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ABSTRACT 
Host-microbe interactions play crucial roles in marine ecosystems. However, we still 

have very little understanding of the mechanisms that govern these relationships, the 

evolutionary processes that shape them, and their ecological consequences. The 

holobiont concept is a renewed paradigm in biology that can help to describe and 

understand these complex systems. It posits that a host and its associated microbiota, 

living together in a stable relationship, form a holobiont, and have to be studied 

together as a coherent biological and functional unit to understand its biology, ecology, 

and evolution. Here we discuss critical concepts and opportunities in marine holobiont 

research and identify key challenges in the field. We highlight the potential economic, 

sociological, and environmental impacts of the holobiont concept in marine biological, 

evolutionary, and environmental sciences. Given the connectivity and the unexplored 

biodiversity specific to marine ecosystems, a deeper understanding of such complex 

systems requires further technological and conceptual advances, e.g. the development 

of controlled experimental model systems for holobionts from all major lineages and 

the modeling of (info)chemical-mediated interactions between organisms. Here we 

propose that one significant challenge is to bridge cross-disciplinary research on 

tractable model systems in order to address key ecological and evolutionary questions. 

This first step is crucial to decipher the main drivers of the dynamics and evolution of 

holobionts and to account for the holobiont concept in applied areas, such as the 

conservation, management, and exploitation of marine ecosystems and resources. 
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Glossary* 
* If no other examples of the use of each term are cited below, the definition was based on the online version of the Merriam-

Webster dictionary (2019, https://www.merriam-webster.com/) or the Oxford dictionary (2020, https://www.lexico.com/) 

 
Anna Karenina principle – a number of factors can cause a system to fail, but only a narrow 

range of parameters characterizes a working system; based on the first sentence 
of Leo Tolstoy’s “Anna Karenina” (1878): “Happy families are all alike; every 
unhappy family is unhappy in its own way” (Zaneveld et al. 2017).  

Aposymbiotic culture – a culture of a host or a symbiont without its main symbiotic 
partner(s) (e.g. Kelty and Cook 1976). In contrast to gnotobiotic cultures, 
aposymbiotic cultures are usually not germ-free. 

Biological control (biocontrol) – methods for controlling diseases or pests by introducing 
or supporting natural enemies of the former (see e.g. Hoitink and Boehm 1999).  

Biomonitoring – the use of living organisms as quantitative indicator for the health of an 
environment or ecosystem (Holt and Miller 2010).  

Community assembly process – the processes that shape community composition in a 
given habitat, according to Nemergut et al. (2013) the four main forces relevant 
for community assembly are evolutionary diversification, dispersal, selection, and 
ecological drift. 

Dysbiosis – microbial imbalance in a symbiotic community that affects the health of the 
host (Egan and Gardiner 2016). 

Ecological process – the processes responsible for the functioning and dynamics of 
ecosystems including biogeochemical cycles, community assembly processes, 
interactions between organisms, and climatic processes (see e.g. Bennett et al. 
2009).  

Ecosystem services – any direct or indirect benefits that humans can draw from an 
ecosystem; they include provisioning services (e.g. food), regulating services (e.g. 
climate), cultural services (e.g. recreation), and supporting services (e.g. habitat 
formation) (Millennium Ecosystem Assessment Panel 2005). 

Ectosymbiosis – a symbiotic relationship in which symbionts live on the surface of a host. 
This includes, for instance, algal biofilms or the skin microbiome (Nardon and 
Charles 2001). 

Emergent property – a property of complex systems (e.g. holobionts), which arises from 
interactions between the components and that is not the sum of the component 
properties (see e.g. Theis 2018). 

Endosymbiosis (sometimes also referred to more precisely as endocytobiosis; Nardon and 
Charles 2001) – a symbiotic relationship in which a symbiont lives inside the host 
cells; prominent examples are mitochondria, plastids/photosymbionts, or 
nitrogen fixing bacteria in plant root nodules. See also ectosymbioisis.  

Gnotobiosis – the condition in which all organisms present in a culture can be controlled, 
i.e. germ-free (axenic) organisms or organisms with a controlled community of 
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symbionts. Gnotobiotic individuals may be obtained e.g. by surgical removal from 
the mother (vertebrates) or by surface sterilization of seeds (plants) and 
subsequent handling in a sterile environment and possible inoculation with 
selected microbes (Hale et al. 1973; Williams 2014).  

Holism – the theory that parts of a whole are in intimate interconnection, such that they 
cannot exist independently of the whole, or cannot be understood without 
reference to the whole, which is thus regarded as greater than the sum of its parts. 

Holobiont – an ecological unit of different species living together in symbiosis. The term is 
frequently used for the unit of a host and its associated microbiota but can be 
extended to larger scales. Whether or to what extent holobionts are also a unit of 
evolution is still a matter of debate (Douglas and Werren 2016). 

Hologenome – the combined genomes of the host and all members of its microbiota; 
Rosenberg et al. 2007a; Zilber-Rosenberg and Rosenberg 2008)  

Horizontal transmission – acquisition of the associated microbiome from the environment 
(e.g. Myers and Rothman 1995; Roughgarden 2019, preprint).  

Host – the largest or dominant partner in a holobiont. 
Infochemical – a chemical compound, usually diffusible, that carries information on the 

environment, such as the presence of other organisms, and can be used to 
mediate inter- and intraspecific communication (Dicke and Sabelis 1988). 

Microbial gardening – the act of frequently releasing growth-enhancing or inhibiting 
chemicals or metabolites that favor the development of a microbial community 
beneficial to the host (see e.g. Saha and Weinberger 2019). 

Microbiome – the combined genetic information encoded by the microbiota; may also 
refer to the microbiota itself or the microbiota and its environment (see Marchesi 
and Ravel 2015). 

Microbiota – all microorganisms present in a particular environment or associated with a 
particular host (see Marchesi and Ravel 2015). 

Nested ecosystems – a view of ecosystems where each individual system, like a “Russian 
doll”, can be decomposed into smaller systems and/or considered part of a larger 
system (Figure 2), all of which still qualify as ecosystems (e.g. McFall-Ngai et al. 
2013). 

Phagocytosis – a process by which a eukaryotic cell ingests other cells or solid particles, 
e.g. the uptake of bacteria by sponges (Leys et al. 2018). 

Phycosphere – the physical envelope surrounding a phytoplankton cell; usually rich in 
organic matter (see Amin et al. 2012). 

Phylosymbiosis – congruence in the phylogeny of different hosts and the composition of 
their associated microbiota (Brooks et al. 2016). 

Rasputin effect – the phenomenon that commensals and mutualists can become parasitic 
in certain conditions (Overstreet and Lotz 2016); after the Russian monk Rasputin 
who became the confidant of the Tsar of Russia, but later helped bring down the 
Tsar’s empire during the Russian revolution. 
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Sponge loop – sponges efficiently recycle dissolved organic matter turning it into detritus 
that becomes food for other consumers (de Goeij et al. 2013). 

Symbiont – an organism living in symbiosis; usually refers to the smaller/microbial 
partners living in mutualistic relationships (see also host), but also includes 
organisms in commensalistic and parasitic relationships. 

Symbiosis – a close and lasting or recurrent (e.g. over generations) relationship between 
organisms living together; usually refers to mutualistic relationships, but also 
includes commensalism and parasitism. 

Vertical transmission – acquisition of the associated microbiome by a new generation of 
hosts from the parents (as opposed to horizontal transmission; e.g. Roughgarden 
2019, preprint). 

 

 

Marine holobionts from their origins to the present 
 

The history of the holobiont concept 
 

Holism is a philosophical notion first proposed by Aristotle in the 4th century BC. It 

states that systems should be studied in their entirety, with a focus on the 

interconnections between their various components rather than on the individual parts 

(Met. Z.17, 1041b11–33). Such systems have emergent properties that result from the 

behavior of a system that is ‘larger than the sum of its parts’. However, a major shift away 

from holism occurred during the Age of "Enlightenment" when the dominant thought 

summarized as “dissection science” was to focus on the smallest component of a system 

as a means of understanding it.  

The idea of holism started to regain popularity in biology when the endosymbiosis 

theory was first proposed by Mereschkowski (1905) and further developed by Wallin 

(1925). Still accepted today, this theory posits a single origin for eukaryotic cells through 

the symbiotic assimilation of prokaryotes to form first mitochondria and later plastids (the 

latter through several independent symbiotic events) via phagocytosis (reviewed in 

Archibald 2015). These ancestral and founding symbiotic events, which prompted the 

metabolic and cellular complexity of eukaryotic life, most likely occurred in the ocean 

(Martin et al. 2008). 

Despite the general acceptance of the endosymbiosis theory, the term ‘holobiont’ 
did not immediately enter the scientific vernacular. It was coined by Lynn Margulis in 1990, 

who proposed that evolution has worked mainly through symbiosis-driven leaps that 

merged organisms into new forms, referred to as ‘holobionts’, and only secondarily 
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through gradual mutational changes (Margulis and Fester 1991; O’Malley 2017). However, 

the concept was not widely used until it was co-opted by coral biologists over a decade 

later. Corals and dinoflagellate algae of the family Symbiodiniaceae are one of the most 

iconic examples of symbioses found in nature; most corals are incapable of long-term 

survival without the products of photosynthesis provided by their endosymbiotic algae. 

Rohwer et al. (2002) were the first to use the word “holobiont” to describe a unit of 

selection sensu Margulis (Rosenberg et al. 2007b) for corals, where the holobiont 

comprised the cnidarian polyp (host), algae of the family Symbiodiniaceae, various 

ectosymbionts (endolithic algae, prokaryotes, fungi, other unicellular eukaryotes), and 

viruses. 

Although initially driven by studies of marine organisms, much of the research on 

the emerging properties and significance of holobionts has since been carried out in other 

fields of research: the microbiota of the rhizosphere of plants or the animal gut became 

predominant models and have led to an ongoing paradigm shift in agronomy and medical 

sciences (Bulgarelli et al. 2013; Shreiner et al. 2015; Faure et al. 2018). Holobionts occur in 

terrestrial and aquatic habitats alike, and several analogies between these ecosystems can 

be made. For example, in all of these habitats, interactions within and across holobionts 

such as induction of chemical defenses, nutrient acquisition, or biofilm formation are 

mediated by chemical cues and signals in the environment, dubbed infochemicals (Loh et 
al. 2002; Harder et al. 2012; Rolland et al. 2016; Saha et al. 2019). Nevertheless, we can 

identify two major differences between terrestrial and aquatic systems. First, the 

physicochemical properties of water result in higher chemical connectivity and signaling 

between macro- and micro-organisms in aquatic or moist environments. In marine 

ecosystems, carbon fluxes also appear to be swifter and trophic modes more flexible, 

leading to higher plasticity of functional interactions across holobionts (Mitra et al. 2013). 

Moreover, dispersal barriers are usually lower, allowing for faster microbial community 

shifts in marine holobionts (Kinlan and Gaines 2003; Martin-Platero et al. 2018). Secondly, 

phylogenetic diversity at broad taxonomic scales (i.e. supra-kingdom, kingdom and phylum 

levels), is higher in aquatic realms compared to land, with much of the aquatic diversity 

yet to be uncovered (de Vargas et al. 2015; Thompson et al. 2017), especially marine 

viruses (Middelboe and Brussaard 2017; Gregory et al. 2019). The recent discovery of such 

astonishing marine microbial diversity in parallel with the scarcity of marine holobiont 

research suggest a high potential for complex cross-lineage interactions yet to be explored 

in marine holobionts (Figure 1). 

The boundaries of holobionts are usually delimited by a physical gradient, which 

corresponds to the area of local influence of the host, e.g. in unicellular algae the so-called 

phycosphere (Seymour et al. 2017). However, they may also be defined in a context-
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dependent way as a ‘Russian Matryoshka doll’, setting the boundaries of the holobiont 

depending on the interactions and biological functions that are being considered. Thus 

 
 
Figure 1. Partners forming marine holobionts are widespread across the tree of life 
including all kingdoms (eukaryotes, bacteria, archaea, viruses), and represent a large 
diversity of potential models for exploring complex biotic interactions across lineages. 
Plain lines correspond to holobionts referred to in the present manuscript. Dashed lines 
are examples of potential interactions. Photo credits: Archaeplastida – C. Leblanc, U 
Cardini; Cryptophyta, Excavata, Amoebozoa – Roscoff Culture Collection; Stramenopila – 
C. Leblanc, S. M. Dittami, H. KleinJan; Alveolata – A. M. Lewis; Rhizaria – F. Not; 
Haptophyta – A. R. Taylor; Opisthonkonta – C. Frazee, M. McFall-Ngai, W. Thomas, L. 
Thiault; Bacteria –  E Nelson, L Sycuro, S. M. Dittami, S. Le Panse, Planktomania; Archaea 
– National Space Science Data Center, Xiaoyu Xiang; Viruses – M. B. Sullivan et al..  
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holobionts may encompass all levels of host-symbiont associations from intimate 

endosymbiosis with a high degree of co-evolution up to the community and ecosystem 

level; a concept referred to as “nested ecosystems” (Figure 2; McFall-Ngai et al. 2013; Pita 

et al. 2018).  

 
 
Figure 2. Schematic view of the “Russian Doll” complexity and dynamics of holobionts, 
according to diverse spatiotemporal scales. The host (blue circles), and associated 
microbes (all other shapes) including bacteria and eukaryotes that may be inside (i.e. 
endosymbiotic or outside the host, i.e. ectosymbiotic, are connected by either beneficial 
(solid orange lines), neutral (solid blue lines) or pathogenic (dashed black lines) 
interactions respectively. Changes from beneficial or neutral to pathogenic interactions 
are typical cases of dysbiosis. The different clusters can be illustrated by the following 
examples: 1, a model holobiont in a stable physiological condition (e.g. in controlled 
laboratory condition); 2 and 3, holobionts changing during their life cycle or submitted to 
stress conditions – examples of vertically transmitted microbes are indicated by light blue 
arrows; 4 and 5, marine holobionts in the context of global sampling campaigns or long-
term time series – examples of horizontal transmission of microbes and holobionts are 
illustrated by pink arrows. 
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Such a conceptual perspective raises fundamental questions not only regarding 

the interaction between the different components of holobionts and processes governing 

their dynamics, but also of the relevant units of selection and the role of co-evolution. For 

instance, plant and animal evolution involves new functions co-constructed by members 

of the holobiont or elimination of functions redundant among them (Selosse et al. 2014), 

and it is likely that these processes are also relevant in marine holobionts. Rosenberg et 
al. (2010) and Rosenberg and Zilber-Rosenberg (2018) argued that all animals and plants 

can be considered holobionts, and thus advocate the hologenome theory of evolution, 

suggesting that natural selection acts at the level of the holobiont and its hologenome. 

This interpretation of Margulis’ definition of a ‘holobiont’ considerably broadened 

fundamental concepts in evolution and speciation and has not been free of criticism 

(Douglas and Werren 2016), especially when applied at the community or ecosystem level 

(Moran and Sloan 2015). More recently, it has been shown that species that interact 

indirectly with the host can also be important in shaping coevolution within mutualistic 

multi-partner assemblages (Guimarães et al. 2017). Thus, the holobiont concept and the 

underlying complexity of holobiont systems should be better defined and further 

considered when addressing evolutionary and ecological questions.  

 

Marine holobiont models 
 

Today, an increasing number of marine model organisms, both unicellular and 

multicellular, are being used in holobiont research (Figure 1), often with different 

emphasis and levels of experimental control, but altogether covering a large range of 

scientific topics. Here, we provide several illustrative examples of this diversity and some 

of the insights they have provided. 

Environmental or “semi-controlled” models, i.e. holobiont systems in which 

microbiome composition is not or only partially controlled: radiolarians and foraminiferans 

(both heterotrophic protist dwellers harboring endosymbiotic microalgae) are emerging 

as ecological models for unicellular photosymbiosis due to their ubiquitous presence in the 

world’s oceans (Decelle et al. 2015; Not et al. 2016). The siphonous green alga Bryopsis is 

an example of a model that harbors heterotrophic endosymbiotic bacteria, some of which 

exhibit patterns of co-evolution with their hosts (Hollants et al. 2013). The discovery of 

deep-sea hydrothermal vents revealed symbioses of animals with chemosynthetic 

bacteria that have later been found in many other marine ecosystems (Dubilier et al. 2008; 

Rubin-Blum et al. 2019) and frequently exhibit high levels of metabolic and taxonomic 

diversity (Duperron et al. 2008; Petersen et al. 2016; Ponnudurai et al. 2017). The 
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cosmopolitan haptophyte Emiliania huxleyi, promoted by associated bacteria 

(Seyedsayamdost et al. 2011; Segev et al. 2016), produces key intermediates in the carbon 

and sulfur biogeochemical cycles, making it an important model phytoplankton species.  

Controlled bi- or trilateral associations: Only a few models, covering a small part 

of the overall marine biodiversity, are currently being cultivated ex-situ and can be used in 

fully controlled experiments, where they can be cultured aposymbiotically. The flatworm 

Symsagittifera (= Convoluta) roscoffensis (Arboleda et al. 2018), the sea anemone 

Exaiptasia (Baumgarten et al. 2015; Wolfowicz et al. 2016), the upside-down jellyfish 

Cassiopea (Ohdera et al. 2018), and their respective intracellular green and dinoflagellate 

algae have, in addition to corals, become models for fundamental research on evolution 

of metazoan-algal photosymbiosis. In particular, Exaiptasia has been used to explore 

photobiology disruption and restoration of cnidarian symbioses (Lehnert et al. 2012). The 

Vibrio-squid model provides insights into the effect of microbiota on animal development, 

circadian rhythms, and immune systems (McFall-Ngai 2014). The unicellular green alga 

Ostreococcus, an important marine primary producer, has been shown to exchange 

vitamins with specific associated bacteria (Cooper et al. 2019). The green macroalga Ulva 
mutabilis has enabled the exploration of bacteria-mediated growth and morphogenesis 

including the identification of original chemical interactions in the holobiont (Wichard 

2015; Kessler et al. 2018). Although the culture conditions in these highly-controlled model 

systems differ from the natural environment, these systems are essential to gain 

elementary mechanistic understanding of the functioning, the roles, and the evolution of 

marine holobionts.  

 

The influence of marine holobionts on ecological processes 
 

Work on model systems has demonstrated that motile and macroscopic marine 

holobionts can act as dissemination vectors for geographically restricted microbial taxa. 

Pelagic mollusks or vertebrates are textbook examples of high dispersal capacity 

organisms (e.g. against currents and through stratified water layers). It has been estimated 

that fish and marine mammals may enhance the original dispersion rate of their 

microbiota by a factor of 200 to 200,000 (Troussellier et al. 2017) and marine birds may 

even act as bio-vectors across ecosystem boundaries (Bouchard Marmen et al. 2017). This 

host-driven dispersal of microbes can include non-native or invasive species as well as 

pathogens (Troussellier et al. 2017).  

A related ecological function of holobionts is their potential to sustain rare species. 

Hosts provide an environment that favors the growth of specific microbial communities 

distinct from the surrounding environment (including rare microbes). They may, for 
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instance, provide a nutrient-rich niche in the otherwise nutrient-poor surroundings 

(Smriga et al. 2010; Webster et al. 2010; Burke, Thomas, et al. 2011; Chiarello et al. 2018).  

Lastly, biological processes regulated by microbes are important drivers of global 

biogeochemical cycles (Falkowski et al. 2008; Madsen 2011; Anantharaman et al. 2016). In 

the open ocean, it is estimated that symbioses with the cyanobacterium UCYN-A 

contribute ~20% to total N2 fixation (Thompson et al. 2012; Martínez-Pérez et al. 2016). In 

benthic systems, sponges and corals may support entire ecosystems via their involvement 

in nutrient cycling thanks to their microbial partners (Raina et al. 2009; Fiore et al. 2010; 

Cardini et al. 2015; Pita et al. 2018), functioning as sinks and sources of nutrients. In 

particular the “sponge loop” recycles dissolved organic matter and makes it available to 

higher trophic levels in the form of detritus (de Goeij et al. 2013; Rix et al. 2017). In coastal 

sediments, bivalves hosting methanogenic archaea have been shown to increase the 

benthic methane efflux by a factor of up to eight, potentially accounting for 9.5% of total 

methane emissions from the Baltic Sea (Bonaglia et al. 2017). Such impressive metabolic 

versatility is accomplished because of the simultaneous occurrence of disparate 

biochemical machineries (e.g. aerobic and anaerobic pathways) in individual symbionts, 

providing new metabolic abilities to the holobiont, such as the synthesis of specific 

essential amino acids, photosynthesis, or chemosynthesis (Venn et al. 2008; Dubilier et al. 
2008). Furthermore, the interaction between host and microbiota can potentially extend 

the metabolic capabilities of a holobiont in a way that augments its resilience to 

environmental changes (Berkelmans and van Oppen 2006; Gilbert et al. 2010; Dittami et 
al. 2016; Shapira 2016; Godoy et al. 2018), or allow it to cross biotope boundaries (e.g. 
Woyke 2006) and colonize extreme environments (Bang et al. 2018). Holobionts thus 

contribute to marine microbial diversity and possibly resilience in the context of global 

environmental changes (Troussellier et al. 2017) and it is paramount to include the 

holobiont concept in predictive models that investigate the consequences of human 

impacts on the marine realm and its biogeochemical cycles. 

 

Challenges and opportunities in marine holobiont research 
 
Marine holobiont assembly and regulation  
 

Two critical challenges partially addressed by using model systems are 1) to 

decipher the factors determining holobiont composition and 2) to elucidate the impacts 

and roles of the different partners in these complex systems over time. Some marine 

organisms such as bivalves transmit part of the microbiota maternally (Bright and 
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Bulgheresi 2010; Funkhouser and Bordenstein 2013). In other marine holobionts, vertical 

transmission may be weak and inconsistent, whereas mixed modes of transmission 
(vertical and horizontal) or intermediate modes (pseudo-vertical, where horizontal 

acquisition frequently involves symbionts of parental origin) are more common (Björk et 
al. 2019). Identifying the factors shaping holobiont composition and understanding their 

evolution is highly relevant for marine organisms given that most marine hosts display a 

high specificity for their microbiota and even patterns of phylosymbiosis (Kazamia et al. 
2016; Brooks et al. 2016; Pollock et al. 2018), despite a highly connected and microbe-rich 

environment.  

During microbiota transmission (whether vertical or horizontal), selection by the 

host and/or by other components of the microbiome, is a key process in establishing or 

maintaining a holobiont microbial community that is distinct from the environment. The 

immune system of the host is one way of performing this selection in both marine and 

terrestrial holobionts. Perturbations in the transmission or the recruitment of the 

microbiota can lead to dysbiosis, and eventually microbial infections (Selosse et al. 2014; 

de Lorgeril et al. 2018). Dysbiotic individuals frequently display higher variability in their 

microbial community composition than healthy individuals, an observation in line with the 

“Anna Karenina principle” (Zaneveld et al. 2017), although there are exceptions to this 

rule (e.g. Marzinelli et al. 2015). A specific case of dysbiosis is the so-called “Rasputin 
effect” where benign endosymbionts opportunistically become detrimental to the host 

due to processes such as reduction in immune response under food deprivation, 

coinfections, or environmental pressure (Overstreet and Lotz 2016). Many diseases are 

now interpreted as the result of a microbial imbalance and the rise of opportunistic or 

polymicrobial infections upon host stress (Egan and Gardiner 2016). For instance in reef-

building corals, warming destabilizes cnidarian-dinoflagellate associations, and some 

beneficial Symbiodiniacea strains switch their physiology and sequester more resources 

for their own growth at the expense of the coral host, leading to coral bleaching and even 

death (Baker et al. 2018).  

Another way of selecting a holobiont microbial community is by chemically 

mediated microbial gardening. This concept has been demonstrated for land plants, 

where root exudates manipulate microbiome composition (Lebeis et al. 2015). In marine 

environments, the phylogenetic diversity of hosts and symbionts suggests both conserved 

and marine-specific chemical interactions, but studies are still in their infancy. For 

instance, seaweeds can chemically garden beneficial microbes, facilitating normal 

morphogenesis and increasing disease resistance (Kessler et al. 2018; Saha and 

Weinberger 2019), and seaweeds and corals structure their surface-associated 

microbiome by producing chemo-attractants and anti-bacterial compounds (Harder et al. 
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2012; Ochsenkühn et al. 2018). There are fewer examples of chemical gardening in 

unicellular hosts, but it seems highly likely that similar processes are in place (Gribben et 
al. 2017; Cirri and Pohnert 2019).  

In addition to selection, ecological drift, dispersal and evolutionary diversification 

have been proposed as key processes in community assembly, but are difficult to estimate 

in microbial communities (Nemergut et al. 2013). The only data currently at our disposal 

to quantify these processes are the diversity and distribution of microbes. Considering the 

high connectivity of aquatic environments, differences in marine microbial communities 

are frequently attributed to a combination of selection and drift, rather than limited 

dispersal (e.g. Burke, Steinberg, et al. 2011), a conclusion which, in the future, could be 

refined by conceptual models developed for instance for soil microbial communities 

(Stegen et al. 2013; Dini-Andreote et al. 2015). Diversification is mainly considered in the 

sense of coevolution or adaptation to host selection, which may also be driven by the 

horizontal acquisition of genes. However, co-speciation is challenging to prove (de Vienne 

et al. 2013; Moran and Sloan 2015) and only few studies have examined this process in 

marine holobionts to date, each focused on a restricted number of actors (e.g. Peek et al. 
1998; Lanterbecq et al. 2010).  

Increasing our knowledge on the contribution of these processes to holobiont 

community assembly in marine systems is a key challenge, which is of particular urgency 

today in the context of ongoing global change. Moreover, understanding how the 

community and functional structure of resident microbes are resilient to perturbations 

remains critical to predict and promote the health of their host and the ecosystem. Yet, 

the contribution of the microbiome is still missing in most quantitative models predicting 

the distribution of marine macro-organisms, or additional information on biological 

interactions would be required to make the former more accurate (Bell et al. 2018). 

 

Integrating marine model systems with large-scale studies 
 

By compiling a survey of the most important trends and challenges in the field of 

marine holobiont research (Figure 3), we identified two distinct opinion clusters: one 

focused on mechanistic understanding and work with model systems whereas another 

targets large-scale and heterogeneous data set analyses and predictive modeling. This 

illustrates that, on the one hand, the scientific community is interested in the 

establishment of models for the identification of specific molecular interactions between 

marine organisms at a given point in space and time, up to the point of synthesizing 

functional mutualistic communities in vitro (Kubo et al. 2013). On the other hand, another 
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part of the community is moving towards global environmental sampling schemes such as 

the TARA Oceans expedition (Pesant et al. 2015) or the Ocean Sampling Day (Kopf et al. 
2015), and towards long-term data series (e.g. Wiltshire et al. 2010; Harris 2010). What 

emerges as both lines of research progress is the understanding that small-scale functional 

studies in the laboratory are inconsequential unless made applicable to ecologically-

relevant systems. At the same time, and despite the recent advances in community 

 
Figure 3: Mind map of key concepts, techniques, and challenges related to marine 
holobionts. The basis of this map was generated during the Holomarine workshop held 
in Roscoff in 2018 (https://www.euromarinenetwork.eu/activities/HoloMarine). The size 
of the nodes reflects the number of votes each keyword received from the participants 
of the workshop (total of 120 votes from 30 participants). The two main clusters 
corresponding to predictive modeling and mechanistic modeling, are displayed in purple 
and turquoise, respectively. Among the intermediate nodes linking these disciplines 
(blue) “potential use, management” was the most connected. 
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modeling (Ovaskainen et al. 2017), hypotheses drawn from large scale-studies remain 

correlative and require experimental validation of the mechanisms driving the observed 

processes. We illustrate the importance of integrating both approaches in Figure 3, where 

the node related to potential applications was perceived as a central hub at the interface 

between mechanistic understanding and predictive modeling. 

A successful example merging both functional and large-scale approaches, are the 

root nodules of legumes, which harbor nitrogen-fixing bacteria. In this system, the 

functioning, distribution, and to some extent the evolution of these nodules, are now well 

understood (Epihov et al. 2017). The integration of this knowledge into agricultural 

practices has led to substantial yield improvements (e.g. Kavimandan 1985; Alam et al. 
2015). In the more diffuse and partner-rich system of mycorrhizal symbioses between 

plant roots and soil fungi, a better understanding of the interactions has also been 

achieved via the investigation of environmental diversity patterns in combination with 

experimental culture systems with reduced diversity (van der Heijden et al. 2015).  

We advocate the implementation of comparable efforts in marine sciences 

through interdisciplinary research combining physiology, biochemistry, ecology, and 

computational modeling. A key factor will be the identification and development of 

tractable model systems for keystone holobionts that allow hypotheses generated by 

large-scale data sets to be tested in controlled experiments. Such approaches will enable 

the identification of organismal interaction patterns within holobionts and nested 

ecosystems. In addition to answering fundamental questions, they will help address the 

ecological, societal, and ethical issues that arise from attempting to actively manipulate 

holobionts (e.g. in aquaculture, conservation, and invasion) in order to enhance their 

resilience and protect them from the impacts of global change (Llewellyn et al. 2014). 

 

Emerging methodologies to approach the complexity of holobiont 
partnerships 
 

As our conceptual understanding of the different levels of holobiont organization 

evolves, so does the need for multidisciplinary approaches and the development of tools 

and technologies to handle the unprecedented amount of data and their integration into 

dedicated ecological and evolutionary models. Here, progress is often fast-paced and 

provides exciting opportunities to address some of the challenges in holobiont research.  

A giant technological stride has been the explosion of affordable ‘–omics’ 

technologies allowing molecular ecologists to move from metabarcoding (i.e. sequencing 

of a taxonomic marker) to metagenomics or single-cell genomics, metatranscriptomics, 
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and metaproteomics, thus advancing our research from phylogenetic to functional 

analyses of the holobiont (Bowers et al. 2017; Meng et al. 2018; Figure 4). These 

approaches are equally useful in marine and in terrestrial environments, but the scarcity 

of well-studied lineages in the former makes the generation of good annotations and 

reference databases challenging for marine biologists. Metaproteomics combined with 

stable isotope fingerprinting can help study the metabolism of single lineages within the 

holobiont (Kleiner et al. 2018). In parallel, meta-metabolomics approaches have advanced 

over the last decades, and can be used to unravel the chemical interactions between 

partners. One limitation particularly relevant to marine systems is that many compounds 

are often not referenced in the mostly terrestrial-based databases, although recent 

technological advances such as molecular networking and meta-mass shift chemical 

profiling to identify relatives of known molecules may help to overcome this challenge 

(Hartmann et al. 2017).  

 

 
Figure 4: Impact of emerging methodologies (light green) on the main challenges in marine 
holobiont research identified in this paper (blue). Turquoise and purple correspond to the 
two main clusters of activity identified in Figure 3. 

 

A further challenge in holobiont research is to identify the origin of compounds 

among the different partners of the holobionts and to determine their involvement in the 

maintenance and performance of the holobiont system. Well-designed experimental 

setups may help answer some of these questions (e.g. Quinn et al. 2016), but they will also 
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require high levels of replication in order to represent the extensive intra-species 

variability found in marine systems. Recently developed in vivo and in situ imaging 

techniques combined with ‘omics’ approaches can provide small-scale spatial and 

qualitative information (origin, distribution, and concentration of a molecule or nutrient), 

shedding new light on the contribution of each partner of the holobiont system at the 

molecular level (e.g. Geier et al. 2020). The combination of stable isotope labelling and 

chemical imaging (mass spectrometry imaging such as secondary ion mass spectrometry 

and matrix-assisted laser desorption ionization, and synchrotron X-ray fluorescence) is 

particularly valuable in this context, as it enables the investigation of metabolic exchange 

between the different compartments of a holobiont (Musat et al. 2016; Raina et al. 2017). 

Finally, three-dimensional electron microscopy may help evaluate to what extent different 

components of a holobiont are physically integrated (Colin et al. 2017; Decelle et al. 2019), 

where high integration is one indication of highly specific interactions. All of these 

techniques can be employed in both marine and terrestrial systems, but in marine systems 

the high phylogenetic diversity of organisms adds to the complexity of adapting and 

optimizing these techniques. 

One consequence of the development of such new methods is the feedback they 

provide to improve existing models or to develop entirely new ones, e.g. by 

conceptualizing holobionts as the combination of the interactions between the host and 

its microbiota (Skillings 2016; Berry and Loy 2018), or by redefining boundaries between 

the holobiont and its environment (Zengler and Palsson 2012). Such models may 

incorporate metabolic complementarity between different components of the holobiont 

(Dittami et al. 2014; Bordron et al. 2016), or simulate microbial communities starting from 

different cohorts of randomly generated microbes for comparison with actual 

metatranscriptomics and/or metagenomics data (Coles et al. 2017).  

A side-effect of these recent developments has been to move holobiont research 

away from laboratory culture-based experiments. We argue that maintaining or even 

extending cultivation efforts, possibly via the implementation of “culturomics” approaches 

as successfully carried out for the human gut microbiome (Lagier et al. 2012), remains 

essential to capture the maximum holobiont biodiversity possible and will facilitate the 

experimental testing of hypotheses and the investigation of physiological mechanisms. A 

striking example of the importance of laboratory experimentation is the way germ-free 

mice re-inoculated with cultivated bacteria (the so-called gnotobiotic mice) have 

contributed to the understanding of interactions within the holobiont in animal health, 

physiology, and behavior (e.g. Neufeld et al. 2011; Faith et al. 2014; Selosse et al. 2014). 

Innovations in cultivation techniques for axenic (or germ-free) hosts (e.g. Spoerner et al. 
2012) or in microbial cultivation such as microfluidic systems (e.g. Pan et al. 2011) and 
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cultivation chips (Nichols et al. 2010) may provide a way to obtain pure cultures. Yet, 

bringing individual components of holobionts into cultivation can still be a daunting 

challenge due to the strong interdependencies between organisms as well as the existence 

of yet unknown metabolic processes that may have specific requirements. In this context, 

single-cell '-omics' analyses can provide critical information on some of the growth 

requirements of the organisms, and complement approaches of high-throughput culturing 

(Gutleben et al. 2018). Established cultures can then be developed into model systems, 

e.g. by genome sequencing and the development of genetic tools, in order to move 

towards mechanistic understanding and experimental testing of hypothetical processes 

within the holobiont derived from environmental meta‘-omics’ approaches. A few such 

model systems have already been mentioned above, but '-omics' techniques have the 

potential to broaden the range of available models, enabling a better understanding of the 

functioning of marine holobionts and their interactions in marine environments (Wichard 

and Beemelmanns 2018). 

 

Ecosystem services and holobionts in natural and managed systems 
 

A better understanding of marine holobionts will likely have direct socio-economic 

consequences for coastal marine ecosystems, estimated to provide services worth almost 

50 trillion (1012) US$ per year (Costanza et al. 2014). Most of the management practices in 

marine systems have so far been based exclusively on the biology and ecology of macro-

organisms. A multidisciplinary approach that provides mechanistic understanding of 

habitat-forming organisms as holobionts will ultimately improve the predictability and 

management of coastal ecosystems. For example, host-associated microbiota could be 

integrated in biomonitoring programs as proxies used to assess the health of ecosystems. 

Microbial shifts and dysbiosis constitute early warning signals that may allow managers to 

predict potential impacts and intervene more rapidly and effectively (van Oppen et al. 
2017; Marzinelli et al. 2018).  

One form of intervention could be to promote positive changes of host-associated 

microbiota, in ways analogous to the use of pre- and/or probiotics in humans (Singh et al. 
2013) or inoculation of beneficial microbes in plant farming (Berruti et al. 2015; van der 

Heijden et al. 2015). In macroalgae, beneficial bacteria identified from healthy seaweed 

holobionts could be used as biological control agents and applied to diseased plantlets in 

order to suppress the growth of bacteria detrimental to the host and to prevent disease 

outbreaks in aquaculture settings. In addition to bacteria, these macroalgae frequently 

host endophytic fungi that may have protective functions for the algae (Porras-Alfaro and 
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Bayman 2011; Vallet et al. 2018). Host-associated microbiota could also be manipulated 

to shape key phenotypes in cultured marine organisms. For example, specific bacteria 

associated with microalgae may enhance algal growth (Amin et al. 2009; Kazamia et al. 
2012; Le Chevanton et al. 2013), increase lipid content (Cho et al. 2015), and participate in 

the bioprocessing of algal biomass (Lenneman et al. 2014). More recently, the active 

modification of the coral microbiota has even been advocated as a means to boost the 

resilience of the holobiont to climate change (van Oppen et al. 2015; Peixoto et al. 2017), 

an approach which would, however, bear a high risk of unanticipated and unintended side 

effects.  

Also, holistic approaches could be implemented in the framework of fish farms. 

Recent developments including integrated multi-trophic aquaculture, recirculating 

aquaculture, offshore aquaculture, species selection, and breeding increase yields and 

reduce the resource constraints and environmental impacts of intensive aquaculture 

(Klinger and Naylor 2012). However, the intensification of aquaculture often goes hand in 

hand with increased amounts of disease outbreaks both in industry and wild stocks. A 

holistic microbial management approach, e.g. by reducing the use of sterilization 

procedures and favoring the selection of healthy and stable microbiota consisting of slow-

growing K-strategists, may provide an efficient solution to these latter problems, reducing 

the sensitivity of host to opportunistic pathogens (De Schryver and Vadstein 2014).  

Nevertheless, when considering their biotechnological potential, it should also be 

noted that marine microbiota are likely vulnerable to anthropogenic influences and that 

their deliberate engineering, introduction from exotic regions (often hidden in their hosts), 

or inadvertent perturbations may have profound, and yet entirely unknown, 

consequences for marine ecosystems. Terrestrial environments provide numerous 

examples of unwanted plant expansions or ecosystem perturbations linked to microbiota 

(e.g. Dickie et al. 2017), and cases where holobionts manipulated by human resulted in 

pests (e.g. Clay and Holah 1999) call for a cautious and ecologically-informed evaluation of 

holobiont-based technologies in marine systems. 

Conclusions 

Marine ecosystems represent highly connected reservoirs of largely unexplored 

biodiversity. They are of critical importance to feed the ever-growing world population, 

constitute significant players in global biogeochemical cycles but are also threatened by 

human activities and global change. In order to unravel some of the basic principles of life 

and its evolution, and to protect and sustainably exploit marine natural resources, it is 
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paramount to consider the complex biotic interactions that shape the marine communities 

and their environment. The scope of these interactions ranges from simple molecular 

signals between two partners, via complex assemblies of eukaryotes, prokaryotes, and 

viruses with one or several hosts, to entire ecosystems. Accordingly, current key questions 

in marine holobiont research cover a wide range of topics: What are the exchanges that 

occur between different partners of the holobiont, and how do they condition their 

survival, dynamics and evolution? What are the cues and signals driving these exchanges? 

What are the relevant units of selection and dispersal in marine holobionts? How do 

holobiont systems and the interactions within them change over time and in different 

conditions? How do such changes impact ecological processes? How can this knowledge 

be applied to our benefit and where do we need to draw limits? Identifying and 

consolidating key model systems while adapting emerging “-omics”, imaging, and culturing 

technologies to them will be critical to the development of “holobiont-aware” ecosystem 

models.  

We believe that the concept of holobionts will be most useful and heuristic if used 

with a degree of malleability. It not only represents the fundamental understanding that 

all living organisms have intimate connections with their immediate neighbors, which may 

impact all aspects of their biology, but also enables us to define units of interacting 

organisms that are most suitable to answer specific scientific, societal, and economic 

questions. The consideration of the holobiont concept marks a paradigm shift in biological 

and environmental sciences, but only if scientists work together as an (inter)active and 

transdisciplinary community bringing together holistic and mechanistic views. This will 

result in tangible outcomes including a better understanding of evolutionary and adaptive 

processes, improved modeling of habitats and understanding of biogeochemical cycles, as 

well as application of the holobiont concept in aquaculture and ecosystem management 

projects. 
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