically 36 mM, except in Fig-

ure 2A for the phosphate dose experiment), unless otherwise stated. Cells exposed to phosphate resupply treatments in the absence

of Ca2+ were perfused with at least 20 ml Ca2+ free ASW medium (amended with 200 mM EGTA) in order to minimize residual Ca2+

from the ASW growth medium. The same set-up was used for hypo-osmotic shock experiments, except the perfusion was switched

from undiluted to diluted NSW.

The epifluorescence images of the TpR1 cell displayed in Figure 3A, were acquired using a DMi8 Inverted Microscope with a

DFC700 T color camera (Leica Microsystems, Milton Keynes, UK), with a 63 3 1.40 oil immersion objective. Excitation at 543 nm

and emission at 565-615 nm was used for R-GECO1 fluorescence. For chlorophyll fluorescence the excitation wavelength was

633 nm and emission was detected at 650-710 nm. Given the heterogeneity of R-GECO1 fluorescence in the TpR1, we defined cells

exhibiting a baseline R-GECO1 fluorescence intensity of at least 2.8 fold greater than background levels, as positive for R-GECO1

fluorescence. Using this threshold value we estimated that 57% of the population (grown under standard nutrient replete conditions)

exhibited R-GECO1 fluorescence. Compared to P replete conditions, basal RGECO-1 fluorescence was much lower in the P-limited

conditions, and so it was not possible to distinguish between cells with high versus no/low R-GECO1 expression. Hence we reported

the proportion of cells exhibiting a Ca2+ elevation, out of the total population of cells examined, in response to the phosphate/osmotic

treatments.

Treatment with pharmacological inhibitors for Ca2+-signaling experiments
Prior to phosphate resupply and/or hypo-osmotic shock treatments, cells were bathed in seawater containing verapamil (5 mM),

Ruthenium Red (RuR, 5 mM or 10 mM) for 5 mins in glass-bottomed dishes (stock solutions for these chemicals were made up in

ddH2O). Experimental treatments switching from medium containing no phosphate to 36 mM phosphate (or to diluted seawater in

the case of the hypo-osmotic shock experiments) without the pharmacological agents were then delivered, as outlined above.

Protein preparation for shotgun proteomics
Preplete, Plimited, and Presupply treatment cultures were inoculated with PtR1 cells to a cell density of 33 104 cells ml-1 and incubated in

standard growth conditions for four days. We added 36 mM of phosphate to the Presupply cultures and incubated all cultures for an

additional four h at 18�C. Cells from 15 ml of culture were harvested by centrifugation (4000 g at 4�C for 5 mins). Supernatants

were removed and cell pellets flash-frozen until further analysis. Cell pellets were then dissolved in 100 ml of 1 x LDS loading buffer

(Invitrogen, USA) and given three cycles of 5 min sonications (Branson 2510 Ultrasonic water bath), 10 s of vortex and 5 min incu-

bations at 95�C. Thirty ml of the lysate was loaded immediately onto a precast 10% Tris-Bis NuPAGE gel (Invitrogen, USA) using 1

x MOPS solution (Invitrogen, USA) as the running buffer. SDS-PAGE was performed for a short gel migration (5 mm of migration

into the gel). Polyacrylamide gel bands containing the cellular proteomeswere excised and standard in-gel reduction with dithiothrei-

tol and alkylation with iodoacetamide was performed prior to trypsin (Roche, Switzerland) proteolysis69. The resulting tryptic peptide

mixture was extracted from the polyacrylamide gel bands and prepared for mass spectrometry as previously described70.

NanoLC-MS/MS and data analysis of the proteomes
Samples were analyzed by nanoLC-ESI-MS/MS using an Ultimate 2000 LC system (120 minute LC separation on a 25 cm column;

Dionex-LC Packings) coupled to an Orbitrap Fusion mass spectrometer (Thermo-Scientific, USA), using LC conditions and MS set-

tings as described previously71. Raw MS/MS files were processed with MaxQuant version 1.5.3.3072 for protein identification and

LFQ quantification73, using default parameters, match between runs and P. tricornutum strain CCAP 1055/1 protein database

(Ref. UP000000759) obtained from UniProt. The comparative proteomic analysis between samples (i.e., data filtering and process-

ing, as well as two-sample Student’s t tests and fold changes) was carried out using Perseus version 1.5.5.374 following the pipeline

described previously70, but including a stringent rule where only proteins confidently detected in all three biological replicates of at

least one condition were considered. The full list of detected proteins is available in Data S1.

Biochemical analyses
Total protein extraction and quantification

For total protein analyses, 2 ml of cells were spun down for 2 mins at 13,000 g at 20�C, the supernatant removed, and pellets flash-

frozen in liquid nitrogen. Cell pellets were then re-suspended in 50-200 ml (according to original cell density) of protein extraction

buffer (comprising of 2% SDS, 5 mM tris-HCL pH 6.8, cOmpleteTM protease inhibitor cocktail (1 tablet per 50 ml of extraction buffer),

and sonicated for 3 mins in a sonication bath with ice. Total protein was then quantified using a Pierce BCA Protein Assay kit (Thermo

Fisher Scientific), according to manufacturer’s instructions.
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Chlorophyll quantification

To measure total chlorophyll concentrations a 2 ml aliquot of P. tricornutum cells was centrifuged for 2 mins at 13,000 g at 21�C, the
supernatant discarded and cell pelleted re-suspended in 1 ml ethanol. Chlorophyll pigments were extracted by vortexing for 2 mins,

followed by centrifugation at 13,000 g for 2 mins at 21�C. Optical density of the supernatant was then measured at 652, 665, and

750 nm, and the equations from Ritchie et al., (2008)75 applied to calculate chlorophyll a concentration per cell.

Neutral lipid staining and quantification

One ml of cells were stained with 1 ml of 25 mg ml-1 Nile Red dissolved in DMSO. Fluorescence was then measured in a CLARIOstar

plate reader (BMG LABTECH) using the AlexaFluor532 pre-setting (excitation/emission settings: 482 ± 16/570-530).

Photo-physiological measurements

Measurements of Fv/Fm and non-photochemical quenching (NPQ) were made on dark-adapted (15 mins) cells using an AquaPen-C

device (Photon Systems Instruments). For NPQ measurements, different treatments were diluted to equivalent cell densities prior to

quantification (OD730 between 0.02-0.03). The predefinedNPQ3 settingwas used (light duration 200 s, 10 pulses; dark recovery dura-

tion 60 s, 2 pulses), with light intensity settings as follows: 450 mmol.m-2.s-1 (actinic light), 3000 mmol.m-2.s-1 (super-pulse i.e 100%)

and 20% for the flash pulse. The NPQ was calculated via the following equation: (Fm�Fm’)/Fm’ (where Fm is maximum fluorescence

measured in dark-adapted state and Fm’ maximum fluorescence of samples illuminated with actinic light), as per Ruban et al.,

(2016)76. Values for FPSII (QYLSS) were then extracted to calculate electron transport rate (ETR) using the following equation:

FPSII 3 photosynthetically active radiation (PAR) 3 0.5 (where PAR was 450 mmol photon m�2 s�1 (actinic light)), according to

Maxwell et al., (2000)36.

Nitrogen uptake experiments

Preplete, Plimited, and Presupply treatment cultures were inoculated with PtR1 cells to a cell density of 33 104 cells ml-1 and incubated in

standard growth conditions for four days. Sodium nitrate-15N (R98 atom% 15N, R 99%, Sigma Aldrich, 364606) was added to the

cultures (to a concentration 10% of the ambient nitrate)77, and cells incubated for 1 hour at 18�C. Phosphate (36 mM) was then added

to the Presupply cultures. Cells were harvested at each time-point by centrifugation at 4000 g for 10 mins at 4�C, supernatant removed

and pellets snap-frozen in liquid nitrogen. Total cellular nitrogen content (mmol N) and incorporation of the 15N label into cellular ma-

terial (atom%15N) were determined using a stable isotope ratio mass spectrometer coupled to high temperature combustion

elemental analyzer (SERCON Ltd)78.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analyses
Quantification of data are presented as mean ± standard error of the mean (SEM) with the number (n) indicated in the figure legends

and where relevant the main text. Statistical analyses were performed using a Student’s t test or one-way ANOVA test in SigmaPlot.

Statistical differences are represented as p*, < 0.05; **, p < 0.01; ***, p < 0.001.

Data and Software Availability
The accession number for the proteomic datasets in GenBank and sources of plasmids used in this study are given in the Key

Resources Table.
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