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Evaluation of SMAP Core Validation Site
Representativeness Errors Using Dense Networks of
In Situ Sensors and Random Forests

Jane Whitcomb
Michael H. Cosh
David D. Bosch

Abstract—In order to validate its soil moisture products, the
NASA Soil Moisture Active Passive (SMAP) mission utilizes sites
with permanent networks of in sifu soil moisture sensors main-
tained by independent calibration and validation partners in a
variety of ecosystems around the world. Measurements from each
core validation site (CVS) are combined in a weighted average
to produce an estimate of soil moisture at a 33-km scale that
represents the SMAP’s radiometer-based retrievals. Since upscaled
estimates produced in this manner are dependent on the weighting
scheme applied, an independent method of quantifying their biases
is needed. Here, we present one such method that uses soil moisture
measurements taken from a dense, but temporary, network of soil
moisture sensors deployed at each CVS to train a random forests
regression expressing soil moisture in terms of a set of spatial
variables. The regression then serves as an independent source
of upscaled estimates against which permanent network upscaled
estimates can be compared in order to calculate bias statistics. This

Manuscript received February 27, 2020; revised September 9, 2020 and
October 7, 2020; accepted October 8, 2020. Date of publication October 26,
2020; date of current version December 4, 2020. This work was supported by
the US National Aeronautics and Space Administration (NASA) under NASA
Award NNX14AH82G. (Corresponding author: Jane Whitcomb.)

Jane Whitcomb and Mahta Moghaddam are with the University of South-
ern California, Los Angeles, CA 90007 USA (e-mail: jbwhitco@usc.edu;
mahta@usc.edu).

Daniel Clewley is with Plymouth Marine Laboratory, Plymouth PL1 3DH,
U.K. (e-mail: dac@pml.ac.uk).

Andreas Colliander is with Jet
nia Institute of Technology,
andreas.colliander @jpl.nasa.gov).

Michael H. Cosh is with USDA-ARS Hydrology and Remote Sensing Labo-
ratory, Beltsville, MD 20705-2350 USA (e-mail: Michael.Cosh@ars.usda.gov).

Jarrett Powers and Matthew Friesen are with Agriculture and Agri-Food
Canada, Science and Technology Branch, Winnipeg, MB R3C 1B2, Canada
(e-mail: jarrett.powers @agr.gc.ca; matthew.friesen @agr.gc.ca).

Heather McNairn is with Agriculture and Agri-Food Canada, Sci-
ence and Technology Branch, Ottawa, ON KIA 0C5, Canada (e-mail:
heather.mcnairn @agr.ac.ca).

Aaron A. Berg is with the Department of Geography, Environment and
Geomatics, University of Guelph, Guelph, ON N1G 2WI1, Canada (e-mail:
aberg @uoguelph.ca).

David D. Bosch and Alisa Coffin are with USDA-ARS, South-
east Watershed Research Laboratory, Tifton, GA 31794 USA (e-mail:
david.bosch@ars.usda.gov; alisa.coffin@usda.gov).

Chandra Holifield Collins is with USDA-ARS Southwest Watershed Research
Laboratory, Tucson, AZ 85719 USA (e-mail: chandra.holifield@ars.usda.gov).

John H. Prueger is with the USDA-ARS National Laboratory for Agriculture
and Environment, Ames, IA 50011 USA (e-mail: john.prueger @ars.usda.gov).

Dara Entekhabi is with the Massachusetts Institute of Technology, Cambridge,
MA 02139 USA (e-mail: darae @mit.edu).

Digital Object Identifier 10.1109/JSTARS.2020.3033591

Propulsion Laboratory, Califor-
Pasadena, CA 91125 USA (e-mail:

, Member, IEEE, Daniel Clewley
, Senior Member, IEEE, Jarrett Powers, Matthew Friesen, Heather McNairn, Aaron A. Berg”,
, Alisa Coffin, Chandra Holifield Collins, John H. Prueger, Dara Entekhabi
and Mahta Moghaddam

, Andreas Colliander ™, Senior Member, IEEE,

, Fellow, IEEE,
, Fellow, IEEE

method, which offers a systematic and unified approach to estimate
bias across a variety of validation sites, was applied to estimate
biases at four CVSs. The results showed that the magnitude of the
uncertainty in the permanent network upscaling bias can some-
times exceed 80% of the upper limit on SMAP’s entire allowable
unbiased root-mean-square error (ubRMSE). Such large CVS bias
uncertainties could make it more difficult to assess biases in soil
moisture estimates from SMAP.

Index Terms—Random forests, soil moisture, Soil Moisture
Active Passive (SMAP), upscaling.

1. INTRODUCTION

ONCERNS over recent and projected changes in our
C planet’s climate have cast a spotlight on the urgent need for
atmospheric models accurate enough to provide reliable climate
projections under a variety of policy options. The development
of such models relies on a solid understanding of the global
hydrological cycle, of which one key observable over land is
soil moisture. Additionally, an accurate knowledge of the spatial
distribution of soil moisture is integral to more immediate ap-
plications such as weather forecasting, agricultural productivity
enhancement, water resources management, flood area mapping,
and ecosystem health monitoring [1], [2]. Access to accurate
and timely data on surface soil moisture is vital to all of these
purposes.

The Soil Moisture Active Passive (SMAP) satellite observa-
tory [3], launched in January 2015, was developed to provide
frequent global observations of soil moisture using L-band
(~1.4 GHz) microwave measurements collected by on-board
radiometer and synthetic aperture radar instruments. It pro-
vides global estimates of soil moisture in the top 5 cm of the
earth’s surface every 2-3 days. Details on the SMAP mission
are provided in [1] and [4]. As described there, the mission
requirements for SMAP included a retrieval accuracy placing
an upper limit of 0.04 m®/m? on the overall unbiased root-
mean-square error (ubRMSE). This is to be achieved at a spatial
scale no greater than 10 km for vegetation water content of
less than 5 kg/m?. Failure of the on-board radar in July 2015
made this requirement more challenging, but led to the develop-
ment of an enhanced radiometer-derived soil moisture product
(L2SMP_E) [2], [5], [4]. The L2SMP_E product is posted in the
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EASEGrid-2.0 projection! [6], [7] at 9 km, with each 9-km
soil moisture pixel reflecting data aggregated over a 33-km
contributing domain (i.e., primary spatial area contributing to
the radiometer brightness temperature response) centered on the
pixel, as shown in [4, Fig. 3].

The primary method of evaluating the SMAP enhanced soil
moisture product has been to compare SMAP soil moisture
retrievals with measurements from networks of well-calibrated
in situ soil moisture sensors at a number of test sites, referred to
as core validation sites (CVSs), deployed in various ecosystems
around the globe [8]. These CVSs provide reference pixels where
the average soil moisture can be estimated at the SMAP spatial
scales [9]. In order to be considered a CV'S, each network must
have been verified as reliably providing a spatial average of soil
moisture at the SMAP footprint scale. Multiple studies have
characterized the reliability and spatial variability of the in situ
measurements at these sites, and established the representative-
ness of the measurements at large scales [10]-[12].

At each CVS, 10-30 (typically) permanent soil moisture
measurement stations have been deployed, with most such sta-
tions located within a single 33-km contributing domain grid
of interest, here called the SMAP grid. At certain CVSs, an
additional 40-50 temporary soil moisture measurement stations
have been deployed, but only for a limited period of time.

To assess the performance of the SMAP enhanced soil mois-
ture product, the in sifu soil moisture measurements within each
CVS must be upscaled to a single value at the 33 km pixel size
to be directly compared to the SMAP soil moisture retrieval.
Undersampling of the range of variability of soil moisture within
the field-of-view of the radiometer results in representativeness
errors of the ground-truth. The problem is nontrivial due to
the major difference in scales between the 33-km enhanced
SMAP contributing domain grid and localized point-scale in
situ sensor measurements. Data collected at each in situ soil
moisture measurement station typically accurately reflect soil
moisture only in the immediate vicinity of the station [13], such
that sensor networks must ordinarily be spatially dense in order
to fully capture the spatial heterogeneity of geophysical variables
within the site [14].

Upscaling at the SMAP CVSs is currently tailored to each
site, comprising a weighted average of the network’s permanent
in situ sensor measurements [9]. For most CVS sites, including
three of the four sites considered here, weights are chosen based
on geometric considerations such as Voronoi (aka Theissen)
polygons [15]. Alternatively, weights can be selected by con-
sidering local soil texture and vegetation characteristics based
on the local hydrological conditions. The accuracy of the up-
scaled values produced by these permanent-network-based CVS
scaling functions (SFs) is typically verified by a combination
of intensive field campaigns and the installation of dense but
temporary sensor networks [16].

Accuracy of the SMAP retrievals is then assessed by calculat-
ing error statistics relative to each CVS site’s upscaled in situ soil
moisture measurements. Error statistics have included [4], [17]
time-series correlation, bias, rms error (RMSE), ubRMSE, and
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(more recently, [8]) overall mean absolute bias (MAB). On
this basis, it has been shown, for example, that when SMAP
L2SMP_E retrievals are evaluated relative to CVS SF upscaled
in situ measurements, the resulting ubRMSE statistics, taken
over all sites, are approximately as accurate as the original
L2SMP retrievals, thereby meeting SMAP mission requirements
despite the finer grid size of the enhanced product [18]. In these
assessments, however, it is important to understand any error
sources that may corrupt the CVS SF upscaled soil moisture
estimates themselves, since these errors can distort the SMAP
performance statistics. It has been found, in particular, that error
statistics collected from some sites are significantly worse than
those collected from other sites [9].

The spatial distribution of soil moisture is a complex and
nonlinear function of (typically large-scale) meteorological vari-
ables and (typically smaller-scale) static land characteristics that
include topography (elevation, slope, aspect, and flow accumu-
lation), soil texture, and land cover [14], [19]. Because of the
latter, upscaled estimates derived from in situ sensor networks
most closely represent the true mean soil moisture within a given
SMAP grid if the sensors are dense and evenly spaced [14]. It is
possible to produce accurate upscaled estimates based on sparser
networks, but only if sensor locations have been optimized
based on known persistent soil moisture patterns within the site
(e.g., [20], [21]). In many locations, however, it is difficult or
impossible to maintain either type of arrangement, especially for
the duration of a long-term validation effort. Given the large ge-
ographic extent of the 33-km SMAP grid, it is generally the case
that many otherwise desirable sensor locations are inaccessible
due to such hindrances as property boundaries, paving, topog-
raphy, surface water, and dense vegetation. These unavoidable
limitations on permanent in sifu sensor station locations often
make it impossible to fully capture the heterogeneity of the site’s
surface characteristics and the natural variability of soil mois-
ture, resulting in an incomplete spatial representation that can
lead to biases in the CVS SFs upscaled soil moisture estimates.
Since these biases act as a source of uncertainty in the error
statistics used to quantify the accuracy of SMAP soil moisture
retrievals, it is important to establish a ceiling as to how large they
might be. The objective of this study, therefore, was to develop
a method to quantify the error performance of the CVS SFs, and
to illustrate the use of the method at four of the CVS sites.

Study site characteristics are described in Section II. Our bias
assessment methodology is presented in Section III, results are
discussed in Section IV, discussion is provided in Section V,
and conclusions are provided in Section V1.

II. STUDY SITES

We have investigated in situ CVS SF biases for four different
SMAP CVSs. These are the sites for which dense temporary
network reference data were available. Study site characteristics
are briefly summarized in Table I and their locations are shown
in Fig. 1. Detailed descriptions of the study sites are provided in
the Appendix.

At all four CVSs, the analysis included all stations within the
33-km SMAP grid and some stations outside of, but close to, the
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TABLE I
CHARACTERISTICS OF STUDY SITES
Site Name Coordinates Land Cover Climate' Permanent Temporary
Nodes/Sensors Nodes
Carman, MB (49.60, -97.98) Row Crops Cold (Dfb) 9/20 50
South Fork, IA (42.42, -93.41) Row Crops Cold (Dfa) 15/15 39
Walnut Gulch, AZ | (31.75, -110.03) Desert Scrub Arid (BSk) 28/28 49
Little River, GA (31.67, -83.60) | Row Crops/Evergreens | Temperate (Cfa) 33/33 48

1 Koeppen-Geiger climate classification.

-

Tee
Walnut Gulcl
\.\\
}K/ \\

Fig. 1. Locations of study sites.

SMAP grid. This gave us the benefit of the soil moisture data
offered by those outside sensors in cases where there appeared
to be no significant difference in landcover, topography, or soil
characteristics relative to the characteristics seen within the grid
boundary, and also took advantage of the spatial autocorrelation
of soil moisture (e.g., [22]).

III. METHODOLOGY

In previous work [13], we developed and validated a
regression-based (RB) method of upscaling capable of providing
accurate estimates of upscaled soil moisture even from sparse,
irregularly spaced networks of sensors. This research applies this
well-tested method to assess biases in the soil moisture estimates
derived from permanent in situ sensor stations and the CVS
SF weighted-average. We do this by comparing the permanent
station CV S SF biases to biases in the RB method’s soil moisture
estimates when the latter are based on measurements taken from
dense networks of temporary soil moisture sensors installed
during various field campaigns. In doing so, we assume that the
dense temporary network constitutes the best available source
of reference data based on which the closest estimate of the true
field mean soil moisture can be calculated. In other words, the
data from the dense temporary networks provide our “ground
truth.”

A number of different methods have been developed for
upscaling soil moisture measurements from in situ soil moisture
networks to satellite footprint scale, as has been described in [9],
[13], and [14]. Here, we used a random forests RB upscaling
method based on the dense network of temporary stations at
each CVS to derive upscaled estimates of soil moisture. The
RB estimates were then compared to CVS SF soil moisture

estimates based on permanent in situ sensor measurements at
the same CVS. This comparison made it possible to quantify the
bias uncertainty of the CVS SF soil moisture estimates.

A. RB Upscaling Method

As described in [13], the RB upscaling method relies on
repeated runs of a well-known algorithm called random forests
[23], [24]. Random forests is a highly versatile and well-tested
machine-learning regression algorithm that has been applied
to a diverse array of classification and nonlinear regression
problems.

For a given trial run with a defined set of run parameters
including start time and stop time, iteration time span, and
geographic boundaries of the area included in the analysis, the
RB upscaling method runs random forests once for each iteration
time interval within the overall start-to-stop time period.

For each iteration within the run, the algorithm [25] extracts
in situ measurement data from each selected soil moisture sensor
station within the area of interest and temporally averages them
(and, in the case of stations with redundant sensors, sensor aver-
ages them) over the time interval of the iteration (throughout this
analysis, the time interval was set to one day). It then assembles
a stack of spatial variable data layers for the site and iteration
time interval and extracts the values of the data layers for each
station location. This yields a pool of N samples, where NN is the
number of stations used in the iteration. Each sample consists
of a station’s averaged soil moisture measurement accompanied
by a vector of data layer values for the station location. Random
forests uses the samples to construct a regression model that
estimates soil moisture for each station location as a function
of the data layer values. The resulting regression model is then
applied to every pixel within the site’s 33-km SMAP grid in order
to obtain the soil moisture estimate for that pixel. This process
yields a raster of soil moisture estimates that are then spatially
averaged over all fine-resolution pixels within the 33-km SMAP
grid to yield the grid’s upscaled estimate of soil moisture for the
iteration’s time span.

This RB method can be applied systematically to any CVS for
which station locations have been chosen to achieve a diverse
sampling of values for the different data layers (e.g., various
land cover types, elevation values, etc.). Site-specific modifi-
cations are chiefly confined to accommodating differences in
CVS geographic boundaries, local spatial data layers, and in
situ measurement data characteristics.

1) Random Forests: Random forests is a supervised machine
learning algorithm that constructs a large number, a “forest” of
decision trees based on various subsets of the available dataset,
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with each tree calculating an estimate of the observable in ques-
tion, in this case soil moisture, for all station locations. Random
forests then averages across the trees’ individual estimates for
each station location to produce the location’s overall regression
model result. This approach has been found to improve predic-
tive accuracy and reduce overfitting relative to what is achievable
using a single decision tree. More information on random forests
is provided in the Appendix.

Random forests works best when the forest contains a large
number of trees. Here, as in [13], the regression model has
implemented a forest of 300 decision trees because previous
trial runs had shown accuracy to stop improving after about 200
trees and we wanted to allow some margin for additional run
variability. Also as in [13], this analysis used three randomly
selected data layers to split each decision tree node (i.e., in
the notation of the Appendix, ngi = 3), a number seen as
a compromise between creating strong individual trees and
reducing correlation between trees.

The random forests regression used in our RB upscaling
method was implemented using the scikit-learn Python library
[26].

2) Random Forests Predicted Soil Moisture: Once con-
structed, each iteration’s regression model is applied for every
fine-resolution pixel within the SMAP grid. This is done by
running the vector of data layer values for each pixel in the
raster through all decision trees in the forest and averaging the
resulting soil moisture predictions to obtain the soil moisture
estimate for that pixel.

The spatial variable data layers used in the analysis do not
contribute equally to the accuracy of the final result. Random
forests evaluates the relative importance of the various input
data layers in its regression computation. This is calculated
based on the expected fraction of samples to which the spatial
variable contributes and the decrease in residual sum of squared
errors from splitting them to create a normalized estimate of the
predictive power of that spatial variable [27].

A flow chart, taken from [13, Fig. 5] (with a few modifica-
tions), which summarizes the steps involved in the RB upscaling
method of generating upscaled soil moisture estimates is shown
in Fig. 2.

B. Spatial Variable Data Layers

As mentioned, the spatial variables upon which the random
forests nonlinear regression model is based are extracted from
a stack of input data layers. The stack is constructed in the
EASEGrid-2.0 map projection with a 30 m pixel spacing, the
latter having been chosen to roughly accord with the resolution
of most of the input data layers.

Specific data layer types were chosen to characterize the
following geophysical parameters:

1) landcover;

2) elevation, along with elevation-derived slope, aspect, and
flow accumulation;

3) soil texture, including clay fraction, sand fraction, and bulk
density; and

4) weather, including precipitation and surface temperature
(the latter a driver of evapotranspiration).
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Extract value of data
layers (X) at each
training station
location

%

Select a random subset of data layers
from all available and a random subset of |e=—
training stations (~2/3 of total)

l

Build a regression tree to predict soil
moisture based on values in selected
data layers at training station locations

l

Repeat until the required number of
regression trees have been constructed

‘—1

Apply each tree to predict soil
moisture for all 30 m pixels
within 33 km SMAP grid.
Average across all trees.

Extract and temporally
average soil moisture
measurements for each
training station

Average soil moisture
over all pixels to provide
upscaled value for 33
km SMAP grid

Fig.2. Random forests upscaling method for a single time period. Steps inside
the grey box are implemented within the core random forests algorithm. (This
figure is a slightly modified version of [13, Fig. 5].)

The ability of these spatial variables to affect the spatial
distribution of soil moisture has been confirmed in studies using
land surface models [28]. The spatial distribution of land cover
types, in particular, is directly dependent on local soil texture,
topography, and climate conditions that also closely correlate
with soil moisture [29]. Local variations in elevation can influ-
ence soil moisture by affecting such subsurface parameters as
depth to water table and through their correlation with slope,
aspect, and flow accumulation, which largely determine runoff
characteristics. Soil texture variables have a strong impact on
soil moisture through their ability to directly affect the soil’s
capacity to absorb and retain water.

Landcover data for the Carman CVS were taken from the
Agriculture and Agri-Food Canada crop inventory [30]. This
crop inventory, which is provided at 30 m resolution, was
derived by applying a decision-tree classification to optical
(Landsat-8, Sentinel-2, Gaofen-1) and radar (RADARSAT-2)
satellite images. Landcover data for the South Fork and Little
River CVSs were taken from the cropland data layer (CDL)
[31], a crop data layer produced based on satellite imagery
collected during the growing season from Landsat 8, the Disaster
Monitoring Constellation, ISRO’s ResourceSat-2, and ESA’s
Sentinel-2. Landcover for the Walnut Gulch CVS was taken from
the National Land Cover Database (NLCD) [32], [33], which is
derived from Landsat data at a 30 m resolution. Since the NLCD
is highly monochromatic at the Walnut Gulch CVS, particularly
at the station locations, the use of an alternative, somewhat more
detailed source of landcover, the GAP Land Cover Dataset,” was
tried, but ultimately abandoned since it did not improve results.

Elevation data for the Carman CVS were taken from the
Shuttle Radar Topography Mission (SRTM, SRTMGL1 V003

2[Online]. Available: https:/gapanalysis.usgs.gov/gaplandcover
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[34]) at 1 arcsecond resolution. Elevation data for the South Fork,
Walnut Gulch, and Little River CVSs were taken from the Na-
tional Elevation Dataset (NED, [35]) at 1 arcsecond resolution.
For all four CVSs, slope at each location was calculated using
least squares to fit a plane to a window of elevation data around
the location, then calculating the slope of the plane relative to
the local tangent to the ellipsoid [36]. Following reprojection
into the EASEGrid-2.0 projection, aspect was calculated using
the RSGISLib function rsgislib.elevation.aspect (see [37]). Flow
accumulation, that is, the accumulated flow of water into each
pixel in the output raster as determined by summing the number
of pixels from which water flows into the pixel (following a
precursory calculation of flow direction out of each pixel in the
raster), was calculated using the Hydrology toolset in ESRI’s
ArcGIS Desktop Spatial Analyst Toolbox (see [38]). Pixels with
a high flow accumulation are areas of concentrated flow and can
be used to identify stream channels while pixels with a flow
accumulation of zero are local topographic highs and can be
used to identify ridges.

Soil texture (i.e., clay fraction, sand fraction, and bulk density)
for the top soil horizon of the Carman CVS was taken from
the Canadian Soil Information Service Detailed Soil Survey
(CanSIS DSS, [39]). Similar soil texture variables for the South
Fork, Walnut Gulch, and Little River CVSs were taken from the
USDA’s Soil Survey Geographic Database (SSURGO, [40]). In
both cases, GDAL’s gdal_rasterize utility (see [41]) was used to
rasterize the detailed soil data shape files to the 30-m resolution
used in our analysis.

In the case of Carman, total precipitation, and skin temper-
ature (i.e., temperature at the earth/air interface) were taken
from the European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA-Interim reanalysis [42]. ERA-interim data are
provided at 3-h intervals and a pixel spacing of 0.075° (the
nominal resolution for the dataset is 80 km). Daily averages of
these data were calculated prior to use. ERAS, a next-generation
weather dataset that offers higher accuracy and resolution than
the ERA-interim, currently has a pixel spacing of 0.25° (the
nominal resolution for the dataset is 31 km) that is too large
for our application, but smaller spacings are expected soon.
Precipitation and mean temperature data for the South Fork,
Walnut Gulch, and Little River CVSs were taken from the
PRISM Climate Group (see [43]); these data are available daily
at a resolution of about 4 km. PRISM mean temperature values
constitute daily averages and are interpreted as air temperatures
at 2 m above the Earth’s surface.

C. Assessment of Uncertainty in CVS SF Bias

As previously mentioned, the primary goal of this analysis
was to assess biases in the CVS SF for soil moisture estimates.
Toward this end, the RB upscaling method was run 30 times for
each CVS site with a specified number of training stations, V.
That is, the total number of temporary stations available at each
site was divided into two mutually exclusive pools of stations,
with one pool of N stations used for training the random forests
regression and the remaining pool of stations used for validation.
Given this split, it was expected that small values of N would
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result in accurate validation soil moisture estimates, but some
loss of accuracy in RB soil moisture estimates, whereas large
values of N would result in somewhat less accurate validation
estimates but more accurate RB estimates.

For each trial run ¢ soil moisture measurements from arandom
(with replacement) selection of NV temporary in sifu soil moisture
stations are used to train a random forests RB model from
which a RB upscaled estimate of soil moisture, smgg (N, t,7),
is calculated for each time interval ¢ within the overall duration
of the run. Soil moisture measurements from the remaining,
unselected, temporary stations are averaged together to produce
an independent validation “truth reference” estimate of soil
moisture, smy (N, t,7). Additionally, soil moisture measure-
ments from the permanent in sifu soil moisture stations at the site
are combined to compute a CVS SF estimate of soil moisture
smgr () in accordance with the method outlined in [9].

For any given time interval of any given trial run, therefore,

1) a randomly chosen subset of the temporary stations, A, is
used to derive a RB soil moisture estimate smgg (N, ¢, 1);

2) the remaining, mutually exclusive subset of temporary sta-
tions, that is, the complement of A, is used to derive a validation
“truth reference” estimate of soil moisture, smy (N, ¢, 4); and

3) the full set of permanent stations at the site are used to
derive a CVS SF estimate of soil moisture, smgg(7).

Note that both smgg(N,t,4) and smy (N,¢,i) are derived
using the relatively dense samples of soil moisture available
from temporary station networks. This spatial density makes it
possible to obtain a well-distributed set of training samples to
support the RB upscaling while still maintaining enough valida-
tion samples to support a reasonably accurate “truth reference”
of averaged validation station measurements.

Error statistics for both the random forest RB estimates and
the CVS SF estimates were calculated relative to the validation
“truth reference” estimates of soil moisture. These included
RMSE, bias (mean error), and unbiased RMSE. The resulting
error statistics were averaged across trial runs in order to reduce
the effects of significant run-to-run variability.

Error calculations based on the random forests RB results
were as follows:

RMSEgg(N)

1 1
N2 \/NZ (smrp (N, t,3) = smy (N, £,1))* (1)
t L

. 1 1 . .
biasgg (N) = N, Z A Z (smpp(N,t,7) —smy (N, t,1))
tot

2

ubRMSEgg(N) = \/ (RMSEgg(N))? — (biasgs(N))*  (3)

and those based on the CVS SF results were

RMSEsp(N) = Nit > \/; > (smsp(i) — smy (N, t,1))°
4)
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1 1
biassp(N) = — — (smgg () — smy (N, t,1))
(V) = 3 3 X s
)
ubRMSEgr(N) = \/ (RMSEsp(N))? — (biasge(N))2.  (6)

In these equations, [V, is the number of time intervals in each
trial run and [V, is the number of trial runs for each value of V.
The calculations resulted in a single value for each error statistic
as a function of N, and were repeated for a sequence of Nysins
values of .

Two different bias metrics useful for assessing the overall
uncertainty in CVS SF bias for each site were derived from
the biasgp (V) and biasgr(IV) error statistics. The underlying
assumption in defining these metrics is that the bias derived
by the proposed model based on dense networks of temporary
stations constitutes a lower bound (or best-achievable) value
of bias since the dense networks provide the best available
estimates of the true mean of the soil moisture fields. The bias
metrics are as follows.

1) Mean difference of biases: This metric is derived by
averaging biassg(IN) and biasgg (IN) over all values of N and
subtracting the results

1
biassp = biassp(N)
]Vtrains N
1
biasRB = N biasRB(N) (7)
trains N
Diyean = biasgp — biasgp (8)

where N.ins denotes the number of different values of NV used
in the analysis. This metric helps to quantify how closely the
overall bias in CVS SF estimates approaches the best achievable
value of bias.

2) RMS difference of biases: This metric is formed by calcu-
lating the squared difference between

biasgp(N) and biasgg (V) for all values of N and then com-
puting the root of the mean of the resulting squares

SD(N) = (biassp(NN) — biasgg(N))?

1
D =
RMS \/N trains ;

This metric helps to quantify the absolute value uncertainty in
the bias of CVS SF estimates.

€))

SD(N). (10)

IV. RESULTS

The following results center around the mid-range cases of
N = Npig = 26, 20, 24, and 24 temporary nodes for the Carman,
South Fork, Walnut Gulch, and Little River CVSs, respectively,
with multi- NV statistics spanning the range Npig — 6t0 Nyiq + 6.
Run results were generated for many values of N outside the
range of values included in these multi-N statistics (see, for
example, Fig. 7), but it was decided that the statistics collected
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using this range of N's were likely most representative of the
best achievable bias in CVS SF soil moisture estimates.

A. Performance of RB Upscaling Method

1) Typical Results From a Single Run: A typical raster of
fine-resolution (30 m) soil moisture values as predicted by the
RB upscaling method is shown in Fig. 3. The figure covers the
33-km SMAP grid of the Carman CVS. This particular example
shows the effects of a prominent gradient in soil texture and, to a
lesser extent, topography, oriented in the northeast-to-southwest
direction. Specifically, the northeastern portion of the grid has
a high clay fraction and low elevation, while the southwestern
portion of the grid has a high sand fraction and a high elevation.
This spatial distribution results in far higher values of estimated
soil moisture in the northeastern portion of the grid than in the
southwestern portion.

Typical performance plots from a single-trial run of the RB
upscaling method are shown in Fig. 4 for the case N = Ny;q-
The plots show soil moisture as estimated using 1) the RB
upscaling method (smgg (N, ¢,7)) and 2) the CVS SF (smgg(7))
plotted versus the average of validation station measurements
(smy (N, t,14)) for each of the four CVSs. It can be seen that re-
sults for both the RB upscaling and the CVS SF upscaling exhibit
reasonable agreement with the corresponding mean validation
station measurements. Individual run results were quite variable,
however; performance statistics were averaged over many runs.

2) Layer Importance: Overall plots of the relative impor-
tance of the various input data layers to the regression, as com-
puted by random forests, are shown in Fig. 5. The importance
values shown in these plots are simply averages across all runs
spanning the range N = Nyjg — 6 to Nyq + 6. In all cases, it
should be noted that the relative importance of each spatial data
layer was highly dependent on the heterogeneity of its spatial
distribution, not just on how directly that spatial variable impacts
soil moisture. Highly uniform spatial data layers were, thus,
found to be relatively unimportant.

Fig. 5(a) presents importance values for the Carman CVS. As
was the case in [13], the most important spatial variables at the
site are elevation and clay fraction. Here, the clay and elevation
data layers both exhibit a prominent change in average values
between the northeastern (low elevation and clayey) and south-
western (high elevation and sandy) portions of the site. Other
sites do not exhibit similarly strong soil texture gradients. The
importance of the elevation is likely the result of its covariance
with soil texture because the general topography of the area is
flat except for a gradual 20-30 m drop in average elevation that
occurs (in tandem with the sand-to-clay transition in soil texture)
in the vicinity of a line dividing the southwestern portion of the
site from the northeastern portion of the site.

Fig. 5(b), which presents importance values for the South Fork
CVS, indicates that slope and aspect are the most important spa-
tial variables (although not by a wide margin). This may to some
extent be a consequence of the region’s somewhat undulating
topography. The site includes prominent riverbeds that seem to
have relatively steep slopes, but since stations were not actually
installed in the riverbeds, it is not clear how the steepness of
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Typical raster of soil moisture estimates (in m? /m?) from a single run (Carman, vertical orientation) of the RB upscaling method based on using randomly

selected temporary stations for training and with the remaining stations averaged together for validation. Grayscale images in the upper right show the clay fraction
and DEM input data layers with permanent (red) and temporary (green) station locations overlaid.
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Typical soil moisture estimation results from individual runs of 1) the RB (RF-predicted) upscaling method trained based on randomly selected temporary

stations, and 2) the CVS SF based on permanent stations. All temporary stations not used for training are averaged together for validation. (a) Carman, vertical

orientation. (b) South Fork. (c) Walnut Gulch. (d) Little River.

their banks could have contributed to the high importance of
slope and aspect. The relative importance of temperature could
reflect spatial gradients in local temperature occurring in the
vicinity of the river channels.

Fig. 5(c), which presents importance values for the Walnut
Gulch CVS, shows that the NLCD layer had virtually no im-
portance. This is due to the highly monochromatic nature of

the landcover throughout the Walnut Gulch region, particularly
at the temporary station locations. The most important spatial
variables were temperature, elevation and, to a lesser extent,
slope, and aspect. Precipitation is only the sixth most important
spatial variable for this region when considered over all dates.
This is partly because precipitation was nonzero for only about
half of the dates in the test duration. When layer importance is
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calculated with zero-precipitation dates excluded, precipitation
becomes the third most important variable, after temperature and
elevation.

Given the lack of importance of the NLCD data layer for the
Walnut Gulch CVS, several additional runs were tried with the
NLCD data layer replaced by one of several different data layers
based on metrics of surface and topsoil rock content available
in the SSURGO database. The metrics included percent area of
rocky outcrops, percent area coverage by surface rock fragments,
percent weight of large and small rock fragments within the top
soil horizon, soil weight fraction unable to pass a number 4 sieve,
and soil weight fraction unable to pass a number 10 sieve. While
the layer importance for each of these trial “rock fraction” layers
was greater than that of the NLCD data layer (see Fig. 6), overall
error performance results were no better than had been obtained
using the NLCD. Since there was significant uncertainty as to
whether any of these SSURGO-derived variables constitute an
appropriate indicator of rock fraction, however, further investi-
gation into how best to account for the effects of rock fraction
on soil moisture might yield performance improvements.

Fig. 5(d), which presents importance values for the Little
River CVS, shows that flow accumulation was the most im-
portant spatial variable for this CVS, as a consequence of the
presence of a dense network of large and small streambeds
tracing throughout the site. The streams also affect the soil
composition: soils of the wetland forests lining the streambeds
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Fig.6. Overall relative importance of the input data layers to the RB upscaling
method for Walnut Gulch with a “rock fraction” layer in place of the NLCD.
In the absence of information to the contrary, we assumed the “rock fraction”
layer to include approximately equal fractions contributed from 1) area fraction
of rocky outcrop, 2) area fraction covered by surface rock fragments, 3) weight
fraction of large rock fragments within the top soil horizon, 4) weight fraction
of small rock fragments within the top soil horizon, and 5) soil weight fraction
unable to pass a number 4 sieve within the top soil horizon. These categories
are available from the SSURGO database.

contain relatively high percentages of clay, while soils of the
floodplains adjacent to these wetlands contain very high per-
centages of sand. These spatial relationships likely explain the
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Fig. 7.

Performance results: RF-predicted and CVS SF error statistics (in m3/m?) versus the number of temporary stations used to train the random forests

regression. (a) Carman, horizontal orientation. (b) Carman, vertical orientation. (c) South Fork. (d) Walnut Gulch. (e) Little River.

relatively high importance of the clay fraction and sand fraction
data layers.

3) Overall Error Performance of the RB and CVS SF Up-
scaling Methods: Overall error performance statistics for the
random forests RB upscaling method using the temporary net-
work and the CVS SF using the permanent network are shown
in Fig. 7. The error performance is not a strong function of
N for any of the sites. This is consistent with previous results
[13] demonstrating that random forests generally works well
even with sparse training data as long as those data are spatially
representative.

Error performance statistics were also collected for Little
River with the addition of either NDVI or EVI dynamic layers.
The results were slightly better for most higher values of N but

slightly worse for lower values of NV; overall, the changes were
minor.

Summary statistics for the RB upscaling method using the
temporary networks averaged across all runs spanning the range
N = Npig — 6to Npig + 6 and the CVS SF using the permanent
networks are shown in Table II.

B. Uncertainty in CVS SF Bias

In Table III, the uncertainty in the CVS SF bias has been
assessed according to the two different metrics defined in
Section III-C. Results are averaged over all runs spanning the
range N = Nyig — 6 to Npig + 6.
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TABLE II
SUMMARY ERROR STATISTICS (RMSE, BiAS, UNBIASED RMSE) FOR THE RANDOM FORESTS RB UPSCALING METHOD AND CVS SF AVERAGED OVER ALL RUNS
FOR N IN THE RANGE Nyip — 6 TO Nyip + 6 (ALL UNITS M3/M?) (h: HORIZONTAL SENSORS, v: VERTICAL SENSORS)

Temporary networks with | Permanant networks with
RF scaling CVS scaling

Site Name RMSE | bias ub RMSE | bias ub

Carman (h) 0.026 | -0.013 0.022 0.039 | -0.036 0.016

Carman (v) 0.023 | -0.007 0.022 0.022 | 0.002 0.021

South Fork 0.020 | 0.003 0.020 0.044 | -0.032 0.031
Walnut Gulch | 0.015 | 0.007 0.013 0.020 | -0.011 0.017

Little River 0.037 | 0.015 0.034 0.036 | 0.026 0.025

The dense temporary network RF scaling results are taken as the gold standard for assessing the CVS biases.

TABLE III
METRICS FOR CVS SF BIAS (h: HORIZONTAL SENSORS, v: VERTICAL SENSORS)

Site Name Mean difference | RMS difference Percent of
of biases of biases allowed
(m3/m?) (m3/m3) ubRMSE
Carman (h) -0.022 0.022 56.2
Carman (V) 0.009 0.009 22.6
South Fork -0.034 0.034 85.7
Walnut Gulch -0.018 0.018 44.7
Little River 0.011 0.011 28.0

Only the mean difference of biases metric provides infor-
mation about the sign of the bias uncertainty; here, it shows
that the horizontal Carman, South Fork, and Walnut Gulch
have significant negative biases. The mean difference of biases
metric and the rms difference of biases metric both indicate that
the uncertainty in the CVS SF bias can be large, particularly
in the case of the South Fork and horizontal Carman results.
The magnitude of the value for South Fork, 0.034 m?3/m3, for
example, is more than 80% as large as the entire 0.04 m?/m?
upper limit on overall ubRMSE allowed for SMAP soil moisture
retrievals.

V. DISCUSSION
A. Validation Dataset

The bias in the CVS SF was calculated relative to an average of
soil moisture measurements collected by the validation dataset,
that is, the subset of temporary stations not selected for training
the random forests RB model and, thus, available for use as
validation stations. Permanent stations were not included in
the validation dataset since those are used to derive the CVS
SF soil moisture estimates; as such, they do not constitute an
independent source of soil moisture data from that produced
using the CVS SE. Temporary stations used to train the random
forests regression were also not included in the validation dataset
because, having been used to calculate the RB soil moisture
estimates, they do not constitute an independent source of
soil moisture data from that derived using the random forests
RB upscaling method. Had the stations used to train the ran-
dom forests regression also been used for validation, the RB
model’s estimation bias, as calculated in (2), would have been
unrealistically small. This would prevent the RB upscaling
method from providing a realistic measure of best achievable

bias against which the CVS SFs estimation bias could be as-
sessed. With the validation dataset limited to unselected tem-
porary stations, biases in the CVS SF estimates and those in
the random forests upscaling estimates can both be quantified
relative to the same set of validation measurements, facilitating
a fair comparison.

B. Layer Importances

Soil texture is one of the primary factors in defining soil
moisture as it affects the water retention capacity and infiltration
rate of the soil; for a diverse landscape (sands to clays), it can
account for up to 50% of the variability of the data signal.
Therefore, it is not surprising that random forests found soil
texture to be important at the Carman CVS. The relatively
marginal change in elevation at the site has likely been molded
by geological processes together with the soil texture.

The North American Monsoon drives much of the soil mois-
ture variability at the Walnut Gulch CVS [44]. The importance of
temperature is likely the result of the cooling of the atmosphere
during the monsoon events in the summer and fast dry down rates
while the weather warms up again. Temperature is correlated
with rock fraction, vegetation cover and topography. Its depen-
dence on rock fraction results from the fact that, since rock is
dry, it heats up quickly, leading to higher daytime temperatures.
The dependence of temperature on topography follows since
flat areas get some wind, but hills are ocluded. Furthermore,
within the Walnut Gulch region, elevation is believed to correlate
with rock fraction. These relationships, in concert with the
relatively strong topographic relief seen in the region, likely ex-
plain the relative importance of the topographic variables at the
site.
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The relative importance of flow accumulation at the Little
River CVS is not surprising since floodplains bordering the
numerous large and small streambeds throughout the site likely
dominate the soil-moisture signature. Specifically, there is a
dense network of large and small streambeds tracing throughout
the site, which have distinct characteristics in terms of soil
wetness and vegetation. Woodlands and wetlands characterize
these areas; some stations were targeted in these wetland forests
to capture inundation. Therefore, as the flow accumulation cap-
tures these features better than the NLCD it becomes the most
important layer.

C. Error Statistics

Consistent with Fig. 7, the RMSE and bias error statistics for
the RB estimates based on temporary stations are similar to or
better than those of the CVS SFs based on permanent networks,
although this is not always the case for the unbiased RMSE
statistics. Specifically, for the vertically oriented sensors at the
Carman CVS and the (horizontally oriented) sensors at South
Fork and Walnut Gulch, the unbiased RMSE statistics for the
regression-based upscaling are similar to or better than those
of the original CVS SF using the permanent network. For the
horizontally oriented sensors at Carman and the (horizontally
oriented) sensors at Little River, however, the unbiased RMSE
statistics for the RB upscaling are worse than those of original
CVS SF. In both of the latter cases, the RMSE values for the two
methods are at least roughly comparable but the bias errors of
the CVS SF are much larger than those obtained using the RB
upscaling. As can be seen in (3) and (6), this results in smaller
values of unbiased RMSE for the CVS SF estimates than for the
random forests RB estimates.

In the case of Little River, the CVS SF error statistics are
comparable to those obtained using the RB method. This good
performance may partly have resulted from a successful effort
to apply measurements collected from temporary stations in
woodland areas (which, due to practical limitations, contain no
permanent stations) to correct for biases in the CVS SF estimates
that might otherwise have resulted from a failure to capture the
effects of woodland areas within the 33-km SMAP grid. Random
forests offers an alternative and potentially more systematic and
uniform way of accounting for the effects of such landscape
heterogeneity across the sites, in that the method itself does not
require adaptation to the characteristics of each individual site
and only needs site-specific ancillary data layers.

VI. CONCLUSION

Recent analyses have highlighted the importance of maintain-
ing a clear accounting for biases in characterizing the perfor-
mance of soil moisture retrievals [45]. Since CVS SF upscaled
soil moisture estimates are used in the calibration and validation
of the SMAP soil moisture products, any bias errors corrupting
the estimates have the potential to impact the accuracy assess-
ment and, therefore, mitigation of the SMAP products. It is
consequently very important to determine the range of values
CVS SF bias errors can assume at a given site.
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We have derived the following two new metrics, 1) the mean
difference of biases and 2) the rms difference of biases, to assess
bias errors in CVS SF soil moisture estimates. Both measures of-
fer a straightforward and consistent means of quantifying biases
in the soil moisture estimates generated using the original CVS
SF and can be used to bound a significant source of SMAP soil
moisture retrieval bias. Computation of the metrics is systematic
and can be applied to any site that, for at least a limited period
of time, has installed a relatively dense network of soil moisture
sensors, or even a relatively sparse network of sensors as long
as the latter still realizes sufficient spatial representativeness to
achieve a diverse sampling of values for the different data layers.
Metric (1) provides a measure of how closely biases in the CVS
SF soil moisture estimates approach the best achievable value of
bias. Metric (2) helps to determine the absolute value uncertainty
in the biases. The metrics have been applied to evaluate biases
in the upscaled soil moisture estimates of four different CVSs
where dense temporary reference networks were deployed.

The results of this analysis show that, for at least some CVSs,
the magnitude of the uncertainty in the CVS SF bias can be
more than 80% as large as the upper limit on SMAP’s entire
allowable overall ubRMSE. If left uncorrected, such large CVS
bias uncertainties could prove to be a significant confounding
factor in the overall bias assessment for soil moisture estimates
from SMAP.

The results of this research demonstrate the importance of
quantifying the bias uncertainties in the CVS SF soil moisture
estimates. As has been shown, this can be accomplished by
combining soil moisture measurements collected from dense
(but possibly temporary) networks of sensors according to a
systematic approach such as the random forests RB upscaling
method. The resulting bias uncertainty estimates can be applied
to correct for and thereby reduce biases in the CVS scaling
function soil moisture estimates used to validate SMAP’s soil
moisture retrievals.

APPENDIX
A. SMAPVEXI16-MB Site in Carman, Manitoba

The Carman CVS is operated by Agriculture and Agri-Food
Canada (AAFC). It is located in the Canadian Red River Wa-
tershed, an agricultural region with land cover including such
crops as soybeans, wheat, and canola. Southwestern portions of
the site are very sandy, while northeastern portions are typically
about 20 m lower in elevation and very clayey. As described
in [46], the region often experiences extreme variations in soil
moisture, sometimes drought, and sometimes excessive mois-
ture. The Carman CVS, including the location of permanent and
temporary stations within it, is shown in Fig. 8.

The site included nine permanent stations, all contained
within the 33-km SMAP grid. Each permanent station imple-
mented three horizontally oriented Stevens HydraProbe soil
moisture sensors at 5 cm depths plus three vertically oriented
Stevens HydraProbes extending through the 0-6 cm depth range,
with measurements collected at 15-min intervals (the permanent
stations also had horizontal sensors installed at three other
depths, but this analysis includes only those installed at the



6468

+ permanent
+ temporary

Soybeans
Wheat
Canola
Corn
Grasslands
Oats

Developed

lin

Broadleaf Forest

Fig. 8. Carman CVS. Red crosses denote permanent stations, blue crosses
denote temporary stations, and the square-shaped red line denotes the CVS’s
33-km SMAP grid. The background is taken from the AAFC crop inventory,
and depicts an assortment of row crops.

TABLE IV
NONZERO STATION WEIGHTS FOR CARMAN CVS SF (EACH STATION
IMPLEMENTS THREE HORIZONTAL SENSORS AND THREE VERTICAL SENSORS)

Perm Station | Weight
1 17.5
13
13
13
13
17.5
13

0 N O\t W

5cm depth). Horizontally oriented sensors make it possible to
sample soil moisture at a specific depth, while vertically installed
sensors capture surface soil moisture behavior that corresponds
better with what the SMAP radiometer observes [8].

Sensor weights applied to the permanent station soil moisture
measurements in the CVS upSF were selected by the CVS
partners based on soil type and land cover [9]; they are listed
in Table IV.

Of the nine permanent stations (which included 20 horizontal
and 20 vertical soil moisture sensors at 5 cm depth that were
operational during the time interval analyzed here), only seven
were assigned nonzero weights so as to be included in the
CVS SFs weighted average; these included 17 horizontal and
17 vertical operational sensors. The stations were distributed
on both sides of the gradient in soil texture and elevation,
thereby capturing enough spatial variability to be able to achieve
reasonable results.

The Carman CVS also included 50 temporary stations, of
which 45 were within the 33-km SMAP grid, that sampled
different agricultural fields for a two-month period in summer
2016. Each temporary station implemented one horizontally
oriented Stevens HydraProbe at 5 cm depth and one vertically
oriented Stevens HydraProbe at 0—6 cm depth, with measure-
ments taken at hourly intervals. Temporary station data were
collected throughout the SMAPVEX16-MB field campaign in
June—July 2016 [47], [48].
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Fig. 9. South Fork CVS. Red crosses denote permanent stations, blue crosses
denote temporary stations, and the square-shaped red line denotes the CVS’s
33-km SMAP grid. The background is taken from the CDL, and is dominated
by corn and soybeans.

B. SMAPVEXI16-IA Site in South Fork, lowa

The South Fork CVS (see Fig. 9) is located in an experimental
watershed operated by the USDA-ARS Hydrology and Remote
Sensing Laboratory, the National Laboratory for Agriculture
and Environment, and the University of lowa. The watershed is
predominantly covered by corn and soybean croplands; small
amounts of pasture, deciduous forest, and wetlands are also
present. The region has an undulating topography (the “pothole
region of lowa”), but with low relief and poor surface drainage;
large ditches have been dug to get water out of the fields as
quickly as possible, however. It lies in a temperate, water-limited
northern plain characterized by the typical Midwest seasonal
precipitation pattern exhibiting maximum rainfall and runoff
during the summer (growing season) months [49]. The soils
vary at small spatial scales between being relatively sandy and
relatively clayey loams and silty loams with low permeability.

The network includes 15 permanent stations of which 14 were
within the 33-km SMAP grid. Each permanent station had one
Stevens HydraProbe soil moisture sensor installed horizontally
at a 5 cm depth, collecting soil moisture at hourly intervals.
Sensor weights applied to the permanent station soil moisture
measurements in the CVS upscaling function were based on a
Voronoi diagram [9], in which the area is partitioned into regions
based on the distance of the stations to each other within the
SMAP grid (Thiessen Polygons in [15]).

The installation also included 39 temporary stations for the
growing season of 2016 of which 31 were within the 33-
km SMAP grid. Each temporary station had one Stevens Hy-
draProbe installed horizontally at a depth of 5 cm, collecting
soil moisture at half-hour intervals. Temporary station data were
collected throughout the SMAPVEX16-IA field campaign in
May—August 2016 [48].

C. SMAPVEX]I5 Site in Walnut Gulch, Arizona

The Walnut Gulch CVS (see Fig. 10) is operated by
the Southwest Watershed Research Center of the USDA
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Fig. 10. Walnut Gulch CVS. Red crosses denote permanent stations, blue
crosses denote temporary stations, and the square-shaped red line denotes the
CVS’s 33-km SMAP grid. The background is taken from the NLCD, and shows
the region to be predominantly scrub/shrub, with smaller patches of evergreen
forest and grasslands.

Agricultural Research Service. It is in a semiarid rangeland
dominated by desert open shrub, although it also includes small
areas of evergreen forest, desert grasses, pasture, and wetland.
The Walnut Gulch site exhibits large topographic variations,
with elevations ranging from 1100 to 2000 m over the site. Soils
are relatively sandy (sand fraction over 60%) throughout the
region, mostly consisting of well-drained, sandy, and gravelly
loams [50]. Rock fraction, a land surface parameter that tends
to correlate with elevation within the region, is also indicative
of soil moisture and hydrology. As described by Colliander
et al. [51], most annual precipitation comes during the summer
monsoons in the form of highly localized thunderstorms that
result in a great deal of spatial variability in precipitation.

A total of 28 permanent stations were in the region in-
cluded in the analysis, of which 25 were contained within the
33-km SMAP grid. Each permanent station had one Stevens
HydraProbe soil moisture sensor installed horizontally at a
depth of 5 cm and collected soil moisture at half-hour intervals.
Sensor weights applied to the permanent station soil moisture
measurements in the CVS upscaling function were based on a
Voronoi diagram. Only 19 permanent stations (all within the
SMAP grid) had nonzero weights so as to be included in the
CVS SFs weighted average.

A total of 49 temporary stations were deployed in 2015
and included in the analysis, all contained within the 33-km
SMAP grid. They had Stevens HydraProbe sensors installed
horizontally at 5 cm depth and measured soil moisture at half-
hour intervals. Temporary station data were collected over four
months, July—October 2015, bracketing the SMAPVEX15 field
campaign of August 2015 [51].

D. Little River Site Near Tifton, Georgia

The Little River CVS (see Fig. 11), operated by the USDA-
ARS Southeastern Watershed Research Laboratory, is in ahumid
agricultural region largely covered by forest and row crops such
as peanuts and cotton. The watershed also contains significant
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Fig.11. Little River CVS. Red crosses denote permanent stations, blue crosses
denote temporary stations, and the square-shaped red line denotes the CVS’s
33-km SMAP grid. The background is from the CDL, and shows the region
to include cotton and other row crops, evergreen forest, woody wetlands, and
pasture.

stands of evergreen forest and lesser amounts of woody wet-
lands, pasture, and deciduous forest. As described in Bosch
et al. [52] and Sullivan et al. [53], the region contains numerous
small low-gradient streams. Since slopes are shallow, water is
slow to drain out of the area, and riparian areas are frequently
inundated. Soils are mostly loamy sand (sand fraction over 60%)
throughout the region.

A total of 33 permanent stations were included in the analysis,
of which 21 were contained within the 33-km SMAP grid. Each
permanent station had one Stevens HydraProbe soil moisture
sensor installed horizontally at a depth of 5 cm and collected
soil moisture at half-hour intervals. The CVS upscaling function
used a two-step approach to estimate the areal average soil
moisture. First, sensor weights applied to the permanent station
soil moisture measurements in the CVS upscaling function were
based on a Voronoi diagram. Second, the average soil moisture
was corrected with the temporary network measurements, which
captured soil moisture conditions in woodland areas within the
pixel that were not sampled by the permanent network.

A total of 48 temporary stations were included in the analysis,
of which 43 were within the 33-km SMAP grid. Most stations
implemented two or three sensors of two different types (one or
two Stevens HydraProbes and one CS655); for these locations,
the sensor measurements were averaged together. The sensors
were installed horizontally at 5 cm depth and measured soil
moisture at hourly intervals. Temporary station data were col-
lected for over a year, starting approximately in May 2017 and
continuing (in some instances) into May 2018.

E. More on Random Forests

As mentioned, random forests generates a “forest” of decision
trees. Each decision tree is constructed in accordance with the
classification and regression trees algorithm [54]. To do this, ran-
dom forests first randomly selects /N samples (with replacement,
so as not to alter the characteristics of the pool as selections are
made) from the available N-sample pool. It can be shown [55]
that this results in the selection of approximately 2N/3 unique
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samples; these samples are used to train the regression. The
remaining ~ N/3 unique samples are used to calculate accuracy
statistics for the decision tree’s regression model. In order to
reduce correlation between trees, only a subset of the available
data layers, ngpi layers, is used to split each decision tree node.
A decision tree is formed by starting with all of its samples
placed in a single node, then successively splitting each (parent)
node based on the values of np); randomly selected data layers
in such a manner as to minimize the mean squared error of the
resulting (child) nodes [26]. That is, given a node containing N
samples {y; }, random forests chooses the split that minimizes

2
1 1
MSE(NS):F Z ys_ﬁ Zys .
s sENg s SENg

Splitting continues until all nodes either contain a single
sample or have a mean squared error less than a threshold value.
Random forests average soil moisture estimates for each location
across all decision trees to form an overall estimate of soil
moisture at that location. Each such estimate can be compared
to the location’s in sifu soil moisture value to assess accuracy.
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