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Exchanges of solutes and solids between the sea floor and water column are a vital component of ecosystem functioning in marine habitats
around the globe. This review explores particle and solute exchange processes, the different mechanisms through which they interact at the
ecosystem level, as well as their interdependencies. Solute and particle exchange processes are highly dependent on the characteristics of the
environment within which they takes place. Exchange is driven directly by a number of factors, such as currents, granulometry, nutrient, and
matter inputs, as well as living organisms. In turn, the occurrence of exchanges can influence adjacent environments and organisms. Major
gaps in the present knowledge include the temporal and spatial variation in many of the processes driving benthic/pelagic exchange processes
and the variability in the relative importance of individual processes caused by this variation. Furthermore, the accurate assessment of some
anthropogenic impacts is deemed questionable due to a lack of baseline data and long-term effects of anthropogenic actions are often un-
known. It is suggested that future research should be transdisciplinary and at ecosystem level wherever possible and that baseline surveys
should be implemented and long-term observatories established to fill the current knowledge gaps.
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Introduction
More than 70% of the Earth’s surface is covered by water. If the

water were to be removed, marine sediments would cover more

global surface area than all other ecosystems combined

(Snelgrove et al., 1999). This marine benthos (sea floor) can have

extremely varied geological, physical, and chemical characteristics

and supports a diverse range of life forms. It also acts as an im-

portant source and sink of energy and matter, which are ex-

changed with the overlying water (Morris and Howarth, 1998).

Thanks to new technologies, tackling formerly inaccessible areas

of the ocean, it is now known that the benthos is an important as-

set of marine ecosystems globally, which is tightly coupled with

other marine environments (e.g. Marcus and Boero, 1998;

Navarrete et al., 2005). In this review, this connection of benthic

and pelagic (water column) environments will be explored by

assessing exchange processes between the two.

A wide diversity of physically and biologically mediated ben-

thic/pelagic solute and particle exchanges (hereafter “B/P

exchanges”) exists. The potential for, and nature and magnitude
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of, B/P exchanges depends strongly upon the physical characteris-

tics of the sediment, such as its grain size, cohesion, permeability,

and porosity (Kalnejais et al., 2010). A sediment bed may be de-

scribed as cohesive when it contains at least 10–30% clay and/or

silt content, particles which are <63 mm in grain size; and non-

cohesive otherwise (Winterwerp, 2011). Permeable sediment can

be defined as having a permeability of > 10�12 m2 (see Huettel

et al., 2014). While cohesion mostly affects particle exchange pro-

cesses, more permeable environments have larger solute exchange

potentials. Sediment properties may in turn be modified through

physically and biologically mediated sediment mixing and venti-

lation, thereby passively and actively altering exchange rates

(Volkenborn et al., 2010). In many cases, the effects of biological

processes are particularly influential in the absence of large-scale

physical disturbances (e.g. Widdows et al., 1998a; Andersen and

Pejrup, 2002; Paarlberg et al., 2005). For instance, the degree of

cohesion and fluidizations of sediments may fundamentally re-

flect the activity of its biological community (Widdicombe and

Austen, 1999). In turn, biological communities are often shaped

by their physical and chemical environments as many organisms

occupy specific niches (Snelgrove, 1999).

In addition to biogenic and physical influences on B/P

exchanges, anthropogenic (human) interventions can play an im-

portant role. The effects of anthropogenic interaction with the

marine environment are often synchronous and can act synergis-

tically, making it difficult to put preventative and counter-active

measures in place (Caddy, 2000). Impacts are not only concen-

trated in coastal shelf areas where anthropogenic activity is preva-

lent but can be spread further (Martı́n et al., 2008). For example,

the form and extent of effects of bottom trawling on benthic

communities are also dependent on the respective sediment types

they occur in, which also in themselves affected by this activity

(Hiddink et al., 2006; Queirós et al., 2006; Hale et al., 2017). The

relative impact of anthropogenic interferences compared to natu-

rally occurring processes on B/P exchanges can thus be hard to

quantify, as the two can have similar consequences (Pusceddu

et al., 2005) but cause different effects on different types of organ-

isms (e.g. meiofauna: Schratzberger et al., 2009; and macrofauna:

Fang et al., 2019).

In the course of this review, the complexity of particle and sol-

ute B/P exchange processes, as well as particular driver interac-

tions, will be explored. Solute and particle exchanges will be

reviewed individually, with solute exchange subsections designed

to highlight the main drivers of exchange, and particulate ex-

change subsections structured to highlight downward and up-

ward directed exchange processes. Interdependencies between

solute- and particle-specific processes will be explored using the

example of organic matter cycling, which is a biologically vital

process that crucially depends on both types of exchange.

Knowledge gaps in the current research will be highlighted

throughout each section and finally reviewed in combination

with recommendations for future research.

Solutes
Solutes in the marine environment can broadly be defined as sub-

stances dissolved in sea water. Throughout the water column, sol-

utes may be transported through eddy and molecular diffusion

(Boudreau, 2001), as well as convection (Webster et al., 1996).

When biologically important elements such as oxygen (O2), car-

bon (C), and nitrogen (N) are in solution, they are readily avail-

able for processes such as respiration, photosynthesis,

calcification, diagenesis, and direct nutrient uptake (all of which

will be elaborated upon below), which is why their transport

across the pelagic and benthic environments and exchange be-

tween the two are essential.

O2 is perhaps the most biologically important solute moving

across the sediment–water interface. The depth to which O2 pene-

trates the sediment controls the depth distribution of O2-depen-

dent biogeochemical oxidation reactions, such as nitrification

and sulphide oxidation (Rysgaard, 1994), as well as the oxidiza-

tion of organic matter (OM; Cai and Sayles, 1996). On the whole,

the availability of dissolved oxygen in sediment drives aerobic

OM degradation rates, a reduction in the concentration of dis-

solved organic C, and can decrease molecular dissolved OM di-

versity (Seidel et al., 2015). O2-driven diagenesis (mineralization,

dissolution and geo-polymerization during burial; Lindqvist,

2014) is intensified in the presence of marine organisms, which

produce enzymes that catalyze those reactions (Lindqvist, 2014).

In the absence of biological interactions, the penetration depth of

O2 in the sediment has been shown to depend on the O2 concen-

tration in the overlying water (Revsbech et al., 1980; Rasmussen

and Jorgensen, 1992). Anthropogenic disturbance, such as trawl-

ing, can cause a reduction in dissolved O2 (Tiano et al., 2019).

The displacement of the oxygenated sedimentary surface layer

through trawling equipment lessens biogenic O2 consumption

and causes deeper O2 penetration depths in the affected areas,

thereby effectively changing the sedimentary biogeochemical en-

vironment (Tiano et al., 2019).

Nutrients are another ecologically important solute group in

the marine system, as their availability and cycling throughout

the environment can be limiting to many organisms (e.g.

Howarth, 1988). Intermittence in nutrient concentrations in the

water column, and thus at the sediment–water interface, is driven,

among other processes, by seasonal changes in temperature

(Pomeroy and Deibel, 1986), fluvial and terrestrial input (Justic,

1995; Burnett et al., 2003; Milliman and Farnsworth, 2013), water

column mixing, and sea bed resuspension. The latter is often ini-

tiated by stochastic storm events (Corte et al., 2017). Temporal

patterns of denitrification and nutrient flux dynamics also depend

upon the sediment type, as sandy sediments exhibit seasonal

changes primarily driven by temperature and irradiation, while

silty sediments are additionally influenced by aforementioned

stochastic resuspension events (Seidel et al., 2015) and meteoro-

logically induced upwelling events (MacIntyre, 1998). The result-

ing supply of nutrients from the benthos to the pelagic

environment is a crucial factor controlling phytoplankton blooms

at times of the year when the water column is not stratified in

non-eutrophic systems, as the mixing of water from depth and

surface layers can place nutrients from benthic sources within

reach of the pelagic organisms (Barnes et al., 2015). This, in turn,

fuels zooplankton productivity and can give rise to knock-on

effects throughout the entire marine food web (Eloire et al.,

2010). Increased pelagic productivity, on the other hand, leads to

increased nutrient influx rates to the benthos from sinking OM,

which is why the benthic community and its activity typically

flourish in response to large seasonal plankton blooms (e.g.

Queiros et al., 2015; Tait et al., 2015). Other nutrient sources to

benthic sediment–water interactions include atmospheric input

(Krishnamurthy et al., 2010), anthropogenic terrestrial sources

(Justic, 1995; Burnett et al., 2003), dredge-spoil dumps (e.g.

Harvey, Gauthier and Munro, 1998), and the addition of dead

cells and faecal pellets from pelagic organisms, sinking onto the
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sea floor (Van Duyl et al., 1992). The relative impact of each of

these depends on factors such as proximity to the coast and the ex-

tent of local pelagic primary productivity, and lateral transport

fuelled by circulation patterns can alter their relative importance

(e.g. Walsh, 1991; Williams and Follows, 1998). Most of the organ-

ically available nutrients near the seafloor are extracted and proc-

essed diagenetically by the benthic microbial community, or

directly consumed by deposit and suspension feeding fauna,

degrading and mineralizing the floccules’ contents. The latter can

generally be described as the return of nitrogen (N) and phospho-

rous (P) to inorganic forms after having been incorporated in or-

ganic molecules, or (re-)mineralization (Williams and del Giorgio,

2005). Within the sediment, diagenesis is fuelled by the enrichment

of the sediment matrix with O2 (Emerson and Hedges, 2003).

The B/P exchange of not only O2 and nutrients but also all sol-

utes is governed by a number of direct and indirect drivers

(Figure 1), and the current understanding of each in the literature

will be detailed throughout this section.

It is difficult to definitively determine the relative importance

of the different driver groups and important factors within each

on B/P, as they can be highly variable across spatial and temporal

scales. Seasonal variation, for example can cause shifts in the rela-

tive importance of biological and physical influences (Howarth

et al., 1993; Schlüter et al., 2000); biogenically induced spatial var-

iation in sediment properties can cause differences in the main

drivers of solute B/P exchange on both small (Wethey and

Woodin, 2005) and large (Fang et al., 2019) spatial scales. This

variability constitutes a knowledge gap, which has to be filled on

a situational basis, specific to the system, location, and time pe-

riod of each study within which such processes are investigated.

For the purposes of this review, the main drivers of solute B/P ex-

change are therefore elaborated upon in no particular order.

Diffusive flux
Water close to the sediment surface within the benthic boundary

layer is directly affected by friction at the seabed, which promotes

solute transport via diffusion. Cohesive sediments, with high clay

content, tend to be more difficult to percolate due to a generally

smaller degree of permeability, thus impeding the flux of solutes

(Yang and Aplin, 2010; though this is not necessarily true for co-

hesive environments with low clay content, see, e.g. Winterwerp

and Kesteren, 2004). In such conditions, molecular diffusion of

pore-water solutes across the sediment–water interface prevails,

leading to more gradual solute fluxes (Berner, 1980; Forster et al.,

1999) in the form of ion transfer between pore water and near-

bottom water or as a result of the reactivity of solid surfaces

(Kalnejais, Martin and Bothner, 2010). Other physical environ-

mental variables, such as pressure differentials driven by tides,

have been shown to lead to short-term temporal variability of dif-

fusive fluxes (Van Der Kamp and Gale, 1983). The potential

depth of diffusive processes is, theoretically, only limited by time.

In some cases, however, diffusive distances can be altered, driven,

and extended through an increase in sediment permeability, pro-

moted by benthic biological activity. Sedimentary O2 uptake, for

instance is only a function of physical penetration depth, which is

determined by time in the absence of biological activity and OM

(Revsbech et al., 1980). What is hitherto unknown is whether

there are ways in which biological or anthropogenic interactions

may be directly inhibitive of solute diffusion across the sediment–

water interface. As diffusion does not necessarily occur in isola-

tion from other drivers of solute exchange, a differentiation be-

tween relative contributions of each driver would be of interest to

correctly quantify each pathway. However, while the balance be-

tween, for example diffusive and advective solute B/P exchange

Figure 1. Flow chart of direct (red, middle) and indirect (blue, right) drivers of solute B/P exchange (green, left); arrows indicate which
factors affect others and are colour-coordinated with the driver they originate from.
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may be calculated in theory (Anderson and Cherry, 1979;

Taigbenu and Liggett, 1986), in situ measurements that take both

into account and clearly differentiate between their respective

contributions have so far not been successful.

Advection and physical resuspension
Abiotically driven fluctuations into (and out of) the sediment

matrix can also occur through mechanically driven water transfer

into and out of the sediment pores. With increasing shear stress

and turbulence, benthic boundary layer thickness typically

decreases (though there are some exceptions), and with it, the re-

sistance of solute transfers into and out of the sediment (Lohse

et al., 1996). This decline continues into the top sediment layers

(Ahmerkamp et al., 2017). In turbulent conditions, under strong

enough shear stress or in the presence of sediment surface

obstacles, solute transport is prevalent through advection and

physical resuspension. Obstacles can include protruding solid

objects (rocks, shells, etc.), man-made structures, biogenic sedi-

ment structures (e.g. polychaete tubes), or simply a three-

dimensional bedform, all of which lead to pressure differentials

that drive water through the sediment and significantly enhance

the exchange of solutes (Huettel and Gust, 1992; Ziebis, Huettel

and Forster, 1996; Hutchinson and Webster, 1998). The flushing

action from advective processes can winnow smaller particles

from the sediment matrix, leading to an overall coarser environ-

ment that can be percolated more easily (Malarkey et al., 2015),

and the less cohesive and more permeable the seabed is, the more

likely is the occurrence of active ejections of solutes into the water

column through physically driven advective currents (Lohse

et al., 1996; Cook et al., 2007). Resuspension events, driven by ei-

ther biological activity or abiotic interactions, can enhance solute

exchange processes through an increase in the sediment surface

area availability for dissolution through the placement of particu-

lates in the water column, re-oxygenation of formerly diagenized

elements, and the direct flushing out of interstitial water (Morse,

1994; Morin and Morse, 1999; Saulnier and Mucci, 2000;

Kalnejais et al., 2010). Turbulent hydrodynamic forces close to

the sea bed thus catalyze the oxygenation of the surface sediment

layers through partial resuspension as well as flushing action

(Malan and McLachlan, 1991; Couceiro et al., 2013). And B/P

solute exchange through physical processes, such as advection

and resuspension, further contributes to the breaking down of

OM and subsequent supply of biologically important solutes

(Franke et al., 2006). In intertidal sandy areas, for example, which

typically contain low concentrations of particulate OM due to

seasonal hydrodynamic removal (POM; Rusch et al., 2000), pore-

water nutrients may be supplemented through advective flushing

(Seidel et al., 2015).

Clearly, although there is already a large body of literature cov-

ering physically driven solute exchange processes, there are still

areas requiring further exploration. Temporal variability in ad-

vective transport, for instance is poorly understood and has there-

fore so far not been taken into account in most studies (Cook

et al., 2007). As the hydrographic drivers of advection and resus-

pension may be consistent (e.g. currents), and/or regularly occur-

ring (e.g. tidal flow), and/or stochastic in nature (e.g. storm

events), even in situ measurements only capture a snapshot of

events, and the potential overlap between time scales impedes our

ability to differentiate between them. Long-term monitoring of

physically driven B/P solute exchanges may offer a solution to

this, though so far this has not been undertaken. The extent to

which boundary layer flow dynamics impact physically driven

solute B/P exchange has also yet to be definitively quantified, es-

pecially in an in situ context, including physical and biological

interactions.

Bioirrigation and biological particle mixing
Biological mediation of solute exchange across the sediment–wa-

ter interface is constant and inherent to sedimentary life, but in

environments in which physically mediated transport is minimal,

processes such as faunal flushing of pore waters can determine

the rate and characteristics of B/P exchange of solutes

(Mermillod-Blondin and Rosenberg, 2006; Volkenborn et al.,

2010). In addition, the sediment depth to which solutes are trans-

ported biologically can be multiple times that which may be

reached through purely physical means (Volkenborn et al., 2010).

The biological exchange of solutes can take the form of bioirriga-

tion, the active displacement of liquid and solutes by benthic

organisms (Volkenborn et al., 2007) linked to respiration, metab-

olite excretion, and other individual-based processes; or bio-

advection, the induction of additional pore water through bur-

rowing organisms’ physical activity into the surrounding sedi-

ment (Volkenborn et al., 2012). Biologically mediated exchange

rates strongly depend on the characteristics of the associated fau-

nal and microbial community (see e.g. Waldbusser et al., 2004).

Both bioirrigation and bio-advection are at least equally as im-

portant as, and often largely exceed, the rates of molecular diffu-

sion in the upper sediment layers of biogenic environments (Berg

et al., 2001). The large spatial extent to which the hydraulic forces

generated by bioadvectors and bioirrigators propagate through

the sediment can lead to effects, which far exceed the immediate

vicinity of their burrows (Wethey and Woodin, 2005). This can

in some instances have significant effects at the landscape scale

(Fang et al., 2019), though more often it leads to small-scale spa-

tial variation with hot spots of altered oxygenation nutrient and

carbon concentrations in the immediate vicinity of the bioirriga-

tive activity. The release of O2 from root systems in submerged

macrophytes can even create three-dimensional spatial variability

in variable diffusion potential and solute distribution (Sand-

Jensen et al., 1982).

Pore-water O2 content in particular is typically increased

through bio-advection (N Volkenborn et al., 2010; Volkenborn

et al., 2012) as many burrowing animals actively oxygenate the

surrounding sediment by ventilating their burrows with bottom

water (Volkenborn et al., 2007). Due to this, the thickness and

volume of the sedimentary oxidizing phase are largely extended,

thus ameliorating conditions and promoting the occurrence of

other aerobic life forms (Mermillod-Blondin and Rosenberg,

2006; Glud, 2008). This can in some cases lead to seasonal varia-

tions in O2 availability linked to organisms’ own seasonal life-

cycle processes (Glud et al., 2003). Significant variation is also ob-

served between sediment types (Hicks et al., 2017). Through the

particle movement and disruption of sediment layering, biogenic

particle mixing (bioturbation) strengthens B/P coupling as it

increases the fluxes of nutrients, metals, C, O2, and other micro-

particles, which would otherwise remain buried (Caliman et al.,

2007; Hale et al., 2017). At the local scale, the presence of infaunal

bioturbators has been shown to increase natural denitrification

rates by at least 160% (Gilbert et al., 1998). Generally, N-mineral-

ization rates are faster in more permeable substrates and may be
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enhanced by macrofauna influence, irrespective of organic

enrichments, due to the O2 enrichment (Hansen and Kristensen,

1998; Huettel et al., 2014). The associated modified supply of

nutrients can also strongly affect microbial community structure

(Yingst and Rhoads, 1980). This can be traced back to a combina-

tion of factors, one of which is the input of macrofaunal meta-

bolic waste products, which provides additional sources of

nutrients to microbial communities (e.g. Reichardt, 1988),

thereby adding to the overall flux and cycling of solutes, and their

bio-catalyzing effects on the microbial community (e.g. Yazdani

Foshtomi et al., 2015). The polysaccharide protein lining the bur-

rows of many invertebrates has a filtering effect on the water

flushing across and, through it, affects exchange processes by

preferentially selecting against anionic solutes due to their own

net negative charge (Aller, 1983). Burrowing macrofauna can in

some cases actively culture the microbial community associated

with their burrows, which then in turn affects the rates and direc-

tion of solute exchange within the burrows (Kristensen, 1988).

Fishing pressure can passively affect C and nutrient fluxes medi-

ated by benthic macrofauna by altering the community composi-

tion, though these effects are mediated by sediment type and the

kind of fishing gear deployed (Hale et al., 2017). Changes in ben-

thic community can also be induced through the installation of

offshore wind farms (Coates et al., 2014) and other solid sub-

strates or through dredging (e.g. Thrush et al., 1995). Sources of

pollution can affect benthic community diversity (e.g. Kingston,

1992) and thereby also passively lower biogenic B/P solute ex-

change rates.

Due to many organisms’ temporally variable behaviours, rates

of biologically mediated solute transport can vary on scales of

minutes to seasons (e.g. Schlüter et al., 2000). Despite this season-

ality being a well-studied phenomenon, there is an important

consideration that has thus far not been investigated: The as-

sumption and assessment that in some areas physical pressures

are strong enough to drown out the effects of biological processes

(as assumed in e.g. Andersen et al., 2002; Paarlberg et al., 2005)

may not be true at all times as the balance may swing the other

way during biologically active seasons. This is a crucial knowledge

gap that warrants further research. Spatial variability too should

be considered more often when assessing the relative importance

of physical versus biological drivers of B/P exchange, as small-

scale patchiness and large-scale B/P exchange budgets may differ.

Particles
In contrast to solutes, particles are not transported uniformly as

they occur in a variety of materials, sizes, shapes, and concentra-

tions. Particle exchange between benthic and pelagic environ-

ments may be driven by water flow, occurring regularly (such as

through currents or tides); stochastically (such as through storm

events and faunal activity); or via direct disturbance of the sea

bed through biological activity or anthropogenic interference.

Biologically and physically mediated particle transport processes

often occur simultaneously and non-independently from one an-

other, on separate or concurrent spatial and temporal scales.

Within the sediment, particle reworking occurs mainly through

sources of biotic and abiotic mixing rather than resuspension and

deposition. The main drivers of exchange between the seabed and

the water column can be grouped into upward transport from the

benthos to the pelagic environment, in the form of resuspension,

and downward transport from the pelagic environment to the

benthos through deposition (Figure 2). These two routes include

various biological, physical, and anthropogenic pathways, which

will be elucidated in this section.

As previously mentioned, the relative importance of individual

drivers of B/P exchange is context dependent. The occurrence of

large phytoplankton blooms (e.g. Zhang et al., 2015) or dredge-

spoil dumps (e.g. Moon et al., 1994), for example leads to an

abundance of suspended material, the sinking of which is likely to

locally dominate particle exchange processes. In storm-heavy sea-

sons, or during the occurrence of extreme stochastic storm

events, on the other hand, upward particle fluxes are likely to be

dominant (e.g. Madsen et al., 1993). Outside of such extreme

events, the relative importance of physical and biological drivers

of B/P exchange is dependent on location (e.g. Dellapenna et al.,

1998). This situation and location dependence of the relative im-

portance of B/P particle exchange drivers constitutes yet another

gap in our knowledge of these processes. Past studies may be used

to estimate each driver’s importance to warrant its inclusion in

future studies, though this assessment has to be made in each in-

stance, taking into account the scale, location, and timing of the

sampling effort, as well as the occurrence of extreme events close

to the time of sampling (Hewitt et al., 2007). Because of this com-

plexity, and for the sake of simplicity, these drivers of particle ex-

change are reviewed subsequently moving focus from the water

column and towards the sediment, without necessarily reflecting

their relative importance.

Downward flux and deposition
Throughout the water column, particles stay in suspension when

the ascending vertical components of turbulent eddy velocity

fluctuation are greater than the corresponding particle settling ve-

locity (Komar, 1976a, b). Physical and chemical barriers in the

water column, for instance in the form of haloclines and thermo-

clines, can change and inhibit the rates at which matter fluctuates

from the water column to the benthos and vice versa (e.g. Biggs

and Wetzel, 1968; Qiao et al., 2011). While dissolved matter can

still readily diffuse across the thermocline (e.g. Emerson et al.,

1997), particulate matter up to a critical negative buoyancy

threshold is unlikely to cross a thermodynamic barrier. In the

majority of cases, the deposition of particles occurs in combina-

tion with other processes; turbulence and upward-mixing can

make the settling process considerably unpredictable

(Winterwerp and Kesteren, 2004). Mass settling flux may thus be

defined as a product of matter concentration and settling velocity

(Manning and Bass, 2006). The latter is mainly affected by the

size and density in which OM flocs occur (Maa and Kwon, 2007)

while the former depends on the rates at which particles are sup-

plied through resuspension or release within the water column.

In cohesive sediment settling conditions, high concentrations of

suspended particles may flocculate while in suspension (Einstein

and Krone, 1962; Stolzenbach and Elimelech, 1994). Flocculation

is a constant yet dynamic balance of aggregation and disaggrega-

tion (Tsai et al., 1987) driven by physical or chemical attraction,

and particle polydispersity (Sun et al., 2018). The typical primary

source of cohesion and hence flocculation is the effect of salinity

on charged clay particles through mass-attractive London-van

der Waals forces and electrostatic bonding, though this may not

be the most important factor driving flocculation in a biological

context (Parsons et al., 2016). Flocculated particles are relatively

large in size and tend to settle more readily than primary par-

ticles, depending on their size and density, but may be broken up
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again easily by applied shear stress (Winterwerp, 2011).

Regardless of particle size or nature, materials can be moved

around the water column through turbulent water flow and

trapped in biological (e.g. Gambi et al., 1990) or man-made (e.g.

Simons and Şentürk, 1992) near-bottom structures. Lateral trans-

port throughout water bodies can be hard to track, and only

some studies attempt to trace the origins of suspended matter

collected in sediment traps (e.g. Narita et al., 1990). There is

much to discover yet about the sources of suspended particulates

and the pathways they take through the water column.

Biological drivers of particle deposition can act both actively

and passively. Some zooplankton groups, such as Copepods, mi-

grate vertically through the water column on a diurnal basis. The

transport of OM through diel vertical migration constitutes an

active downward transport, as organisms come towards the upper

water layers to feed at night and return to deeper water where the

OM is returned to the system in the form of excretions, or as

decaying carcases (Packard and Gómez, 2013). The presence of

OM and microorganisms suspended in the water column (gener-

ally termed “marine snow”) can enhance benthic community me-

tabolism rates and nutrient mineralization (Van Duyl et al.,

1992). Marine snow aggregates can include any combination of

dead and living matter of highly variable spatial complexity, den-

sity, and consequently, sinking rate (Alldredge and Gotschalk,

1988). It serves as a microhabitat and food source to pelagic

organisms during its sinking (Lundgaard et al., 2017) and is a

source of OM to benthic organisms (e.g. Townsend et al., 1992).

In low turbulence, fluff-like OM, which is not immediately incor-

porated into the sediment matrix, may form a layer that rests on

the sediment surface along with fine sediment particles (termed

nepheloid layer; e.g. Durrieu de Madron et al., 2017). Within this

layer, particulates may be transported laterally across large

distances and even exported off the continental shelf (Inthorn

et al., 2006). Particle residence times within the nepheloid layer

can be vast and warrant further study.

Deposition of particulate matter on the seafloor is catalyzed by

roughness elements, which result in interfacial flow dynamics and

cause descending vertical sweeps (Huettel et al., 1996). Biogenic

structures, such as bivalve byssal structures and seagrasss blades,

can trap suspended particles, reduce near-bed water velocity, and

increase turbulence in the benthic boundary layer (e.g. Widdows

et al., 1998b). In addition, filter feeders can actively move water

and the particles suspended in it, towards the sea floor, causing

increased particle fluxes towards the benthos, preventing subse-

quent resuspension through ingestion, trapping in structures

(such as tubes and gills), and pelletization of the descended mat-

ter (e.g. Widdows et al., 1998b; Denis et al., 2007). Selective sedi-

ment particle processing, through the actions of biodiffusing

bivalves, for example can lead to long-lasting changes in granul-

ometry over large spatial scales, thereby changing the environ-

ment and creating specific habitats for other organisms

(Montserrat et al., 2009). Around mussel beds, biodeposition is

further catalyzed and accelerated through the production of pseu-

dofaeces, which leads to an increase in the annual deposition of

sediment, C, and nutrients (Kautsky and Evans, 1987).

Macroalgae and seagrasses have been shown to shield the sea bed

from turbulence and lower water velocities, thereby increasing

net deposition rates (Fonseca et al., 1982; Gambi et al., 1990).

The rate at which this filtering of suspended material flowing

through the fronds occurs depends strongly upon the morphol-

ogy of the macrophytes (Hendrick et al., 2016). Obstacle-induced

flow turbulence can effectively filter suspended particulate matter

from the water column by driving parts of the flow through the

sediment matrix, thus leading to their deposition within the

Figure 2. Flow chart of direct (red, middle) and indirect (blue, right) drivers of particle B/P exchange; arrows indicate which factors affect
others and are colour-coordinated with the driver they originate from.
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sediment (Hutchinson and Webster, 1998). B/P exchange may

further be affected by animals that increase sediment cohesion by

building protruding tubes and byssal mats. These act similarly to

sea grass and algal fronds by altering the flow and trapping sedi-

ments when they occur in high densities. Lanice conchilega pres-

ence, for example can lead to a reduction in erosion potential

when occurring in high enough densities (Denis et al., 2007;

Borsje et al., 2014). The addition of small particles to the sedi-

ment matrix through active or passive filtering may lead to a

change in sediment granulometry and, effectively, cohesion (e.g.

Widdows et al., 2000; Volkenborn et al., 2007). During the depo-

sition of already cohesive sediments, though particles of all sizes

may be deposited (Lau and Krishnappan, 1994), a sorting process

can occur, thus leading to vertical and horizontal particle size gra-

dients (Mehta, 1988).

The availability of depositable particulate material in the wa-

ter column may also be affected by anthropogenic structures

and actions, including dredge-spoil dumping (Moon et al., 1994;

Pilskaln et al., 1998; Mikkelsen and Pejrup, 2000) and the instal-

lation of offshore wind farms (Baeye et al., 2011; Coates et al.,

2014; Dannheim et al., 2019). Although the former constitutes a

rapid and intense input of non-native particulate matter to the

water column, this does not always affect the benthic commu-

nity or local sediment properties directly (Smith and Rule,

2001). It can, however, introduce additional organic carbon and

new species to the dredged site (Morton, 1977; Wildish and

Thomas, 1985), which is likely to have knock-on effects on the

biogeochemical composition of the affected environments and

B/P exchange potentials. Although some monitoring studies

have investigated short-to-medium term effects of dredge-spoil

dumping on drivers of B/P exchange, few of these studies in-

clude an adequate assessment of the benthic environment prior

to the commencement of the dumping and the number of long-

term monitoring studies to date is insufficient to draw meaning-

ful conclusions. Other activities, such as active bottom fishing

practices (dredging, trawling), can also cause increases in SPM.

For instance, trawling can increase SPM concentrations up to six

times that of the background levels (Tiano et al., 2019). In the

case of offshore wind farms, SPM plumes up to five times the

background level in concentration have been shown to be gener-

ated through tidal resuspension of fine-grained materials accu-

mulated and produced by epifauna associated with the wind

farms’ solid structures (Baeye and Fettweis, 2015). The changes

in granulometry and OM content in the sediment (Coates et al.,

2014) are mostly attributable to the fauna’s filtering activity and

the production of faeces and pseudofaeces, which can lead to a

shift in microbenthic community structure and diversity. In ad-

dition, the solid structures constituting the wind turbine’s foun-

dations introduce roughness elements to the water column,

thereby creating eddies, vortexes, and turbulent flow dynamics

and increasing the probability of resuspension (Grashorn and

Stanev, 2016). Considering the extensive coverage of offshore

wind farms in some areas, such as throughout the North Sea,

this change in circulation, seafloor community, and sediment

properties may constitute shifts in B/P exchange pathways at

large spatial scales.

In contrast to several well-studied offshore wind farms

impacts, such as seabird collisions, settlement of encrusting fauna

and flora, and electromagnetic disturbances, not much research

has been carried out to test their effects on B/P exchange pro-

cesses (Dannheim et al., 2019). Furthermore, the investigation of

anthropogenic impacts often happens in retrospect and the addi-

tion of more baseline studies would undoubtedly add much to

our understanding of anthropogenic impacts on particle

deposition.

Upward flux and resuspension
Particle deposition is rarely final, as particulates can be eroded

away from the sediment surface. Generally speaking, the erosion

of non-cohesive sediments is constant with applied shear stress

and a product of fluid stresses and grain stresses only affected by

the excess shear stress, bed roughness, grain size and orientation,

particle sorting and packing, and bed configuration (Julien,

2010). On an exclusively physical basis, low-level forces applied

to the sediment lead to rolling or sliding of particles along its sur-

face, medium levels prompt a hopping motion called saltation,

and strong forces cause particles to be drawn from the bulk sedi-

ment into complete suspension. In turbulent environments, par-

ticles exchange momentum with the surrounding fluids and are

thereby swept across or ejected from the sediment surface

(Gordon, 1974; Kassem et al., 2015). Physical erosion patterns in

cohesive environments depend strongly upon the way in which

the bed was originally formed (Ariathurai and Arulanandan,

1978). Erosion processes in cohesive environments are depth-

limited, and erosion rates are reduced in deeper layers, due to the

consolidation of particles with depth (Aberle et al., 2004). There

are three different types of physical erosion (Amos et al., 1992,

1997), and all three may be displayed in parallel in cohesive sedi-

ments, making the process notoriously hard to model.

An additional factor that complicates our understanding of the

erosion process is the interference of biotic elements. The extra-

cellular polymeric substances (EPS) produced by marine biofilms,

for example reduce the sediment surface roughness and frictional

drag, thereby increasing cohesion (Sutherland et al., 1998). EPS

distribution throughout the sediment is one of the key compo-

nents controlling bed form dynamics where it appears in high

enough concentrations (Malarkey et al., 2015). There are other

biological mechanisms affecting sediment erosion and resuspen-

sion such as animal tracking, grazing, (Nowell et al., 1981; Borsje

et al. 2008; Kristensen et al., 2012), and faecal pellet production

(Andersen and Pejrup, 2002) affecting bed roughness as well as

resuspension potentials.

Benthic organisms can also drive transport that counters gravi-

metric deposition by actively ejecting OM and sediment grains

into the water column during feeding and other activities, as well

as their gametes and larvae to initiate pelagic stages in their devel-

opment (e.g. the polychaete burrowers Nereis virens; Bass and

Brafield, 1972). Other organisms known as ecosystem engineers

modify, maintain, and create habitats by causing physical state

changes in biotic or abiotic materials, thereby modulating re-

source availabilities directly and/or indirectly (e.g. reef-building

bivalves and macrophytes; Jones et al., 1994). The extent to which

different areas of the ecosystem in question are impacted depends

upon the strength and nature of the respective engineering species

(Bouma et al., 2009; Meadows et al., 2012). They may, for exam-

ple alter their environment and change flow dynamics around the

sea bed, thereby altering erosion and deposition rates in various

ways (Coleman and Williams, 2002) and thus dictating the sedi-

ment type present in an area (Ginsburg and Lowenstam, 1958).

Increases in bulk sediment grain size and permeability caused by

the bioengineers then promote altered B/P exchange rates (Ziebis
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et al., 1996). Erosion thresholds may also be affected, in some

cases seasonally varying between increase and decrease (Grant

and Daborn, 1994; Paarlberg et al., 2005). These and other bio-

logically mediated particle movements can affect particle distribu-

tions from micro to landscape scale (Van Hoey et al., 2008;

Montserrat et al., 2009).

Bioturbation (the biogenic movement of particulate matter

throughout the sediment matrix) can play an important role in

localized particle displacement (Berg et al., 2001) as well as

landscape-scaled effects on particle distributions by affecting sedi-

mentary structure, biogeochemical gradients and fluxes, and the

composition of associated communities of auto- and hetero-

trophs (Van Hoey et al., 2008; Bouma et al., 2009; Montserrat

et al., 2009). Each bioturbating species may affect particle

exchanges differently, depending on their functional traits, medi-

ated by species performance in response to the environment in

which they occur (e.g. Mermillod-Blondin et al., 2004; Solan

et al., 2004; Maire et al., 2006; Braeckman et al., 201), sediment

characteristics (Bernard et al., 2019), and temporal patterns such

as seasonal cycles (Queirós et al., 2015). The main impacts that

bioturbation activity has on upward B/P exchange processes are

(i) that it generally destabilizes the sediment, lowering critical

erosion and resuspension thresholds in the process (Widdows

et al., 1998c; De Deckere et al., 2001), and (ii) the biogenic physi-

cal ejection of particulate matter into the water column (Davis,

1993). Co-occurrence of bio-stabilizing and destabilizing organ-

isms is known to have variable effects on sediment matrix proper-

ties (Queirós et al., 2011). Such duality may even exist within the

effects of a single species, such as has been shown in the deposit-

feeder Peringia ulvae, which destabilizes sediment surfaces

through grazing while simultaneously excreting pellets with in-

creased settling velocity compared to the original sediment,

thereby having both destabilizing and stabilizing effects

(Andersen and Pejrup, 2002). In some cases, an organisms’ effect

on sediment erosion thresholds may even reverse in sync with

seasonal environmental changes, leading to alternating stabiliza-

tion and destabilization of the surrounding sediment (e.g. Grant

and Daborn, 1994). Overall, the magnitude at which biological

processes affect sediment transport and solute exchange is tightly

dependent upon the density of active organisms and the magni-

tude of their effects relative to that of ecosystem attributes or pro-

cesses also affecting the transport of sediment and solutes

(Queirós et al., 2011; Erik Kristensen et al., 2012). The net effect

of co-occurring bio-stabilizing and destabilizing benthos, and

how this balance may shift on different temporal and spatial

scales, has thus far only been investigated in small, location-

specific studies and should be investigated at the ecosystem level.

Once buried, particles may be stored and consolidated or

recycled (Graf and Rosenberg, 1997). Within the benthic matrix,

the complex materials that are not permanently buried are broken

down chemically via oxidation and biologically by benthos and

bacteria, allowing them to re-enter the cycling of elements. In

permeable sediments, even living microphytes may be advectively

flushed into deeper sediment layers and trapped there, leaving

them to be mineralized more swiftly than they would be at the

sediment surface when they die, thereby fuelling the recycling of

nutrients and C (Ehrenhauss et al., 2004). Advective flushing of

particulate OM throughout permeable sediment distributes it

evenly, thereby alleviating concentrated hot spots and spreading

the OM to a larger microbial community (Franke et al., 2006).

Diagenetic reactions vary in speed and, consequently, affect the

environment on different scales: very slow reactions occur mostly

at depth and are of importance at geological time scales, while

rapid ones define the biogeochemical conditions of the benthic

boundary layer without having interfered in the sediment matrix

at any significant depth (Aller, 2014). The major roles that biolog-

ical processes play in mineralization do not only extend to the di-

rect impacts of microbes, which catalyze and drive the process

itself but also the effects of larger organisms, which modify OM

burial rates and contribute to its break-down through grazing

(Tait et al., 2015; Queirós et al., 2019). The translocation of par-

ticles and potential homogenization of surface sediment layers, as

well as the introduction of fresh O2 and OM to deeper layers by

bioturbators, bioirrigators, and even benthivores, is a crucial de-

terminant of diagenetic processes (Lindqvist, 2014).

Direct anthropogenic causes of particle resuspension include

dredging, trawling, mining, anchoring, and many others.

Repeated dredging can lead to long-term modification of local

sediment properties and particle and solute transport rates at the

dredged site (Moon et al., 1994; Pilskaln et al., 1998; Mikkelsen

and Pejrup, 2000), and the use of trawls and similar types of mo-

bile fishing gear can have comparable effects (e.g. Palanques et al.,

2001; Jennings and Kaiser, 2006). The removal of fine-grained

particles from continental shelves through anthropogenic resus-

pension on a global scale is estimated to be up to six times as

large as it would be through purely natural causes of resuspen-

sion, closely matching the input of fine-grained material from riv-

erine sources (Oberle et al., 2016). On a local level, however, this

may not be the case (e.g. Schoellhamer, 2002; Ferré et al., 2008).

Mobile fishing gear can furthermore lead to the removal or dis-

ruption of micro- and macro-phytic communities that would

otherwise inhibit resuspension, as well as modification of the ben-

thic macrofauna community composition (Hiddink et al., 2006;

Hiddink et al., 2006), and burial of sediment surface chlorophyll

a content (Tiano et al., 2019). Biogeochemical impacts of trawling

are more pronounced in naturally muddy than in sandy environ-

ments (Sciberras et al., 2016), although some sandy sediments are

likely to occur due to long-term granulometry changes resulting

from chronic bottom trawling pressure (Hiddink et al., 2006).

Long-term biogeochemical changes in seafloor habitats associated

with anthropogenic interactions, and associated shifts in B/P ex-

change processes remain, thus far, largely unknown. This is,

among other reasons, due to a lack of data on baseline conditions

collected prior to anthropogenic intervention.

Interactions and interdependencies
Most of the B–P coupling processes described in this review are

difficult to consider individually, as they either interact very

closely with others or have a wide range of effects and dependen-

cies, making them hard to assign to any one section. Each is part

of a feedback mechanism and interacting with others, thereby

producing the overall effect on sediment and water column struc-

tures, which results in altered rates of sediment and solute trans-

port (Borsje et al., 2008). The combination of interacting

processes and the scales at which they affect exchanges between

the benthic and pelagic zones varies in accordance with the re-

spective physical and biological environmental conditions, the

“ecological context” (Queirós et al., 2011).

Most biologically important processes are dependent on both

solute and particle B/P exchanges and interactions. One example

of this is the cycling of OM , which benthic heterotrophs mediate.

Most OM in the marine environment originates from primary
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producers such as phytoplankton, seaweeds, and other macro-

phytes, which require light and nutrients in solution to grow, the

latter being especially important during times and in locations of

nutrient depletion (e.g. Davis et al., 2019). During phytoplankton

growth cycles, both dissolved OM (DOM) and particulate OM

(POM) specimens are produced and introduced to the environ-

ment surrounding the plankton (Biddanda and Benner, 1997).

Each of these OM compounds may be utilized differently, as de-

tailed in the previous sections of this review. While POM may be

consumed by secondary producers and then exported towards

the benthos, either passively through incorporation in faecal pel-

lets and marine snow floccules or actively through the vertical mi-

gration of the consumers, DOM may stay in suspension.

Depending on the hydrological circumstances, the DOM may be

fully utilized and degraded by the microbial community within

the water column (Mari et al., 2007). Throughout this process,

DOM and POM are in constant interaction through a variety of

pathways, which are complex enough to warrant entire review

papers by themselves (e.g. Mecozzi et al., 2008; He et al., 2016).

Once the OM reaches the sea floor, however, it is utilized by

macro- and micro-fauna and/or mineralized by the benthic mi-

crobial community (Gooday and Turley, 1990). Both pathways

are linked and require an oxidizing environment to function,

which is where B/P exchange of dissolved O2 plays an important

role (Snelgrove et al., 2018). These and other links exist within

the OM cycling process, which highlights the connectivity be-

tween solute and particle B/P exchange pathways of C, O2,

nutrients, and many more . Due to the complexity of the marine

system and associated observation or experimentation, there are

still many questions in want of an answer, offering a guiding di-

rection for future research.

Future direction
Historically, the exchange of particles and solutes, which were

seen as two separate pools of resources, was studied one-

dimensionally and often in isolation from other ecosystem pro-

cesses. This review highlights the shortcomings of this treatment

of solutes and particles as separate entities instead of inseparably

interwoven parts of the same exchange pathways (see e.g.

Kristensen et al., 2012). It should be noted that in some fields,

such as diagenetic research, the assumption of an integrated sol-

ute/particle framework has been the status-quo for decades

(Berner, 1980), but this has not been the case in many fields and,

especially, in benthic ecology. These differences in approach

could in many instances be attributable to a lack of interdisciplin-

ary collaborations that require bridging in future work. A separate

consideration of solutes and particles may be necessary in the ex-

ploration of specific transport mechanisms, but as B/P processes

are typically affected by many types of exchanges simultaneously,

such one-dimensional studies can only ever represent basic foun-

dational elements on which a higher understanding is built.

Rediscovering the ecological complexity and applying it in areas

other than diagenetic research will thus lead to a better holistic

understanding and predictive ability, regarding both drivers and

consequences of B/P exchanges. The insight that observations at

the ecosystem level are too complex to be approached in the way

most empirical ecological studies have done in the past is nothing

new (Lawton, 1999), and a change in perspective has already been

suggested (Thrush et al., 2009). Detailed guidelines have been

suggested to aid scientists in their study design to allow the

extrapolation of empirical study results to broader temporal and

spatial scales (Hewitt et al., 2007). This includes advice such as

consideration of contextual natural history to estimate expectable

heterogeneity, integration of correlative and manipulative study

elements, inclusion of iterative measurements between integrative

studies, use of continuous explanatory variables during the analy-

sis stage, and finally, the integration of in situ data and model

outputs (Hewitt et al., 2007). Time series data have been assessed

as one of the most useful tools to provide broad scale temporal

context to ecosystem processes (Thrush et al., 1996) such as B/P

exchange. Our review highlights that, although the awareness of a

need for ecosystem-level approaches clearly exists, and individual

B/P exchange processes are often well-studied, not all pathways

have been explored equally well in the past and the multidimen-

sional, transdisciplinary approach is still not used as the founda-

tion of B/P exchange research, at large. Some gaps, such as the

lack of objective rank-ability of the respective relative importance

of drivers of solute and particle B/P exchanges, require exactly the

kind of temporal and spatial ecological context described in the

previous paragraph. Information on individual driver processes

cannot be balanced or compared with one another without co-

herent scale and contextual information. Furthermore, while

some studies hint at parts of different exchange pathways across

the sediment–water interface (e.g. Berner, 1980; Glud, 2008;

Aller, 2014), there is generally a distinct lack of information re-

garding the exchanges themselves, and their importance in the

greater ecosystem context, as noted in recent work (e.g.

Middelburg, 2017). The consequence of this shift in perception is

that when dissecting any B/P exchange pathway into its individual

processes, it becomes apparent that often not all processes in-

volved are well known well enough to allow for the accurate

quantification of the entire pathway. Thus, even when consider-

ation of the environmental spatial and temporal context permits

a classification of drivers of exchange by relative importance, not

all may be known in enough detail to be of use.

Examples of parameters into which more research should be

invested are, for example the effects of biological and anthropo-

genic actions of the diffusion of solutes other than O2, in situ

observations of interactions of boundary layer dynamics with

physical drivers of B/P exchange, potential seasonal dominance of

biological drivers of B/P exchange over physical ones, lateral par-

ticulate matter transport, and residence times within the nephe-

loid layer.

Embracing the ecosystem as a whole, regardless of the disci-

pline in which individual pieces of research were undertaken, is a

vital step towards improved benthic–pelagic understanding

(Widdows et al., 2000; Kristensen, 2001; Griffiths et al., 2017) and

an in-depth understanding of individual drivers and processes is

key to this. However, to integrate studies from various fields as is

often necessary when investigating ecosystem-level pathways,

such as B/P exchanges, some caution must be exercised.

Middelburg (2017) summarizes the different approaches of vari-

ous disciplines well on the example of organic carbon cycling by

pointing out areas of disagreement versus overlap, and accumu-

lating elements from each discipline to form a complete picture

of current knowledge on the topic.

Collaborative research efforts must move past multidiscipli-

nary approaches in which individuals or teams from different dis-

ciplines independently research the same environment, only to

later collate their findings, to truly transdisciplinary working

practices that take elements of the various disciplines into
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account from the start. The ideal next step in gaining a deeper

understanding of B/P exchange in coastal marine ecosystems will

be to fully acknowledge the complexity and interdependencies of

the processes involved in individual pathways. This will lead to-

wards a more precise measure of real-life ecosystem-scaled pro-

cesses, such as elemental cycling, gas exchange, quantification and

subsequent mitigation of anthropogenic influences, and much

more. Measuring this complexity in real systems will doubtlessly

be a challenge, but it could also be the stepping stone to a deeper

understanding of the marine environment at local and global

scales, providing us with the means to better study, conserve, and

protect it. With ongoing environmental change, be it anthropo-

genic or natural, we will thus be able to make more accurate

assessments of the state of the marine ecosystem functioning and

take appropriate actions to conserve it.

Funding
This work was supported by the Natural Environmental Research

Council (grant number NE/L002531/1).

References
Aberle, J., Nikora, V., and Walters, R. 2004. Effects of bed material

properties on cohesive sediment erosion. Marine Geology, 207:
83–93.
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Cook, P. L. M., Wenzhöfer, F., Glud, R. N., Janssen, F., and Huettel,
M. 2007. Benthic solute exchange and carbon mineralization in
two shallow subtidal sandy sediments: effect of advective
pore-water exchange. Limnology and Oceanography, 52:
1943–1963.

Corte, G. N., Schlacher, T. A., Checon, H. H., Barboza, C. A. M.,
Siegle, E., Coelman, R. A., Amaral, A. C. Z. et al. 2017. Storm
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