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Summary

 UK and Ireland classification

EUNIS 2008 A3.716 Coralline crusts in surge gullies and scoured infralittoral rock

JNCC 2015 IR.FIR.SG.CC Coralline crusts in surge gullies and scoured infralittoral rock

JNCC 2004 IR.FIR.SG.CC Coralline crusts in surge gullies and scoured infralittoral rock

1997 Biotope IR.EIR.SG.CC
Balanus crenatus and/or Pomatoceros triqueter with spirorbid worms
and coralline crusts on severely scoured infralittoral rock (No
description at this level)

 Description

Scoured rock in wave-surged caves, tunnels or gullies often looks rather bare, and may be
characterized by a limited scour-tolerant fauna of Balanus crenatus and/or Spirobranchus
(Pomatoceros) triqueter with spirorbid polychaetes. In areas where sufficient light is available and
scour is severe, encrusting coralline algae and non-calcareous crusts cover the rock surface, giving
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a pink appearance. This biotope most commonly occurs at the bottom of walls in caves and gullies,
where abrasion by cobbles and stones is severe, especially during winter. In some gullies, extreme
scouring and abrasion produces a narrow band of bare coralline algal crust at the very bottom of
the walls, with a band of Spirobranchus (Pomatoceros) triqueter and/or Balanus crenatus immediately
above. Other scour-tolerant species, such as encrusting bryozoans may also be common. Crevices
and cracks in the rock provide a refuge for sponge crusts such as Halichondria panicea and
occasional anemones Urticina felina and Sagartia elegans. More mobile fauna is usually restricted to
the echinoderms Asterias rubens and Echinus esculentus as well as the crab Cancer pagurus. Two
variants have been identified: Wave-surged bedrock with coralline crust, Balanus crenatus and
Spirobranchus triqueter (CC.BalSpi) and coralline crusts on mobile boulders in severely scoured
caves (CC.Mo) (JNCC, 2015).

 

 Depth range

0-5 m, 5-10 m, 10-20 m

 Additional information

-

 Listed By

- none -

 Further information sources

Search on:

   JNCC

http://www.jncc.gov.uk/marine/biotopes/biotope.aspx?biotope=JNCCMNCR00001105
http://www.google.co.uk/search?q=Coralline+crusts+in+surge+gullies+and+scoured+infralittoral+rock
http://scholar.google.co.uk/scholar?q=Coralline+crusts+in+surge+gullies+and+scoured+infralittoral+rock
http://www.google.co.uk/search?q=IR.FIR.SG.CC
https://mhc.jncc.gov.uk/search/?q=IR.FIR.SG.CC
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Sensitivity review

 Sensitivity characteristics of the habitat and relevant characteristic species

The biotope description and characterizing species is taken from Connor et al., (2004).  Two
variants of this biotope have been identified: wave-surged bedrock with coralline crust, Balanus
crenatus and Spirobranchus (as Pomatoceros) triqueter (CC.BalPom) and coralline crusts on mobile
boulders in severely scoured caves (CC.Mo). The sensitivity assessments presented for this
biotope, focus on the barnacle, tube worm and coralline crusts and the assessments are considered
applicable to both variants.  Although other species may be associated with this biotope, such as
anemones and sponges, these are present in low abundances and are not considered to be
characterizing and are not considered within the assessments.

Severe abrasion resulting from scouring by cobbles and pebbles are key factors structuring the
biotope and significant alteration to scouring is likely to change the character of the biotope.
Where pressures may alter this factor, this is identified and discussed within the sensitivity
assessments.

 Resilience and recovery rates of habitat

Although ubiquitous in marine coastal systems, little is understood about the taxonomy, biology
and ecology of the associated crustose corallines (Littler & Littler, 2013). Coralline crust is a
generic term that in UK biotopes refers to nongeniculate (crustose) species from the family
Corallinacea that could include Lithophyllum incrustans which is noted to form thick crusts in
tidepools, especially in the south west (Adey & Adey, 1973), Lithothamnion spp.
and Phymatolithon spp.  Due to the lack of evidence for species the assessments for encrusting
corallines are generic, although species specific information is presented where available. A
number of papers by Edyvean & Ford (1984a & b; 1986; 1987) describe aspects of reproduction
and growth of encrusting coralline, Lithophyllum incrustans. Studies by Edyvean & Forde (1987) in
populations of Lithophyllum incrustans in Pembroke south-west Wales suggest that reproduction
occurs on average early in the third year. Reproduction may be sexual or asexual. Populations
release spores throughout the year but abundance varies seasonally, with the populations studied
in Cullercoats Bay and Lannacombe Bay (North East and South West England, respectively)
producing less spores in the summer. Spore release is initiated by changes in temperature or
salinity (see relevant pressure information) at low tide so that spore dispersal is restricted to
within the tide pool enhancing local recruitment. Within subtidal biotopes this is not possible and
recruitment success may be altered (although this may be compensated by avoidance of
desiccation). Spore survival is extremely low with only a tiny proportion of spores eventually
recruiting to the adult population (Edyvean & Ford, 1986). The spores are released from structures
on the surface called conceptacles; these are formed annually and subsequently buried by the new
layer of growth. Plants can be aged by counting the number of layers of conceptacles. Edyvean &
Ford (1984a) found that the age structure of populations sampled from Orkney (Scotland) Berwick
(northern England) and Devon (England)  were similar, mortality seemed highest in younger year
classes with surviving individuals after the age of 10 years appear relatively long-lived (up to 30
years). In St Mary’s Northumberland, the population was dominated by the age 6-7 year classes
(Edyvean & Ford, 1984a). Growth rates were highest in young plants measured at Pembroke
(south-west Wales) with an approximate increase in diameter of plants of 24 mm in year class 0 
and 155 mm in year 1 and slowing towards an annual average horizontal growth rate of  3mm/year
(Edyvean & Ford, 1987).  Some repair of damaged encrusting coralline occurs through vegetative
growth. Chamberlain (1996) observed that although Lithophyllum incrustans was quickly affected
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by oil during the Sea Empress spill, recovery occurred within about a year. The oil was found to have
destroyed about one third of the thallus thickness but regeneration occurred from thallus
filaments below the damaged area. Recolonization by propagules is an important recovery
mechanism. Airoldi (2000) observed that encrusting coralline algae recruited rapidly on to
experimentally cleared subtidal rock surfaces in the Mediterranean Sea, reaching up to 68% cover
in 2 months.

Populations of Spirobranchus triqueter have a spring reproductive maxima from March-April,
although breeding can occur throughout the year. Populations of Spirobranchus (studied
as Pomatoceros) triqueter in Bantry Bay, Ireland exhibited an extended reproductive season, with
numerous small scale peaks, the timing of which varied between years (Cotter et al.,
2003). Spirobranchus triqueter is a protandrous hermaphrodite, with older, larger individuals more
likely to be female (Cotter et al., 2003). Spirobranchus triqueter lives for 2 to 4 years (Dons, 1927;
Castric-Fey, 1983; Hayward & Ryland, 1995a) and matures at 4 months (Hayward & Ryland,
1995a; Dons, 1927).  Spirobranchus triqueter is considered to be a primary fouling organism (Crisp,
1965) colonising artificial commercially important structures such as buoys, ships hulls, docks and
offshore oil rigs (OECD 1967).  Spirobranchus triqueter are commonly the initial recruits to new
substrata (Sebens, 1985; Sebens, 1986; Hatcher, 1998).  For example, Spirobranchus
triqueter colonized artificial reefs soon after deployment in summer (Jensen et al., 1994), colonized
settlement plates within 2-3.5 months and dominated spring recruitment (Hatcher, 1998). 
Hiscock (1983) noted that a community, under conditions of scour and abrasion from stones and
boulders moved by storms, developed into a community consisting of fast growing species such
as Spirobranchus triqueter.

Balanus crenatus produce a single, large brood annually with peaks in April –May (Luther, 1987);
although subsidiary broods may be produced, the first large brood is the most important for larval
supply (Barnes & Barnes, 1968).  Balanus crenatus has a lifespan of 18 months (Barnes & Powell,
1953) and grows rapidly (except in winter).  Balanus crenatus is a typical early colonizer of
sublittoral rock surfaces (Kitching, 1937); for example, it heavily colonized a site that was dredged
for gravel within 7 months (Kenny & Rees, 1994).  Balanus crenatus colonized settlement plates or
artificial reefs within 1-3 months of deployment in summer, and became abundant on settlement
plates shortly afterwards (Brault & Bourget, 1985; Hatcher, 1998).  The ship, HMS Scylla, was
colonized by Balanus crenatus 4 weeks after sinking in March, the timing of the sinking in March
would have ensured a good larval supply from the spring spawning.  The presence of adult Balanus
crenatus enhances settlement rate of larvae on artificial panels (Miron et al., 1996), so that
surviving adults enhance recovery rates.

Spirobranchus triqueter and Balanus crenatus are both relatively short-lived species that mature
rapidly and have long reproductive seasons and produce pelagic larvae. Balanus
crenatus and Spirobranchus triqueter can utilise a variety of substrata including artificial and natural
hard substratum, bivalves and other animals.  The life history traits and broad habitat preferences
mean that populations of both species can recover rapidly following disturbance.  Off Chesil Bank,
the epifaunal community dominated by Spirobranchus triqueter, Balanus crenatus and Electra pilosa,
decreased in cover in October as it was scoured away in winter storms, and was recolonized in
May to June (Warner 1985).  Warner (1985) reported that the community did not contain any
persistent individuals, being dominated by rapidly colonising organisms.  While larval recruitment
was patchy and varied between the years studied, recruitment was sufficiently predictable to
result in a dynamic stability and a similar community was present in 1979, 1980 and 1983
(Warner, 1985).  Holme & Wilson (1985) suggested that the fauna of the Balanus-
Pomatoceros assemblage in the central English Channel was restricted to rapid growing colonizers
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able to settle rapidly and utilize space in short periods of stability in the summer months.  

Resilience assessment.  Where resistance is ‘Medium’ or Low’, and parts of the crustose corallines
remain, then recovery is also assessed as ‘High’. However where resistance is ‘Low’ or ‘None’ and
the key characterizing crustose corallines are likely to be removed then resilience is assessed as
‘Medium’. Where resistance is ‘High’, resilience is assessed as ‘High’ by default. Both Balanus
crenatus and Spirobranchus triqueter are rapid colonizers and likely to recover quickly, probably
within months.  Therefore, resilience, of these species, is assessed as 'High’ for any level of
perturbation.  

NB: The resilience and the ability to recover from human induced pressures is a combination of the
environmental conditions of the site, the frequency (repeated disturbances versus a one-off event)
and the intensity of the disturbance.  Recovery of impacted populations will always be mediated by
stochastic events and processes acting over different scales including, but not limited to, local
habitat conditions, further impacts and processes such as larval-supply and recruitment between
populations. Full recovery is defined as the return to the state of the habitat that existed prior to
impact.  This does not necessarily mean that every component species has returned to its prior
condition, abundance or extent but that the relevant functional components are present and the
habitat is structurally and functionally recognizable as the initial habitat of interest. It should be
noted that the recovery rates are only indicative of the recovery potential. 

 Hydrological Pressures
 Resistance Resilience Sensitivity

Temperature increase
(local)

Medium High Low
Q: High A: Medium C: Medium Q: High A: Low C: Medium Q: High A: Low C: Medium

This biotope occurs in the subtidal and is therefore protected from exposure to air so that the
thermal regime is more stable and desiccation is not a factor.  Examples of distribution and thermal
tolerances tested in laboratory experiments are provided as evidence to support the sensitivity
assessment. In general, populations can acclimate to prevailing conditions which can alter
tolerance thresholds and care should, therefore, be used when interpreting reported tolerances.

The encrusting coralline, Lithophyllum incrustans, is close to the northern edge of its reported
distribution range in the UK (Kain, 1982; Guiry & Guiry, 2015) and is therefore considered likely to
be tolerant of an increase in temperature, particularly in this subtidal biotope, where it is protected
from desiccation.

Balanus crenatus is described as a boreal species (Newman & Ross, 1976) it is found throughout the
northeast Atlantic from the Arctic to the west coast of France as far south as Bordeaux; east and
west coasts of North America and Japan. In Queens Dock, Swansea where the water was on
average 10°C higher than average due to the effects of a condenser effluent, Balanus crenatus was
replaced by the subtropical barnacle Balanus amphitrite.  After the water temperature
cooled Balanus crenatus returned (Naylor, 1965).  The increased water temperature in Queens
Dock is greater than an increase at the pressure benchmark (2-5°C).  Balanus crenatus has a peak
rate of cirral beating at 20°C and all spontaneous activity ceases at about 25°C (Southward, 1955).
The tolerance of Balanus crenatus, collected in the summer (and thus acclimated to higher
temperatures), to increased temperatures was tested in the laboratory. The median upper lethal
temperature tolerance was -25.2°C (Davenport & Davenport, 2005) confirming the observations
of Southward (1955).

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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The characterizing Spirobranchus triqueter are found in both warmer and colder waters
experienced in the UK.  Spirobranchus triqueter occurs from the Arctic, the eastern North Atlantic
up to the Mediterranean, Adriatic, Black and Red Sea, the English Channel, the whole North Sea,
Skagerrak, Kattegat, the Belts and Öresund up to Bay of Kiel (De Kluijver et al., 2016)

Sensitivity assessment. Typical surface water temperatures around the UK coast vary, seasonally
from 4-19°C (Huthnance, 2010). The biotope is considered to tolerate a 2°C increase in
temperature for a year. An acute increase at the pressure benchmark may be tolerated in winter,
but a sudden return to typical temperatures could lead to mortalities among acclimated animals.
No evidence was found to support this assessment, however. An acute increase of 5°C in summer
would be close to the lethal thermal temperature for Balanus crenatus and loss of this species
would alter the character of the biotope. Biotope resistance is therefore assessed as ‘Medium’ and
resilience as ‘High’ and biotope sensitivity is therefore ‘Low’.

Temperature decrease
(local)

Medium High Low
Q: High A: Medium C: High Q: High A: High C: High Q: High A: Medium C: High

This biotope occurs in the subtidal and is therefore protected from exposure to air so that the
thermal regime is more stable and desiccation is not a factor.  Examples of distribution and thermal
tolerances tested in laboratory experiments are provided as evidence to support the sensitivity
assessment. In general, populations can acclimate to prevailing conditions which can alter
tolerance thresholds and care should, therefore, be used when interpreting reported tolerances.

Lithophyllum incrustans are close to the northern edge of their reported distribution range in the
UK (Guiry & Guiry, 2015). Edyvean & Forde (1984b) suggest that populations of Lithophyllum
incrustans are affected by temperature changes and salinity and that temperature and salinity
‘shocks’ induce spawning but no information on thresholds was provided (Edyean & Ford, 1984b). 

Within the biotope, the key characterizing barnacles Balanus crenatus have a more northern
distribution and are absent from warmer Mediterranean and equatorial waters.  Balanus crenatus is
described as a boreal species (Newman & Ross, 1976), it is found throughout the northeast
Atlantic from the Arctic to the west coast of France, as far south as Bordeaux; east and west coasts
of North America and Japan.

Balanus crenatus is relatively tolerant of lower temperatures.  Balanus crenatus was unaffected
during the severe winter of 1962-63, when average temperatures were 5 to 6°C below normal
(Crisp, 1964a,b).  The tolerance of Balanus crenatus collected from the lower intertidal in the winter
(and thus acclimated to lower temperatures) to low temperatures was tested in the laboratory.
The median lower lethal temperature tolerance was -1.4°C (Davenport & Davenport, 2005). An
acute or chronic decrease in temperature, at the pressure benchmark, is therefore unlikely to
negatively affect this species. Meadows (1969) noted that the severe winter of 1962-63 decreased
sea temperatures at Newcastle but did not affect fauna, including Balanus crenatus, on settlement
panels that were deployed in the area.

The characterizing Spirobranchus triqueter are found in both warmer and colder waters
experienced in the UK.  Spirobranchus triqueter occurs from the Arctic, the eastern North Atlantic
up to the Mediterranean, Adriatic, Black and Red Sea, the English Channel, the whole North Sea,
Skagerrak, Kattegat, the Belts and Öresund up to Bay of Kiel (De Kluijver et al., 2016). Thomas
(1940) noted that Spirobranchus (as Pomatoceros) triqueter could not form tubes below 7°C,
however, this effect is not considered to lead to mortality in adults at the duration of the acute
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pressure benchmark.

Sensitivity assessment. Overall, a long-term chronic change in temperature at the pressure
benchmark is considered likely to fall within natural variation and to be tolerated by the
characterizing and associated species although, Lithothyllum incrustans may experience reduced
growth (as it is primarily a southern species). An acute change at the pressure benchmark  is
considered unlikely to adversely affect the biotope as the characterizing species can potentially
adapt to a wide range of temperatures experienced in both northern and southern waters
(Spirobranchus triqueter), or are found primarily in colder, more northern waters (Balanus crenatus). 
Lithophyllum incrustans may be less tolerant, but reductions in growth, rather than mortalities may
result. Biotope resistance is therefore assessed as ‘Medium’ and resilience as ‘High’.  Sensitivity of
this biotope is therefore considered to be ‘Low’. 

Salinity increase (local) Low High Low
Q: High A: Medium C: Medium Q: High A: Low C: High Q: High A: Low C: High

This biotope is recorded in full salinity (30-35 ppt) habitats (Connor et al., 2004) and the sensitivity
assessment considers an increase from full to >40 ppt.

The crustose corallines that occur in this biotope may also be found on rocky shores and
in rockpools where salinities may fluctuate markedly during exposure to the air. Edyvean &
Ford (1984b) suggest that populations of Lithophyllum incrustans are affected by temperature
changes and salinity and that temperature and salinity ‘shocks’ induce spawning but no
information on thresholds was provided (Edyvean & Ford, 1984b).  Populations of Lithophyllum
incrustans were less stable in rockpools with a smaller volume of water that were more exposed to
temperature and salinity changes due to lower buffering capacity. Sexual plants (or the spores that
give rise to them) were suggested to be more susceptible than asexual plants to extremes of local
environmental variables (temperature, salinity, etc.) as they occur with greater frequency at sites
where temperature and salinity were more stable (Edyvean & Ford, 1984b).

Balanus crenatus occurs in estuarine areas and is therefore adapted to variable salinity (Davenport,
1976). When subjected to sudden changes in salinity Balanus crenatus closes its opercular valves so
that the blood is maintained temporarily at a constant osmotic concentration (Davenport, 1976). 
Early stages may be more sensitive than adults. Experimental culturing of Balanus crenatus eggs,
found that viable nauplii larvae were obtained between 25-40‰ but eggs did not develop to viable
larvae when held at salinities above 40‰ and only a small proportion (7%) of eggs exposed at later
stages developed into viable nauplii and these were not vigorous swimmers (Barnes & Barnes,
1974). When exposed to salinities of 50‰, and 60‰ eggs exposed at an early developmental
stage did not produce viable larvae and, again, only a small proportion of eggs (7% and 1%,
respectively) exposed at a later developmental stage produced nauplii- these were deformed and
probably non-viable.  There was no larval development at 70‰ (Barnes & Barnes, 1974).

Sensitivity assessment.  Some increases in salinity may be tolerated by the characterizing species
however the biotope is considered to be sensitive to a persistent increase in salinity to >40 ppt
(based on species distribution, Barnes & Barnes, 1974 & Edyvean & Ford (1984b). Resistance is
therefore assessed as ‘Low’ and recovery as ‘High’ (following restoration of usual salinity).
Sensitivity is therefore assessed as ‘Low’.
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Salinity decrease (local) High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

This biotope is recorded in full salinity (30-35 ppt) (Connor et al., 2004). At the pressure
benchmark, a change from full to variable salinity (18-30 ppt) is assessed. The characterizing
species are found in a similar biotope (CR.MCR.EcCr.UrtScr), is present in variable salinities
(Connor et al., 2004). It is therefore likely that the characterizing species will tolerate a reduction in
salinity form full to reduced.

Edyvean & Ford (1984b) suggest that populations of the crustose coralline Lithophyllum
incrustans are affected by temperature changes and salinity and that temperature and salinity
‘shocks’ induce spawning but no information on thresholds were provided (Edyvean & Ford,
1984b). Populations of Lithophyllum incrustans were less stable in tide pools with a smaller volume
of water that were more exposed to temperature and salinity changes due to lower buffering
capacity. Sexual plants (or the spores that give rise to them) were suggested to be more
susceptible than asexual plants to extremes of local environmental variables (temperature, salinity
etc.) as they occur with greater frequency at sites where temperature and salinity were more
stable (Edyvean & Ford, 1984b).

Balanus crenatus occurs in estuarine areas and is therefore adapted to variable salinity (Davenport,
1976). When subjected to sudden changes in salinity Balanus crenatus closes its opercular valves so
that the blood is maintained temporarily at a constant osmotic concentration (Davenport, 1976). 
Acclimation to different salinity regimes alters the point at which opercular closure and
resumption of activity occurs (Davenport, 1976). Balanus crenatus can tolerate salinities down to
14 psu if given time to acclimate (Foster, 1970).  At salinities below 6 psu motor activity ceases,
respiration falls and the animal falls in to a "salt sleep".  In this state the animals may survive
(Barnes & Barnes, 1974) in freshwater for 3 weeks, enabling them to withstand changes in salinity
over moderately long periods (Barnes & Powell, 1953). Larvae are more sensitive than adults. In
culture experiments, eggs maintained below 10‰ rupture, due to osmotic stress (Barnes &
Barnes, 1974).  At 15-17‰  there is either no development of early stages or the nauplii larvae are
deformed and “probably not viable”, similarly at  20‰ development occurs, but about half of the
larvae are deformed and not viable. (Barnes & Barnes, 1974). Normal development resulting in
viable larvae occurs between salinities of 25-40 ‰ (Barnes & Barnes, 1974).

Spirobranchus triqueter has not been recorded from brackish or estuarine waters.  Therefore, it is
likely that the species will be very intolerant of a decrease in salinity.  However, Dixon (1985, cited
in Riley & Ballerstedt, 2005) views the species as able to withstand significant reductions in
salinity. The degree of reduction in salinity and time that the species could tolerate those levels
were not recorded.  Therefore, there is insufficient information available to assess the intolerance
of Spirobranchus triqueter to a reduction in salinity and the assessment is based on its presence in
the biotope CR.MCR.EcCr.UrtScr which occurs in variable salinity (as well as full) habitats (Connor
et al., 2004). 

Sensitivity assessment.  As the characterizing species are found in biotopes in both full and
variable salinity habitats, the biotope is considered ‘Not sensitive’ to a decrease in salinity from full
to variable. Biotope resistance is therefore assessed as ‘High’ and resilience is assessed as ‘High’
(by default) and the biotope is assessed as ‘Not sensitive’.
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Water flow (tidal
current) changes (local)

High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

This biotope occurs across a range of flow speeds, from very weak (negligible) to moderately
strong (0.5-1.5 m/s) (Connor et al., 2004).   The suspension feeders within the biotope benefit from
high water flows supplying food.

The coralline crusts characterizing this biotope are securely attached and as these are flat they are
subject to little or no drag compared to upright growth forms of algae. Colonies of Lithophyllum
incrustans appear to thrive in conditions exposed to strong water movement (Irvine &
Chamberlain, 1994).

Spirobranchus triqueter is found in biotopes exposed to flow speeds varying from very weak to
moderately strong (negligible - >1.5m/s) and was considered ‘Not sensitive’ at the pressure
benchmark (Tillin & Tyler-Walters, 2014).  Balanus crenatus is found in a very wide range of water
flows (Tillin & Tyler-Walters, 2014), although it usually occurs in sites sheltered from wave action
(Eckman & Duggins, 1993) and can adapt feeding behaviour according to flow rates.   In the
absence of any current, the barnacle rhythmically beats its cirri to create a current to collect
zooplankton. Growth of Balanus crenatus (measured as increase in basal area), maintained for 69
days at constant flow speeds in laboratory experiments was greatest at intermediate flow speeds
(0.08 m/s) and decreased at higher speeds (Eckman & Duggins, 1993). Over the entire range of
flow speeds measured (0.02 m/s – 0.25 m/s), Balanus crenatus, was able to control the cirrus with
little or no deformation by flow observed (Eckman, & Duggins, 1993).

Scour is a key factor structuring this biotope (Connor et al., 2004), changes in flow exceeding the
pressure benchmark may increase or decrease sediment transport and associated scour may lead
to indirect changes in the character of the biotope.

Sensitivity assessment. As the biotope and the associated species can occur in a range of flow
speeds, resistance of the biotope to changes in water flow is assessed as ‘High’ and resilience as
‘High’ (by default) so that the biotope is assessed as ‘Not sensitive’.

Emergence regime
changes

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant to subtidal biotopes

NB. 100% mortality could be expected in adult Pomatoceros triqueter after 24.1 h and 35.4 h when
exposed to air at 7°C and 13°C respectively (Campbell & Kelly, 2002).

 

Wave exposure changes
(local)

High High Not sensitive
Q: High A: Medium C: High Q: High A: High C: High Q: High A: Medium C: High

This biotope is recorded from locations that are judged to range from very exposed to exposed
(Connor et al., 2004).  

The crustose corallines associated with this biotope have a flat growth form and are unlikely to be
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dislodged by increased wave action. Balanus crenatus and Spirobranchus triqueter are firmly
attached to the substratum and are unlikely to be dislodged by an increase in wave action at the
pressure benchmark. These species are found in biotopes from a range of wave exposures from
extremely sheltered to very exposed and were therefore considered ‘Not sensitive’ to this
pressure (at the pressure benchmark, by a previous review (Tillin & Tyler-Walters, 2014). 

Sensitivity assessment. The biotope and characterizing and associated species are found across a
range of wave exposures, populations occurring within the middle of the range are considered to
have 'High' resistance to a change in significant wave height at the pressure benchmark. Resilience
is assessed as ‘High’, by default, and the biotope is considered ‘Not sensitive’.

 Chemical Pressures
 Resistance Resilience Sensitivity

Transition elements &
organo-metal
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

No information was found concerning the effects of heavy metals on encrusting coralline algae.
Bryan (1984) suggested that the general order for heavy metal toxicity in seaweeds is: organic Hg>
inorganic Hg > Cu > Ag > Zn> Cd> Pb. Contamination at levels greater than the pressure
benchmark may adversely impact the biotope. Cole et al. (1999) reported that Hg was very toxic to
macrophytes. The sub-lethal effects of Hg (organic and inorganic) on the sporelings of an intertidal
red algae, Plumaria elegans, were reported by Boney (1971). 100% growth inhibition was caused by
1 ppm Hg.

Contamination at levels greater than the pressure benchmark may adversely impact the biotope.
Barnacles accumulate heavy metals and store them as insoluble granules (Rainbow, 1987).
Pyefinch & Mott (1948) recorded a median lethal concentration of 0.19 mg/l copper and 1.35 mg/l
mercury, for Balanus crenatus over 24 hours. Barnacles may tolerate fairly high level of heavy
metals in nature, for example they are found in Dulas Bay, Anglesey; where copper reaches
concentrations of 24.5 µg/l, due to acid mine waste (Foster et al., 1978).

Hydrocarbon & PAH
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available

Where exposed to direct contact with fresh hydrocarbons, encrusting coralline algae appear to
have a high intolerance. Crump et al. (1999) described 'dramatic and extensive bleaching' of
'Lithothamnia' following the Sea Empress oil spill. Observations following the Don Marika oil spill (K.
Hiscock, pers. comm.) were of rockpools with completely bleached coralline algae. However,
Chamberlain (1996) observed that although Lithophyllum incrustans was affected in a short period
of time by oil during the Sea Empress spill, recovery occurred within about a year. The oil was found
to have destroyed about one third of the thallus thickness but regeneration occurred from thallus
filaments below the damaged area.

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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No information is available on the intolerance of Balanus crenatus to hydrocarbons. However, other
littoral barnacles generally have a high tolerance to oil (Holt et al., 1995) and were little impacted
by the Torrey Canyon oil spill (Smith, 1968), so Balanus crenatus is probably fairly resistant to oil.

Synthetic compound
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

Cole et al. (1999) suggested that herbicides were (not surprisingly) very toxic to algae and
macrophytes. Hoare & Hiscock (1974) noted that with the exception of Phyllophora species, all red
algae including encrusting coralline forms were excluded from the vicinity of an acidified
halogenated effluent discharge in Amlwch Bay, Anglesey and that intertidal populations of
Corallina officinalis occurred in significant numbers only 600m east of the effluent. Chamberlain
(1996) observed that although Lithophyllum incrustans was quickly affected by oil during the Sea
Empress spill, recovery occurred within about a year. The oil was found to have destroyed about
one third of the thallus thickness but regeneration occurred from thallus filaments below the
damaged area.

Barnacles have a low resilience to chemicals such as dispersants, dependant on the concentration
and type of chemical involved (Holt et al., 1995). They are less intolerant than some species (e.g.
Patella vulgata) to dispersants (Southward & Southward, 1978) and Balanus crenatus was the
dominant species on pier pilings at a site subject to urban sewage pollution (Jakola & Gulliksen,
1987). Hoare & Hiscock (1974) found that Balanus crenatus survived near to an acidified
halogenated effluent discharge where many other species were killed, suggesting a high tolerance
to chemical contamination. Little information is available on the impact of endocrine disrupters on
adult barnacles. Holt et al. (1995) concluded that barnacles are fairly sensitive to chemical
pollution, therefore intolerance is reported as high. The species is an important early colonizer of
sublittoral rock surfaces (Kitching, 1937) and it heavily recolonized a site that was dredged for
gravel within 7 months (Kenny & Rees, 1994). Therefore, recovery is predicted to be high.

Most pesticides and herbicides were suggested to be very toxic for invertebrates, especially
crustaceans (amphipods isopods, mysids, shrimp and crabs) and fish (Cole et al., 1999).

Radionuclide
contamination

No evidence (NEv) No evidence (NEv) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence.

Introduction of other
substances

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed.

De-oxygenation High High Not sensitive
Q: High A: Low C: Medium Q: High A: High C: High Q: High A: Low C: Medium

Specific information concerning oxygen consumption and reduced oxygen tolerances were not

http://www.marlin.ac.uk/species/detail/1371
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found for the key characterizing species within the biotope. It is likely that as this biotope occurs in
areas that are shallow and tidally flushed that re-oxygenation is likely, limiting the effects of any
de-oxygenation events. However, this may mean that the speice spresent have little exposure to
low oxygen and may be sensitive to this pressure. Balanus crenatus, however, respires anaerobically
so it can withstand some decrease in oxygen levels. When placed in wet nitrogen, where oxygen
stress is maximal and desiccation stress is minimal, Balanus crenatus has a mean survival time of 3.2
days (Barnes et al., 1963) and this species is considered to be ‘Not sensitive’ to this pressure. 

Sensitivity assessment. Based on Balanus crenatus and mitigation of de-oxygenation by water
movements, this biotope is considered to have 'High' resistance and High resilience (by default),
and is therefore 'Not sensitive'.

Nutrient enrichment High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Nutrient enrichment at the pressure benchmark is unlikely to affect the fauna within this biotope.

Over geological timescales, periods of increased nutrient availability have experienced increases
in the distribution of crustose coralline species at the expense of corals (Littler & Littler, 2013),
suggesting that this group have some tolerance for enhanced nutrient levels. Overall, Littler &
Littler (2013) suggest that corallines as a group can tolerate both low and elevated levels of
nutrients. The encrusting coralline Lithophyllum incrustans were present at sites dominated
by Ulva spp. in the Mediterranean exposed to high levels of nutrient enrichment from domestic
sewage (Arévalo et al., 2007).

A slight increase in nutrient levels could be beneficial for barnacles and other suspension feeders
by promoting growth of phytoplankton and therefore increasing food supplies. Balanus
crenatus was the dominant species on pier pilings, which were subject to urban pollution (Jakola &
Gulliksen, 1987).

Sensitivity assessment. The pressure benchmark is relatively protective and the biotope is
considered to have ‘High’ resistance and ‘High resilience’ (by default) and is judged to be ‘Not
sensitive’.

Organic enrichment High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

As the biotope occurs in tide swept or wave exposed areas (Connor et al., 2004), water movements
will disperse organic matter reducing the level of exposure.

The crusting coralline Lithophyllum incrustans were present at sites dominated by Ulva spp. in the
Mediterranean exposed to high levels of organic pollution from domestic sewage (Arévalo et al.,
2007), suggesting the encrusting corallines are not sensitive to this pressure.

The animals found within the biotope may be able to utilise the input of organic matter as food, or
are likely to be tolerant of inputs at the benchmark level. In a recent review, assigning species to
ecological groups based on tolerances to organic pollution, characterizing animal species; Balanus
crenatus and Spirobranchus triqueter were assigned to AMBI Group II described as 'species
indifferent to enrichment, always present in low densities with non-significant variations with



Date: 2016-03-21 Coralline crusts in surge gullies and scoured infralittoral rock - Marine Life Information Network

https://www.marlin.ac.uk/habitats/detail/370 15

time, from initial state, to slight unbalance' (Gittenberger & Van Loon, 2011). 

Sensitivity assessment. It is not clear whether the pressure benchmark would lead to enrichment
effects in this dynamic, scoured habitat.  High water movements would disperse organic matter
particles, mitigating the effect of this pressure. Based on the AMBI categorisation (Borja et al.,
2000, Gittenberger & Van Loon, 2011), this ecological group is assessed as ‘Not Sensitive’ to this
pressure based on ‘High’ resistance and ‘High’ resilience as there is no impact to recover from. 
Although species within the biotope may be sensitive to gross organic pollution resulting from
sewage disposal and aquaculture they are considered to have ‘High’ resistance to the pressure
benchmark which represents organic enrichment and therefore ‘High’ resilience.  The biotope is
therefore considered to be ‘Not Sensitive’.

 Physical Pressures
 Resistance Resilience Sensitivity

Physical loss (to land or
freshwater habitat)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this
pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’). 
Sensitivity within the direct spatial footprint of this pressure is therefore ‘High’.  Although no
specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible
nature of this pressure.

Physical change (to
another seabed type)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

This biotope is characterized by the hard rock substratum to which the characterizing and
associated species can firmly attach. Changes to a sedimentary habitat or an artificial substratum
would significantly alter the character of the biotope through the loss of habitat.

Tillin & Tyler-Walters (2014) used records from the MNCR database as a proxy indicator of the
resistance to physical change by Balanus crenatus and Spirobranchus triqueter. These species were
reported from a variety of substratum types including fine (muddy sand, sandy mud and fine sands)
and coarse sediments, where some hard surfaces (such as pebbles or shells) are present for the
attached species.

Balanus crenatus and Spirobranchus triqueter are fouling organisms and occur on a wide variety of
substrata (Harms & Anger, 1983; Andersson et al., 2009). As well as artificial and natural hard
substrata Balanus crenatus and Spirobranchus triqueter also encrust a range of invertebrates; for
example, Spirobranchus triqueter has been recorded on the hermit crab, Pagurus
bernhardus (Fernandez-Leborans & Gabilondo, 2006) among other species.  Similarly, Balanus
crenatus has been reported to encrust empty shells of the invasive non-indigenous species Ensis
americanus (Donovan, 2011) and Carcinus maenas (Heath, 1976).

Sensitivity assessment It should be noted that the basis of the sensitivity assessment for this
pressure is the sensitivity of the biotope to changes in substratum type, rather than the sensitivity
of the species. A permanent change in substratum type to artificial or sedimentary would lead to
re-classification of the biotope. Biotope resistance to this pressure is therefore assessed as ‘None’

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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(loss of >75% of extent), as the change at the benchmark is permanent, resilience is assessed as
‘Very low’.   Sensitivity, based on combined resistance and resilience is therefore assessed as ‘High’.

Physical change (to
another sediment type)

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant to biotopes occurring on bedrock.

Habitat structure
changes - removal of
substratum (extraction)

Not relevant (NR) Not relevant (NR) Not relevant (NR)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

The species characterizing this biotope are epifauna occurring on rock and would be sensitive to
the removal of the habitat. However, extraction of rock substratum is considered unlikely and this
pressure is considered to be ‘Not relevant’ to hard substratum habitats.

Abrasion/disturbance of
the surface of the
substratum or seabed

Low High Low

Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

The species characterizing this biotope occur on the rock and therefore have no protection from
surface abrasion. High levels of abrasion from scouring by mobile sands and gravels is an important
structuring factor in this biotope (Connor et al., 2004) and prevents replacement by less scour-
tolerant species, such as red algae.  Mechanical abrasion from scuba divers was reported to impact
encrusting corallines, with cover of Lithophyllum stictaeforme greater in areas where diving was
forbidden than visited areas (abundance, 6.36 vs 1.4; it is presumed this refers to proportion of
cover, although this is not clear from the text, Guarinieri et al., 2012). Dethier (1994)
experimentally manipulated surface abrasion on a range of encrusting algae including Lithophyllum
impressum. Crusts were brushed with either a nylon or steel brush for 1 minute each  month for 24
months. Unbrushed controls grew by approximately 50% where the cover of nylon brushed crusts
and steel brushed crusts decreased by approximately 25% and 40% respectively (interpreted from
figures in Dethier, 1994). In laboratory tests on chips of Lithophyllum impressum brushing with a
steel brush for 1 minute once a week for 3 weeks, resulted in no cover loss of two samples while a
third ‘thinned and declined’ (Dethier, 1994).

Hiscock (1983) noted that a community, under conditions of scour and abrasion from stones and
boulders moved by storms, developed into a community consisting of fast growing species such
as Spirobranchus (formerly Pomatoceros) triqueter.  Off Chesil Bank, the epifaunal community
dominated by Spirobranchus (as Pomatoceros) triqueter and Balanus crenatus decreased in cover in
October as it was scoured away in winter storms, but recolonised in May to June (Gorzula 1977).
Warner (1985) reported that the community did not contain any persistent individuals but that
recruitment was sufficiently predictable to result in a dynamic stability and a similar community,
dominated by Spirobranchus (as Pomatoceros triqueter), Balanus crenatus and Electra pilosa, (an
encrusting bryozoan), was present in 1979, 1980 and 1983 (Riley and Ballerstedt, 2005). 

Re-sampling of fishing grounds that were historically studied (from the 1930s) indicated that some
encrusting species including serpulid worms and several species of barnacles had decreased in
abundance in gravel substrata subject to long-term scallop fishing (Bradshaw et al., 2002).  These
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may have been adversely affected by the disturbance of the stones and dead shells on to which
they attach (Bradshaw et al., 2002). Where individuals are attached to mobile pebbles, cobbles and
boulders rather than bedrock, surfaces can be displaced and turned over preventing feeding and
leading to smothering.  This observation is supported by experimental trawling, carried out in
shallow, wave disturbed areas using a toothed, clam dredge, which found that Spirobranchus sp.
decreased in intensively dredged areas over the monitoring period (Constantino et al., 2009).  In
contrast, a study of Spirobranchus spp. aggregations found that the tube heads formed were not
significantly affected by biannual beam trawling in the eastern Irish Sea (Kaiser et al., 1999).  No
changes in the number or size of serpulid tube heads was apparent throughout the course of the
study, and no significant changes were detectable in the composition of the tube head fauna that
could be attributed to fishing disturbance (Kaiser et al., 1999). Subsequent laboratory experiments
on collected tube heads found that these were unlikely to resettle on the seabed in an orientation
similar to that prior to disturbance (Kaiser et al., 1999).  This may lead to the death of the resident
serpulids and sessile associated fauna.

Sensitivity assessment. The impact of surface abrasion will depend on the footprint, duration and
magnitude of the pressure. High levels of abrasion from scouring by mobile cobbles and pebbles is
an important structuring factor in this biotope (Connor et al., 2004) but the persistence of the
assemblage may depend on rapid recovery rather than high resistance (Gorzula, 1977). The
evidence for the effects of severe scour and trawling on Balanus crenatus and Spirobranchus
triqueter, suggest that resistance, to a single abrasion event is ‘Low’ and recovery is ‘High’.
Sensitivity is assessed as ‘Low’, based upon the information for these species and the
characterizing Coralline spp. 

Penetration or
disturbance of the
substratum subsurface

Not relevant (NR) Not relevant (NR) Not relevant (NR)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

The species characterizing this biotope group are epifauna or epiflora occurring on rock which is
resistant to subsurface penetration.  The assessment for abrasion at the surface only is therefore
considered to equally represent sensitivity to this pressure.

Changes in suspended
solids (water clarity)

High High Not sensitive
Q: High A: Medium C: High Q: High A: High C: High Q: High A: Medium C: High

This biotope occurs in scoured habitats and it is likely, depending on local sediment supply, that the
biotope is exposed to chronic or intermittent episodes of high-levels of suspended solids as local
sediments are re-mobilised and transported. A significant increase in suspended solids may result
in smothering (see siltation pressures) where these are deposited. Based on Cole et al. (1999) and
Devlin et al. (2008) this biotope is considered to experience intermediate turbidity (10-100 mg/l)
based on UK TAG (2014).  An increase at the pressure benchmark refers to a change to medium
turbidity (100-300 mg/l) and a decrease is assessed as a change to clear (<10 mg/l) based on UK
TAG (2014).

The biotope occurs in shallow waters where light attenuation due to increases in turbidity is
probably low and the characterizing animals are unlikely to be affected by increased or decreased
clarity. Red algae and encrusting coralline algae especially, are known to be shade tolerant and are
common components of the understorey on seaweed dominated shores. Therefore, an increase or
decrease in light intensity is unlikely to adversely affect the crustose corallines as plants can
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acclimate to different light levels.

An increase in turbidity could be beneficial if the suspended particles are composed of organic
matter, however high levels of suspended solids with increased inorganic particles may reduce
filter feeding efficiencies. A reduction in suspended solids will reduce food availability for filter
feeding species in the biotope (where the solids are organic), although effects are not likely to be
lethal over the course of a year. A reduction in light penetration could also reduce growth rate of
phytoplankton and so limit zooplankton levels.  However, light penetration itself is unlikely to be
an important factor as both Balanus crenatus and Spirobranchus triqueter are recorded from the
lower eulittoral or the lower circalittoral. 

Available evidence indicates that Spirobranchus triqueter is tolerant of a wide range of suspended
sediment concentrations (Riley and Ballerstedt, 2005).  Stubbings and Houghton (1964)
recorded Spirobranchus (as Pomatoceros) triqueter in Chichester harbour, which is a muddy
environment.  However, Spirobranchus (as Pomatoceros) triqueter has been noted to also occur in
areas where there is little or no silt present (Price et al., 1980). 

Barnes and Bagenal (1951) found that growth rate of Balanus crenatus epizoic on Nephrops
norvegicus was considerably slower than animals on raft exposed panels. This was attributed to
reduced currents and increased silt loading of water in the immediate vicinity of Nephrops
norvegicus. In dredge disposal areas in the Weser estuary, Germany, where turbidity is 35% above
the natural rate of 10-100 mg/l, the abundance of Balanus crenatus was lower than in reference
areas (Witt et al., 2004).  Separating the effect of increased suspended solids from increased
sedimentation and changes in sediment from sediment dumping is problematic, however (Witt et
al., 2004). Balanids may stop filtration after silt layers of a few millimetres have been discharged
(Witt et al., 2004), as the feeding apparatus is very close to the sediment surface.

Sensitivity assessment. Overall biotope resistance is assessed as ‘High’ to an increase in
suspended solids. Resilience is categorised as ‘High’ (by default) as adults are likely to remain in
situ from which recruitment can occur. The biotope is considered to be ’Not sensitive’ to decreased
suspended solids.

Smothering and siltation
rate changes (light)

High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

This biotope is described as sand covered or sand scoured (Connor et al., 2004). The characterizing
and associated species are therefore likely to tolerate intermittent episodes of sediment
deposition.

In a review of the effects of sedimentation on rocky coast assemblages, Airoldi (2003) outlined the
evidence for the sensitivity of encrusting coralline algae to sedimentation. The reported results are
contradictory with some authors suggesting that coralline algae are negatively affected by
sediments while others report that encrusting corallines are often abundant or even dominant in a
variety of sediment impacted habitats (Airoldi, 2003 and references therein). Crustose corallines
have been reported to survive under a turf of filamentous algae and sediment for 58 days (the
duration of experiment) in the Galapagos (species not identified, Kendrick, 1991). The crustose
coralline Hydrolithon reinboldii, has also been reported to survive deposition of silty sediments on
subtidal reefs off Hawaii (Littler, 1973). In an experimental study, Balata et al. (2007) enhanced
sedimentation on experimental plots in the Mediterranean (close to Tuscany) by adding 400 g of
fine sediment every 45 days on plots of 400 cm2 for 1 year. Nearby sites with higher and lower



Date: 2016-03-21 Coralline crusts in surge gullies and scoured infralittoral rock - Marine Life Information Network

https://www.marlin.ac.uk/habitats/detail/370 19

levels of sedimentation were assessed as control plots. Some clear trends were observed. Crustose
corallines declined at medium and high levels of sedimentation (Balata et al., 2007). The
experiment relates to chronic low levels of sedimentation rather than a single acute event, as in
the pressure benchmark, however the trends observed are considered to have some relevance to
the pressure assessment. 

As small, sessile species attached to the substratum, siltation at the pressure benchmark would
bury Balanus crenatus and Spirobranchus triqueter.  Holme and Wilson (1985) described
a Pomatoceros-Balanus assemblage on ‘hard surfaces subjected to periodic sever scour and ‘deep
submergence by sand or gravel’ in the English Channel. They inferred that the Pomatoceros-
Balanus assemblage was restricted to fast-growing settlers able to establish themselves in short
periods of stability during summer months (Holme and Wilson 1985), as all fauna were removed in
the winter months. Barnacles may stop filtration after silt layers of a few millimetres have been
discharged as the feeding apparatus is very close to the sediment surface (Witt et al., 2004). In
dredge disposal areas in the Weser estuary, Germany, where the modelled exposure to
sedimentation was 10mm for 25 days, with the centre of the disposal ground exposed to 65 mm
for several hours before dispersal, Balanus crenatus declined in abundance compared to reference
areas.  (Witt et al., 2004). However, separating the effect of sedimentation from increased
suspended solids and changes in sediment from sediment dumping was problematic (Witt et al.,
2004).

Sensitivity assessment. Based on the presence of the characterizing and associated species in
biotopes subject to sedimentation and scour (such as CR.MCR.EcCr.UrtScr), biotope resistance to
this pressure, at the benchmark, is assessed as 'High', resilience is assessed as 'High' (by default)
and the biotope is considered to be 'Not sensitive'. The assessment considers that sediments are
rapidly removed from the biotope and that the scour tolerance of the characterizing animal
species and encrusting corallines would prevent significant mortalities although some damage and
abrasion may occur. However, if the deposit remained in place; i.e. due to the scale of the pressure
or where biotopes were sheltered, or only seasonally subject to water movements or where water
flows and wave action were reduced e.g. by the presence of tidal barrages, then resistance would
be lower and sensitivity would be greater.

Smothering and siltation
rate changes (heavy)

Medium High Low
Q: High A: Medium C: Medium Q: High A: High C: High Q: High A: Medium C: Medium

This biotope is described as subject to scouring (Connor et al., 2004). The characterizing species
occur in biotopes subject to sedimentation and scour (such as CR.MCR.EcCr.UrtScr) and are
therefore likely to tolerate intermittent episodes of sediment movement and deposition.  At the
pressure benchmark ‘heavy deposition’ represents a considerable thickness of deposit and
complete burial of the characterizing species would occur. Removal of the sediments by wave
action and tidal currents would result in considerable scour. The effect of this pressure will be
mediated by the length of exposure to the deposit and the nature of the deposit. 

In a review of the effects of sedimentation on rocky coast assemblages, Airoldi (2003) outlined the
evidence for the sensitivity of encrusting coralline algae to sedimentation. The reported results are
contradictory with some authors suggesting that coralline algae are negatively affected by
sediments while others report that encrusting corallines are often abundant or even dominant in a
variety of sediment impacted habitats (Airoldi, 2003 and references therein). Crustose corallines
have been reported to survive under a turf of filamentous algae and sediment for 58 days (the
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duration of experiment) in the Galapagos (species not identified, Kendrick, 1991). The crustose
coralline Hydrolithon reinboldii, has also been reported to survive deposition of silty sediments on
subtidal reefs off Hawaii (Littler, 1973). In an experimental study, Balata et al. (2007) enhanced
sedimentation on experimental plots in the Mediterranean (close to Tuscany) by adding 400 g of
fine sediment every 45 days on plots of 400 cm2 for 1 year. Nearby sites with higher and lower
levels of sedimentation were assessed as control plots. Some clear trends were observed. Crustose
corallines declined at medium and high levels of sedimentation (Balata et al., 2007). The
experiment relates to chronic low levels of sedimentation rather than a single acute event, as in
the pressure benchmark, however the trends observed are considered to have some relevance to
the pressure assessment. 

As small, sessile species attached to the substratum, siltation at the pressure benchmark would
bury Balanus crenatus and Spirobranchus triqueter.  Holme and Wilson (1985) described
a Pomatoceros-Balanus assemblage on ‘hard surfaces subjected to periodic sever scour and ‘deep
submergence by sand or gravel’ in the English Channel. They inferred that the Pomatoceros-
Balanus assemblage was restricted to fast-growing settlers able to establish themselves in short
periods of stability during summer months (Holme and Wilson, 1985), as all fauna were removed in
the winter months. Barnacles may stop filtration after silt layers of a few millimetres have been
discharged as the feeding apparatus is very close to the sediment surface (Witt et al., 2004). In
dredge disposal areas in the Weser estuary, Germany, where the modelled exposure to
sedimentation was 10mm for 25 days, with the centre of the disposal ground exposed to 65 mm
for several hours before dispersal, Balanus crenatus declined in abundance compared to reference
areas.  (Witt et al., 2004).  However, separating the effect of sedimentation from increased
suspended solids and changes in sediment from sediment dumping was problematic (Witt et al.,
2004).

Sensitivity assessment.  Resistance is assessed as ‘Medium’ as the biotope is exposed to frequent
abrasion and scouring (the impact may be mitigated by rapid removal of the deposit) but some
removal and mortalities may occur. Resilience is assessed as ‘High’ based on re-growth from the
scour-tolerant, surviving bases of the encrusting corallines and larval recolonization by Balanus
crenatus and Spirobranchus triqueter. Biotope sensitivity is therefore assessed as 'Low'.

Litter Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not assessed.

Electromagnetic changes No evidence (NEv) No evidence (NEv) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence.

Underwater noise
changes

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant
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Introduction of light or
shading

High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Encrusting corallines can occur in deeper water than other algae where light penetration is limited.
Samples of Lithophyllum impressum suspended from a raft and shaded (50-75% light reduction)
continued to grow over two years (Dethier, 1994). Similarly Plocamium cartilagineum grows in
shaded conditions beneath laminarian canopies: where irradiance is greater, growth is lower and it
appears that light levels of 0.5 mmol/m2/s are inhibitory (Kain, 1987). In areas of higher light levels,
the fronds and bases may be lighter in colour due to bleaching (Colhart & Johansen, 1973). Other
red algae in the biotope are flexible with regard to light levels and can also acclimate to different
light levels.  

Spirobranchus triqueter is found in a variety of light environments from shallow sublittoral biotopes
where light levels are relatively high, to deeper sites that are aphotic (De Kluijver, 1993).

Balanus crenatus possesses a rudimentary eye and can detect and respond to sudden shading which
may be an anti-predator defence (Forbes et al., 1971). Balanus crenatus tend to orient themselves
when settling, with the least light sensitive area directed towards the light (Forbes et al., 1971), so
that the more sensitive area can detect shading from predator movements in the area where light
availability is lower (Forbes et al., 1971).

 Sensitivity assessment. As  the key characterizing species colonize a broad range of light
environments, from intertidal to deeper sub tidal and shaded understorey habitats; the biotope is
considered to have ‘High’ resistance and, by default, ‘High’ resilience and therefore is ‘Not
sensitive’ to this pressure.

Barrier to species
movement

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Barriers that reduce the degree of tidal excursion may alter larval supply to suitable habitats from
source populations. Conversely the presence of barriers may enhance local population supply by
preventing the loss of larvae from enclosed habitats.  Barriers and changes in tidal excursion are
not considered relevant to the characterizing crusting corallines as species dispersal is limited by
the rapid rate of settlement and vegetative growth from bases rather than reliance on recruitment
from outside of populations. Resistance to this pressure is assessed as 'High' and resilience as
'High' by default. This biotope is therefore considered to be 'Not sensitive'.

Death or injury by
collision

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant’ to seabed habitats.  NB. Collision by grounding vessels is addressed under surface
abrasion

Visual disturbance Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Many invertebrate species within the biotope probably respond to light levels, detecting shade
and shadow to avoid predators, and day length in their behavioural or reproductive strategies.
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However, their visual acuity is probably very limited and they are unlikely to respond to visual
disturbance at the benchmark level. This pressure is, therefore, assessed as ‘Not relevant’.

Balanus crenatus possesses a rudimentary eye and can detect and respond to sudden shading which
may be an anti-predator defence (Forbes et al., 1971). Balanus crenatus tend to orient themselves
when settling, with the least light sensitive area directed towards the light (Forbes et al., 1971), so
that the more sensitive area can detect shading from predator movements in the area where light
availability is lower (Forbes et al., 1971).

 Biological Pressures
 Resistance Resilience Sensitivity

Genetic modification &
translocation of
indigenous species

Not relevant (NR) Not relevant (NR) Not relevant (NR)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Key characterizing species within this biotope are not cultivated or translocated. This pressure is
therefore considered ‘Not relevant’ to this biotope group.

Introduction or spread of
invasive non-indigenous
species

High High Not sensitive

Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

The high levels of scour in this biotope will limit establishment of all but the most scour resistant
invasive non-indigenous species (INIS) from this biotope and no direct evidence was found for
effects of INIS on this biotope.

Increased warming has allowed the Australian barnacle Austrominius (formerly, Elminiusi) modestus,
to dominate sites previously occupied by Semibalanus balanoides and Balanus crenatus (Witte,
2010). However, on settlement panels deployed in SW Ireland, Austrominius modestus initially
dominated panels in the lower subtidal but post-recruitment mortality over a year allowed Balanus
crenatus to become the dominant barnacle (Watson et al., 2005). Balanus crenatus and Austrominius
modestus have shown recruitment differences  which may alter the seasonal dominance patterns
(Witte, 2010). Free-living aggregations (Balanuliths) of Balanus crenatus have been observed
growing on shell fragments of the INIS, Ensis directus (Cadée, 2007).

Sensitivity assessment. As scouring of this biotope by mobile sediments limits establishment of all
but robust species, resistance to INIS is assessed as ‘High’ and resilience as ‘High’ (by default) so
that the biotope is considered to be ‘Not sensitive’.

Introduction of microbial
pathogens

High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

No evidence was found that microbial pathogens cause high levels of disease or mortality in this
biotope.

Diseased encrusting corallines were first observed in the tropics in the early 1990’s when the
bacterial pathogen Coralline Lethal Orange Disease (CLOD) was discovered (Littler & Littler,

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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1995). All species of articulated and crustose species tested to date are easily infected by CLOD
and it has been increasing in occurrence at sites where first observed and spreading through the
tropics. Another bacterial pathogen causing a similar CLOD disease has been observed with a
greater distribution and a black fungal pathogen first discovered in American Samoa has been
dispersing (Littler & Littler, 1998). An unknown pathogen has also been reported to lead to white
‘target-shaped’ marks on corallines, again in the tropic (Littler et al., 2007). No evidence was found
that these pathogens are impacting temperate coralline habitats.

Sensitivity assessment. Based on the lack of reported mortalities of the characterizing species and
the available evidence for the characterizing coralline crust, the biotope is judged to have ‘High’
resistance to this pressure. By default resilience is assessed as ‘High’ and the biotope is classed as
‘Not sensitive’ at the pressure benchmark. 

Removal of target
species

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Direct, physical impacts from harvesting are assessed through the abrasion and penetration of the
seabed pressures. The sensitivity assessment for this pressure considers any biological/ecological
effects resulting from the removal of target species on this biotope.  No commercial application or
harvesting of characterizing or associated species is described in the literature, this pressure is
therefore considered to be 'Not relevant'.

Removal of non-target
species

Low Medium Medium
Q: Low A: NR C: NR Q: High A: Medium C: High Q: Low A: Low C: Low

Incidental removal of the key characterizing species would alter the character of the biotope,
resulting in reclassification and the loss of species richness. The ecological services such as primary
and secondary production, provided by characterizing and associated species, would also be lost.
As most species present in this biotope are relatively large, conspicuous and either sedentary or
attached to rock surfaces they have little protection against removal.

Sensitivity assessment.  Removal of a large percentage of the characterizing species resulting in
bare rock would alter the character of the biotope, species richness and ecosystem
function. Resistance is therefore assessed as ‘Low’ and recovery as ‘Medium’ (based on removal of
coralline crusts), so that biotope sensitivity is assessed as 'Medium’.
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