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Abstract: This study aimed to assess the ecotoxicological effects of the interaction of fullerene (C60)
and benzo[a]pyrene (B[a]P) on the marine mussel, Mytilus galloprovincialis. The uptake of nC60,
B[a]P and mixtures of nC60 and B[a]P into tissues was confirmed by Gas Chromatography–Mass
Spectrometry (GC–MS), Liquid Chromatography–High Resolution Mass Spectrometry (LC–HRMS)
and Inductively Coupled Plasma Mass Spectrometer (ICP–MS). Biomarkers of DNA damage as well
as proteomics analysis were applied to unravel the interactive effect of B[a]P and C60. Antagonistic
responses were observed at the genotoxic and proteomic level. Differentially expressed proteins
(DEPs) were only identified in the B[a]P single exposure and the B[a]P mixture exposure groups
containing 1 mg/L of C60, the majority of which were downregulated (~52%). No DEPs were identified
at any of the concentrations of nC60 (p < 0.05, 1% FDR). Using DEPs identified at a threshold of
(p < 0.05; B[a]P and B[a]P mixture with nC60), gene ontology (GO) and Kyoto encyclopedia of
genes and genomes (KEGG) pathway analysis indicated that these proteins were enriched with
a broad spectrum of biological processes and pathways, including those broadly associated with
protein processing, cellular processes and environmental information processing. Among those
significantly enriched pathways, the ribosome was consistently the top enriched term irrespective of
treatment or concentration and plays an important role as the site of biological protein synthesis and
translation. Our results demonstrate the complex multi-modal response to environmental stressors in
M. galloprovincialis.
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1. Introduction

There have been concerns regarding the potential for manufactured nanomaterials to cause
unpredictable environmental health or hazard impacts, including deleterious effects across differing
organismal levels, for over a decade. Despite numerous years of study, it is still unclear at what
quantity manufactured nanomaterials can be found in the aquatic environment, along with their fate,
potential bioavailability and subsequent hazardous effects to biological systems. This is surprising
given the growing concern in the field of aquatic toxicology regarding their availability and potential
toxicity [1]. Fullerenes are the smallest known stable carbon nanostructures and lie on the boundary
between molecules and nanomaterials, with fullerenes generally exhibiting strong hydrophobicity
in aqueous media [2]. Buckminsterfullerene (C60) is the only readily soluble carbon nanostructure,
although graphene is dispersible in specific organic solvents [3]. Non-functionalised C60 possesses a
measurable, but extremely low solubility in water (1.3 × 10−11 mg/mL), but can exist in the aqueous
phase as aggregates (nC60) [4] and is quantifiable in aqueous environmental samples [5]. nC60 can be
formed in water when fullerenes are released into the aquatic environment, increasing the transport
and potential risk of this nanomaterials to the ecosystem ecology.

The toxicity associated with C60 is controversial and largely unclear [6]. The ability of C60 to both
generate and quench reactive oxygen species (ROS) has recently been recognised as a particularly
important property in the interaction of fullerenes with biological systems [7], with many aquatic studies
demonstrating that fullerenes are capable of eliciting toxicity via oxidative stress [8–10]. Numerous
studies have investigated the beneficial and toxicological effects of fullerenes [11–17]. However, the
toxicity of nanomaterials has been shown to be dependent on numerous factors, including surface
area, chemical composition and shape [18,19]. In specific cases, such as aqueous fullerenes (nC60),
the physiochemical structure is influenced by different preparation methods [15,20,21]. Altered
physiochemical properties induced through the different methods of solubilisation have been shown to
profoundly influence the observed toxicological effects of fullerene exposure, thus making a consensus
assessment of environmental toxicity difficult [20]. While the environmental toxicity of fullerenes is still
being investigated, an emerging concern is whether fullerene aggregates can act as contaminant carriers
(Trojan horse effects) in aquatic systems, and whether this confirms the reduction or enhancement of
toxicity with these compounds. Current evidence suggests a mixture of effects dependent on chemical
properties. Under combined aquatic exposure conditions (viz. nC60 and contaminant), it has been
demonstrated that 17α-ethinylestradiol (EE2) has a decreased bioavailability [14], altered toxicity [11,22]
and localised increases in mercury bioavailability [23]. Finally, when compared to other anthropogenic
contaminants, Velzeboer et al. established that the absorption of polychlorinated biphenyls (PCBs) to
nC60 was 3–4 orders of magnitude stronger than to organic matter and polyethylene [24]. This enhanced
absorption and modifications to toxicity responses may have significant impacts on the fate, transport
and bioavailability of co-contaminants already in the aquatic environment. However, more research is
necessary to establish which co-contaminants bioavailability is impacted when co-exposed with nC60.

The aquatic environment is often the ultimate recipient of an increasing range of anthropogenic
contaminants, and likely in all probable combinations. Organisms which are exposed to complex
mixtures of differing compounds and substances can interact in many ways to induce biological
responses be it additively, synergistically or antagonistically. These interactions can and do change
the organismal response compared with single compound exposures [2,25,26]. Bivalves have highly
developed processes for the cellular internalization of nano- and microscale particles (viz. endocytosis
and phagocytosis) that are integral to key physiological functions such as cellular immunity [27]. These
organisms are also useful bio-indicators because as suspension feeders they filter large volumes of
water which facilitates uptake and bio-concentration of toxic chemicals [28], in addition to microalgae,
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bacteria, sediments, particulates and natural nanoparticles. This high filtration rate has been shown to
be associated with the high potential accumulation of different chemicals in their tissues. A variety
of mussel species have been used to elucidate both physiological and molecular mechanisms of
action to nanoparticles [29,30] making them an ideal model to investigate how organisms respond
to environmental stressors such as chemical mixtures [27]. This study aims to test the hypothesis
that C60 fullerenes and B[a]P can interact with each other to differentially modify their potential
toxicity. To confirm this hypothesis, a set of biomarkers or biological responses including proteomic
analysis were employed. In this study, we hypothesized that C60 would act as a contaminant carrier
for B[a]P and would modify the toxicity of B[a]P due to the high adsorption of B[a]P molecules onto
C60 nano-aggregates. This hypothesis has been verified through the measurement of B[a]P and C60

in water and tissue. As B[a]P and C60 are known or potential genotoxic contaminants, a change in
genotoxic effect was evaluated through the measurements of 8-oxodGuo, DNA strand breaks and
DNA adducts in the digestive gland. Proteomics analysis was also performed to evaluate changes of
mussels’ proteome profile under co-exposure, and to try to unravel the molecular mechanisms of the
potential interactive effects.

2. Materials and Methods

2.1. Animal Collection and Husbandry

Mussels (Mytilus galloprovincialis; 45–50 mm) were collected from the intertidal zone at Trebar with
Strand, Cornwall, UK (50◦ 38′ 40′′ N, 4◦ 45′ 44′′ S) in October 2016. The site has previously been used
as a reference location for ecotoxocological studies and is considered relatively clean with a minimum
presence of disease [31,32]. Following collection, mussels were transported to the laboratory in cool
boxes and placed in an aerated tank at a ratio of 1 mussel L−1 with natural seawater from Plymouth
Sound (filtered at 10 µm). Mussels were maintained at 15 ◦C, fed with micro-algae (Isochrysis galbana,
Interpret, UK) every 2 days with a 100% water change 2 h post feeding.

2.2. Preparation of Stock Solutions

2.2.1. Fullerenes (C60)

C60 and Er3N@C80 were obtained from Sigma Aldrich (Gillingham, UK) and Designer Carbon
Materials Ltd. (Oxford, UK), respectively. In order to better replicate the conditions of the experiment
during analysis, 2 mussels were maintained in 2 L glass beakers for 24 h with natural seawater from
Plymouth Sound (filtered at 10 µm). Subsequently, fullerenes (1 mg) were added to the mussel-exposed
seawater (10 mL) and the suspension homogenised by ultrasonication (Langford Sonomatic 375,
Bromsgrove, UK, 40 kHz) for 1 h at room temperature. The suspension was allowed to settle for at least
4 h at room temperature prior to analysis of the aggregate size. Dynamic light scattering (DLS) was
performed using a Malvern Zetasizer Nano-ZS (Malvern, UK) at room temperature. Quoted values are
the average of 3 measurements. Bright field transmission electron microscopy (TEM) and dark-field
scanning transmission electron microscopy (STEM) were performed using the JOEL 2100+ microscope
(Welwyn Garden City, UK) operated at 200 keV. Energy dispersive X-ray (EDX) spectra were acquired
using an Oxford Instruments INCA X-ray microanalysis system (Oxford, UK) and processed using
Aztec software (version 3.1 SP1, Oxford, UK). Samples were prepared by casting several drops of the
respective suspensions onto copper grid-mounted lacey carbon films.

2.2.2. Benzo[a]pyrene (B[a]P)

B[a]P (≥96%, B1760, Sigma Aldrich) is not water soluble and was previously dissolved in dimethyl
sulfoxide (DMSO) after having determined its solubility limit. Chemical solutions were prepared so
that the DMSO concentration in the sea water was 0.001%.
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2.3. In Vivo Exposure of M. galloprovincialis to B[a]P and C60: Experimental Design

Following depuration, mussels were separated (2 per beaker) into 2 L glass beakers containing
1.8 L of seawater and allowed to acclimatize for 48 h. A photoperiod of 12 h light: 12 h dark was
maintained throughout the experiment. Oxygenation was provided by a bubbling system. Seawater
was monitored in each of the beakers by measuring salinity (36.45 ± 0.19%�). Mussels were exposed
for 3 days with no water changes to B[a]P (5, 50 and 100 µg/L), C60 alone (0.01, 0.1 and 1 mg/L) and a
combination of B[a]P (5, 50 and 100 µg/L) and C60 (1 mg/L). Control groups received only DMSO at the
same concentrations as used in the other exposure groups (0.001% DMSO). A total of 26 individuals
were used per treatment. Following exposure, tissue samples were collected as follows: gill and
digestive gland (DG) tissue was collected from 3 mussels for chemical analysis, digestive tissue was
collected from 9 mussels and pooled (3 mussels per one biological replicate) for shotgun proteomics,
DG tissue from 10 mussels was collected for comet assay and DNA adducts, with a further 5 DG
collected for DNA oxidation. Water samples from 3 beakers were randomly collected during each
treatment for B[a]P and C60 analyses.

2.4. Gas Chromatography–Mass Spectrometry (GC–MS) Analyses of B[a]P in Water and Tissue

Water and tissue extracts were analysed using an Agilent Technologies (Stockport, UK) 7890A
Gas Chromatography (GC) system interfaced with an Agilent 5975 series Mass Selective (MS) detector
as described in [33].

2.5. Analyses of C60 in Water and Tissue

The analyses of C60 were performed on the toluene extracts common to the B[a]P analyses.
The water extracts were analysed with an Agilent 1100 high-performance liquid chromatography-
ultraviolet-visible instrument (HPLC-UV, Stockport, UK). The separation was performed on a Shimadzu
XR-ODS column (particle size 2.2µm, 3.0× 50 mm, Milton Keynes, UK) using an acetonitrile-toluene
gradient starting at 40% toluene, at a flow rate of 1 mL/min and a column temperature set at 40 ◦C.
The detection wavelength was set at 330 nm and the fullerene absorption at maximum. Quantification
was performed by external calibration using authentic fullerene standards. Because of their lower
concentrations, the tissue extracts were analysed by ultrahigh performance liquid chromatography
coupled with high resolution mass spectrometry following a protocol adapted from [34].

2.6. Proteomics

2.6.1. Sample Collection and Quality Check

Tissue was removed from the −80 ◦C, weighed (100 mg) and twice washed in phosphate buffered
saline (PBS) prior to being homogenised on ice for 60 s in radioimmunoprecipitation assay (RIPA)
buffer. The lysed homogenate was centrifuged at 14,000 RPM for 60 min at 4 ◦C, the supernatant
collected and aliquoted. Protein concentration was determined using the Pierce BCA protein assay kit
(Thermo Scientific, Loughborough, UK) according to manufacturers’ instructions with bovine serum
albumin as standard. Reproducibility of protein extraction was carried out using sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Briefly, 30 µg of protein from each sample was
loaded on a polyacrylamide gradient gel (4–12%) and stained with Coomassie protein stain (Expedeon,
UK) and destained with ELGA water. Quality checked protein samples were then processed for
downstream liquid chromatography-mass spectrometry (LC-MS, Stockport, UK) analysis.

2.6.2. Sample Preparation for LC-MS

Equal amounts of intestinal protein (100 µg) were processed using the Filter Aided Sample
Preparation (FASP) method as described by [35]. The digested proteins were subsequently purified
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using the Stop-and-go-extraction (STAGE) tip procedure as previously described [36]. Tryptic peptides
were analysed using LC-MS.

2.6.3. Mass Spectrometry

Peptides were separated on a Dionex Ultimate 3000 RSLC nano flow system (Dionex, Camberly,
UK) and analysed as described in [37].

2.6.4. Analysis

Peptide identification and quantification. Data analysis and quantification was performed using R
(Version 3.5.0, Vienna, Austria) [38]. Thermo .raw files were imported into ProteoWizard [39] and
converted to .mzML format before identification using the MS-GF+ algorithm which is implemented in
R via the MSGFplus package [40]. MS-GF+ was chosen due to its known sensitivity in identifying more
peptides than most other database search tools and its ability to work well with diverse types of spectra,
configurations of instruments and experimetnal protcols [41]. The protein database utilised in this study
consisted of the UniProt KnowledgeBase (KB) sequences from all organisms from the taxa Mollusca,
sub category Bivalvia (84,410 sequences released 1/10/2018). This was cocatenated with a common
contaminants list downloaded from ftp://ftp.thegpm.org/fasta/cRAP (Version: January 30th, 2015) using
the R package seqRFLP [42]. Searches were carried out using the following criteria: mass tolerance
of 10 ppm, trypsin as the proteolytic enzyme, maximum number of clevage sites = 2 and cysteine
carbamidomethylation and oxidation as a fixed modification. Target decoy approach (TDA) was applied
as it is the dominant strategy for false discovery rate (FDR) estimation in mass-spectrometry-based
proteomics [43]. A 0.1% peptide FDR threshold was applied in accordance with standard practice,
with a 1% protein FDR applied after protein identification (via aggregation). The resulting .mzid files
were converted to MSnSet and quantified using label free spectral counts. The mass spectrometry
proteomics data have been deposited to the ProteomeXchange Consortium [44] via the PRIDE [45]
partner repository with the dataset identifier PXD013805 and 10.6019/PXD013805.

Data processing and quantification. Data processing was undertaken as follows: each sample
was run individually and then regionally combined before all samples were amalgamated into a
large dataset. Quantification of proteins occurred via spectral index (SI) [46]. For identification of
proteins, the common practice of requiring three peptides per protein was used in order to reduce
the number of false positives [47]. Peptides were subsequently aggregated using sum and the protein
intensities scaled based on the actual number of proteins summed. Mussel samples were grouped
based on biological replicate, exposure and concentration and the resulting data filtered to keep
proteins which were identified in more than two biological replicates. To quantitatively describe
reliable and biologically relevant protein expression changes based on single exposure to B[a]P,
C60 or to a combination of the two, the data analysis was split into three distinct sections. As per
recent recommendations, normalisation was carried out first [48]. Based on systematic evaluations
of normalisation methods in label free proteomics, normalisation between technical replicates was
carried out using variance stabilization normalisation (Vsn) [49]. Based on a study by Lazar et al. [48],
it was hypothesized the most likely cause of missing values will be due to a mixture of MAR
(missing at random), MCAR (missing completely at random) and MNAR (missing not at random)
data. As such, missing value imputation was carried out using a mixed methodology in the form
of KNN (K nearest neighbours, biological replicates) and QRILC (left censor method for MNAR
data; whole dataset) [50,51]. Following normalisation, differential expression was carried out using
msmsTests [52] with p-value less than 0.05 considered significant and Q-values (FDR: <1%) calculated
for p-value target matches with the Benjamini–Hochberg procedure. Enrichment of function among
up- or downregulated proteins was calculated using GOfuncR using gene ontologies associated
with differentially expressed proteins (P-adj = 0.01, calculated using Benjamini–Hochberg method
and q-value = 0.05). Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis was carried
out on the identified unique proteins per treatment (p < 0.05) using the clusterProfiler package [53].

ftp://ftp.thegpm.org/f asta/cRAP
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KEGG annotation was performed using GhostKOALA [54] and pathways with significant enrichment
identified using ClusterProfiler (hypergeometric test, q < 0.05 following Benjamini correction). Unique
and common proteins based on toxicant were graphically represented through Venn diagrams with
the software Venny (http://bioinfogp.cnb.csic.es/tools/venny/index.html) [55]. The R script outlining
project analysis for this study can be found in supplementary materials (R script S1).

2.7. DNA Damage

2.7.1. Measurement of 8-oxodGuo Levels Using HPLC/UV-ECD

DNA extraction was performed using 20 mg of digestive gland tissue according to the chaotropic
NaI method derived from Helbock et al. [56], slightly modified by Akcha et al. [57]. In addition,
8-oxodGuo levels were determined by HPLC (Agilent 1200 series, Les Ulis, France) coupled to
electrochemical (Coulochem III, ESA, Illkirch, France) and UV (Agilent 1200 series) detection as
described in [58].

2.7.2. Comet Assay

The comet assay on digestive gland tissue was performed as previously described in [33].

2.7.3. DNA Adducts

For each sample, DNA from gills and DG tissues was isolated using a standard phenol-
chloroform extraction procedure. We used the nuclease P1 enrichment version of the thin-layer
chromatography (TLC) 32P-postlabelling assay [59] to detect B[a]P-derived DNA adducts (i.e.,
10-(deoxyguanosin-N2-yl)7,8,9-trihydroxy-7,8,9,10-tetrahydro-B[a]P [dG-N2-BPDE]). The procedure
was essentially preformed as described [59]. After chromatography, TLC sheets were scanned using
a Packard Instant Imager (Dowers Grove, IL, USA) and DNA adduct levels (RAL, relative adduct
labelling) were calculated as reported [60]. An external BPDE-modified DNA standard was used as a
positive control [61].

2.8. Confirmation of Uptake of Fullerenes by Mussels

2.8.1. Experimental Design

Mussels were exposed to a single treatment, 1 mg/L Er3N@C80 for 3 days (static exposure).
For each treatment (control and labelled fullerenes), 2 mussels were exposed into 2 L glass beakers
containing 1.8 L of seawater.

2.8.2. Bulk Spectroscopic Analysis

For the determination of erbium concentration in the digestive gland, 2 mussels per treatment
were analysed using an X Series II ICP-MS (Thermo Fisher Scientific Inc., Waltham, MA, USA) with
PlasmaLab software (Thermo Fisher Scientific Inc., Waltham, MA, USA) as described in [32].

2.8.3. Mussel Sectioning and Electron Microscopy Analysis

Following the exposures detailed above, a small piece (~5 mm2) was dissected out of the centre
of the digestive gland and fixed in 2% paraformaldehyde, 2.5% glutaraldehyde, 2.5% NaCl, 2 mM
CaCl2 in 0.1 M PIPES, pH 7.2 for 3 h. The tissue was then stored in 2.3 M sucrose (in 0.1M PIPES)
until analysis. Two mussels were analysed per treatment. Electron transparent sections for scanning
transmission electron microscope (STEM) analysis were prepared by cutting ~1 mm2 pieces from the
washed whole tissues and sectioning to a thickness of ~180–200 nm at −80 ◦C using the RMC Products
PowerTome with the CR-X cryochamber (Tucson, AZ, USA). The cross-sections were transferred onto
copper-grid mounted graphene oxide films using the Tokuyasu technique and imaged in dark field
STEM using the JOEL 2100+ microscope operating at 200 keV.

http://bioinfogp.cnb.csic.es/tools/venny/index.html
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2.9. Statistical Analysis

Statistical tests were conducted using R software (Version 3.6.0, Vienna, Austria) [62]. Normality
and variance homogeneity were evaluated using Lilliefor’s test and Bartlett’s test, respectively.
When necessary, raw data were mathematically transformed (Ln) to achieve normality before proceeding
with an ANOVA. When significant, a posteriori Tukey test was performed. When data could not
be normalized, statistical differences between treatments were tested using the non-parametric
Kruskal–Wallis test.

Analysis of Interactions

Further analysis of the combined effects of C60 and BaP on DNA Damage (based on Comet Assay)
was performed by calculating the Interaction Factor (IF) in order to test for evidence of additivity,
synergism and antagonism [63–65]:

IF = (G(C60 + BaP) − C) − [(G(C60) − C) + (G(BaP) − C)] = G(C60 + BaP) − G(C60) − G(BaP) + C, (1)

SEM(IF) =
√

(SEM2
(C60 + BaP) + SEM2

(C60) + SEM2
(BaP) + SEM2

(C)), (2)

where IF is the interaction factor: negative IF denotes antagonism, positive IF denotes synergism, and
zero IF denotes additivity. G is the mean cell pathological reaction to toxicants (BaP, C60 and BaP +

C60), and C is the mean cellular response under control conditions. SEM(x) is the standard error of the
mean for group X. Results were expressed as IF, and the 95% confidence limits were derived from the
SEM values.

In order to test the mixture IF values against predicted additive values (assumed to have an IF = 0),
the predicted additive mean values (A) were calculated:

A = (G(C60) − C) + (G(BaP) − C). (3)

The Pythagorean theorem method for combining standard errors was used to derive combined
standard errors for the predicted mean additive values (A) of C60 and BaP (http://mathbench.org.au/

statistical-tests/testing-differences-with-the-t-test/6-combining-sds-for-fun-and-profit/). The standard
errors for the three C60 and BaP treatments (predicted additive) were derived using the
following equation:

SEM(add) =
√

(SEM2
(C60) + SEM2

(BaP) + SEM2
(C)). (4)

This enabled the 95% confidence limits to be derived for the predicted additive values.
The confidence limits were used to test the predicted additive values having an IF = 0 against
the IF values for the mixtures.

3. Results and Discussion

Bivalves are ideal organisms for evaluating the adverse effects caused by various environmental
stressors including polycyclic aromatic hydrocarbons (PAHs) and nanomaterials. PAHs such as B[a]P
have a ubiquitous aquatic distribution and are known to cause several adverse effects in a diverse range
of aquatic organisms. Nanomaterials, both as solids and colloids, are ingested by many organisms
and bio-accumulate in large quantities, especially in molluscs. The mussel digestive gland is one
of the principal detoxification organs with an acknowledged concentration of phase I detoxification
enzymes [66]. As such, it is unsurprising that a mussel digestive gland has been used as model tissue
for eco-toxicological studies of various NPs [67–69], with Di et al. reporting that the digestive gland in
Mytilus edulis accumulates more C60 than other tissues [67].

There is considerable debate in the literature regarding the actual toxicological impact of
nanomaterials in the aquatic environment, with fullerene toxicity controversial. In the aquatic system,
Kahru et al. compiled fullerene toxicological data for fourteen organisms and classified C60 as “very

http://mathbench.org.au/statistical-tests/testing-differences-with-the-t-test/6-combining-sds-for-fun-and-profit/
http://mathbench.org.au/statistical-tests/testing-differences-with-the-t-test/6-combining-sds-for-fun-and-profit/
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toxic” [70]. Using mouse and human cell lines, Isakovic et al. demonstrated that pristine C60 and
aqueous suspensions of C60 are more toxic than its hydroxylated derivatives [71]. In marked contrast,
other studies have demonstrated that pristine C60 has low or limited toxicity to cells and various
organisms [10,72–74]. The lack of consensus regarding C60 toxicity may be partly due to limited studies
which incorporate both a physiological and ecological approach. As a consequence, little is still known
about NP bioavailability, mode of uptake, ingestion rates and actual internal concentrations related to
Absorption, Distribution, Metabolism and Excretion (ADME) [27]. Despite the contradictory reports,
there is consensus that some nanomaterials may potentially affect biological systems directly but
also through interactions with other compounds that may be available in the environment (reviewed
in [6]). Studies that investigate co-exposure with carbon-based nano-compounds, such as nanotubes
or fullerenes are limited, especially in aquatic systems. Using Danio rerio (zebrafish) hepatocytes,
Ferreira et al. investigated the co-exposure of C60 with B[a]P and provided evidence of toxicological
interactions, whereby C60 increased the uptake of B[a]P into cells, decreased cell viability and impaired
detoxification responses [75], while Baun et al. reported that co-exposure with fullerene C60 enhanced
toxicity of phenanthrene to Daphnia magna and Pseudokirchneriella subcapitata [22]. With respect to B[a]P
and C60, Di et al. demonstrated organ specific response to both single and combined mixtures with
no observation of cytoxicity and duration dependent and condition specific genotoxic response in
M. galloprovincialis [67]. Importantly, the observed genotoxic response was reversible after a recovery
period. While single exposure studies are more common, bivalve species have already been used
as biological models in proteomics to assess the effects of complex mixtures [22,76,77]. However,
proteomics analyses on combined exposure with carbon nanomaterials in aquatic organisms are still
very scarce [9].

3.1. Characterization of C60 in Seawater

Dynamic light scattering and electron microscopy analysis (Figures S1–S3 and Table S1) of C60

dispersed in mussel-exposed seawater (~100µg/mL) with brief ultrasonication followed by equilibration
indicates the formation of stable aggregates measuring 653 ± 87 nm (nC60 where n = ~2 × 108) in mean
hydrodynamic diameter. No significant change in the size of nC60 aggregates was observed upon
addition of B[a]P.

3.2. Assessement of the Interaction between C60 and B[a]P through Bioaccumulation in Gills and the Digestive Gland

Changes in the bioavailability of contaminants co-exposed with carbon nanomaterial have been
reported, from a decrease in bioavailability [78,79] to its enhancement, also called the “carrier effect” [80,81].
It has been demonstrated that carbon nanopowder helps B[a]P uptake by zebrafish embryos and very
interestingly also affected the distribution of the pollutant in the organism [82]. However, in the same
species, in zebrafish larvae, it has been shown that bioavailability of 17α-ethynylestradiol (EE2) was
reduced with increasing concentration of nC60 nanoparticles [14].

In our study, we analyzed for the first time in a marine bivalve, B[a]P uptake (at different exposure
concentrations) in the digestive gland in the presence of C60 fullerene in order to highlight a possible
role of contaminant carrier of C60. Regarding analyses of B[a]P in seawater, nominal concentrations
were matched to stock concentrations (Table S2). No difference was observed between the presence
or absence of C60. As already established [33], there was a rapid disappearance of B[a]P over time in
seawater and B[a]P accumulated preferentially in the digestive gland tissue. Interestingly, comparable
B[a]P tissue concentrations in the presence or absence of C60 were observed indicating that, despite
the expected strong sorption of B[a]P on C60 [83], no Trojan horse effect was observed and C60-sorbed
B[a]P remains also bioavailable to M. galloprovincialis (Figure 1). In gills, a significantly higher uptake
is observed in the presence of C60 at the highest concentration of B[a]P (Figure 1). In general, high
variability would conceal subtle changes. It appears that the bioavailability of nanomaterials and their
co-contaminants depend on many factors such as their size, shape, surface coating and aggregation
state and on the metabolism of the species investigated [78,84].
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Figure 1. Gas Chromatography−Mass Spectrometry (GC–MS) analyses of B[a]P in (a) gills and (b)
digestive gland of M. galloprovincialis. Data marked with different letters differed significantly (Tukey
post-hoc test; p < 0.05).

A rapid decline in the concentration of C60 in seawater was observed with time, with no quantifiable
amounts after day 1 (Table S3). At t0, the measured water concentrations are in reasonable agreement
with the nominal concentrations (427.6 ± 45.3, 63.8 ± 11.9 and 7.3 ± 1.8 µg/L for nominal concentrations
of 1000, 100 and 10 µg/L, respectively). Low but quantifiable amounts of C60 in M. galloprovincialis
tissues indicate active uptake, with adsorption on the outside of the tissue ruled out due to external
washes with toluene prior to analysis (Figure 2). High variability in C60 concentrations in gills and DG
makes it difficult to detect a difference in accumulation between treatments and to conclude regarding
the uptake of C60 by mussels.

To provide further insight into the uptake of fullerenes by marine mussels, it was necessary to
use a form labelled with a diagnostic marker. In our experiments, we explored the application of the
endohedral fullerene Er3N@C80, fabricated using the trimetallic nitride template (TNT) process, as it
represents a good structural analogue to C60, possessing similar surface chemistry, and contains a rare
earth element, shielded from the external environment within the fullerene cage, which is not found in
nature. The presence of erbium in the mussel digestive gland, as a diagnostic of the uptake of labelled
fullerenes, was thus quantified using Inductively Coupled Plasma Mass Spectrometer (ICP–MS) and
found with a mean concentration of 151.5 µg/kg (236.5 and 66.4 µg/kg for each mussel). However,
despite an exhaustive electron microscopy investigation of whole and cross-sectioned DG tissues
(Figure S4, Supplementary materials), no direct visualisation of labelled fullerenes was observed. This
result indicates that the fullerenes are likely distributed within the tissues at the near molecular level
(i.e., highly dispersed) and therefore below the sensitivity of either microscopy or in situ spectroscopy
approaches in complex materials such as these. In a previous study in M. galloprovincialis [85], it has been
showed that mussels exposed to C60 alone exhibited higher accumulation of C60 in the digestive gland
compared to the gill. Interestingly, co-exposure to fluoranthene modified accumulation of C60, with
higher accumulation of C60 when animals are exposed to C60 alone compared to combined exposure.

When comparing water and tissue concentrations for B[a]P and C60, the bioconcentration observed
in our conditions was much lower for C60 compared to B[a]P: the uptake in the DG of mussels exposed
to a similar aqueous concentration of B[a]P and C60 was about 2000 times more important for
B[a]P. However, non-constant concentrations in the aqueous phase, attributed to sorption and/or
sedimentation, did not allow the calculation of bioaccumulation factors, which also requires reaching
a steady-state in the tissues. The difference between B[a]P and C60 tissue concentration could also
be attributed to different kinetics of uptake, which could only be explored through longer exposure
periods and regular sampling. Recent work indicated a continuous increase of C60 concentrations in
whole mussels over at least three weeks [86].
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Figure 2. Liquid chromatography-mass spectrometry (LC–MS) analyses of C60 in M. galloprovincialis (a)
gills and (b) digestive gland (means ± SE). Data marked with different letters differed significantly
(Tukey post-hoc test; p < 0.05). An analytical problem led to the loss of two samples of the gills from
mussels exposed to Mix100 explaining the absence of standard error.

3.3. Assessment of the Interactive Effect of C60 and B[a]P through Genotoxicity

B[a]P is a known genotoxic, mutagenic and carcinogenic [87]. According to a review by
Johnston et al., fullerene toxicity has been suggested to involve oxidant-driven response and suggests
evaluating toxicity by including oxidative stress and related consequences including inflammation or
genotoxicity [88]. We assessed the interactive effect of C60 and B[a]P through three different genotoxicity
assays. Regarding single exposures, B[a]P induced DNA strand breaks in the digestive gland at the
intermediate and highest concentrations (50 and 100 µg/L) after three days of exposure (Figure 3).
No effect on DNA strand breaks was observed at the lowest concentration. No effect was also observed
on the level of 8-oxodGuo for B[a]P treatment. These results could be due to the short exposure time
(three days). In [57], an increase in the level of 8-oxodGuo was observed after 10 days of B[a]P exposure
in the digestive gland of M. galloprovincialis. Regarding exposure to C60 only, higher DNA strand
breaks compared to the controls were observed only at the highest concentration (1 mg/L, p < 0.001).
A significant increase (p = 0.00108) in 8-oxo-dGuo levels was also detected in the digestive gland of
mussels exposed to C60 (15.3 ± 2.3) compared to control (5.9 ± 1.3) (Figure 4). Lower C60 concentration
did not appear to have any genotoxic effects (DNA strand breaks) on mussel digestive gland at the
concentrations tested. Whatever the exposure concentration of B[a]P and mixture of B[a]P and C60,
no DNA adducts were detectable in DNA samples from the digestive gland of M. galloprovincialis.

As observed for the bioaccumulation of contaminants co-exposed with carbon nanomaterial,
controversial results are also obtained in the literature regarding genotoxicity. In aquatic organisms,
co-exposure to C60 and organic contaminants induced a range of responses, to no effect until synergistic
and antagonistic responses compared to single exposure [9,67,85]. In our study, no significant differences
in DNA strand breaks were observed between exposure to B[a]P or C60 alone compared to co-exposure
(Figure 3). Interestingly, the analysis of interactions performed on the comet assay and the oxidative
DNA damage results revealed an antagonistic interaction only at the highest concentration between C60

and B[a]P (Table 1). This antagonistic effect may be caused by a reduction in ROS generation, or more
effective scavenging of ROS by C60, when C60 and B[a]P are present together in close association, as
previously described by [9,67]. C60 fullerenes are both scavengers and generators of reactive oxygen
species (ROS) [89]; and when C60 and B[a]P are closely associated or bound together within the
lysosomal compartment of the mussel digestive cells, their ROS scavenging and generating properties
may be altered.
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Figure 3. DNA strand break level following 3 days of exposure to C60, B[a]P and mixture of both in the
digestive gland. Data marked with different letters differed significantly (Tukey post-hoc test; p < 0.05).
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Figure 4. 8-oxodGuo levels in the digestive gland of mussels. Asterisks indicate the statistical differences
observed between control and exposed groups. (**) p < 0.01.

Table 1. Analysis of combined effects of B[a]P and C60 on DNA damage based on Interaction Factors (IF).

Treatments IF for DNA Damage (Comet Assay)

BaP 5 µg/L + C60 1 mg/L −7.48 ± 6.63
BaP 50 µg/L + C60 1 mg/L −10.39 ± 3.50

BaP 100 µg/L + C60 1 mg/L −12.69 ± 6.05 *

Interaction Factor ± 95% Confidence Limit /
√

2. * indicates significance at the 5% level. A negative IF indicates
antagonism; an IF of 0 indicates additivity; and a positive IF indicates synergism. Statistical significance was
determined by testing for overlap between the mixture IF ± 95% CL/

√
2 and the predicted additive value for C60

and B[a]P, assumed to have an IF = 0 ± 95% CL/
√

2, where the confidence limit is derived from the SEM(add) value
for the additive C60 and B[a]P.
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3.4. Assessment of the Interactive Effect of C60 and B[a]P on the Proteome Profile of the Digestive Gland

Investigations into proteome responses of marine organisms to various stressors is comparatively
small when compared to other model laboratory organisms, both aquatic and terrestrial. Proteomic
analysis represents a fundamental step in extending understanding of the physiological processes
involved in organismal responses to environmental stressors. In addition, proteomics also provides better
qualitative data on post-translational modifications without interference from mRNA instability [90].
A major limitation in the field has been the lack of available annotated genomes for a broad diversity of
marine organisms. As a consequence, it has been considered a widely under utilised tool [91]. The lack
of genome information has not stopped studies on proteome characterisation in bivalvia/mollusca
species using broad protein databases limited to either the phylum, class or specific combination
of species [92–95]. However, studies investigating proteome response to environmental stressors or
injury are less abundant [30,77,96]. In the current study, a label free shot-gun proteomics approach
was performed for the first time to our knowledge in aquatic organisms to investigate proteome
alterations following treatment with B[a]P and C60 alone and a combination of B[a]P with 1 mg/L of
C60. This untargeted method was specifically chosen to identify molecular pathways involved in the
interaction of C60 and B[a]P without a priori assumptions.

3.4.1. Identification of Differentially Expressed Proteins

In order to identify differentially expressed proteins in the digestive gland proteome of controls,
B[a]P, nC60 and mixture (B[a]P and 1 mg/L nC60), a label free LC-MS/MS approach was used with
trypsinised tissue homogenates. Following removal of common contaminants in each dataset, peptide
mapping quantified 3125, 3428 and 3475 unique proteins following identification from the Universal
Protein Resource (UNIPROT) database distinct to B[a]P, C60 and mixture (B[a]P and 1 mg/L C60)
treatments, respectively. Irrespective of treatment, protein sequences from the Pacific oyster Crassostrea
gigas (Organism ID = 94323) were highly represented in the samples at approximately 38%, followed
by Japanese scallop Mizuhopecten yessoensis (Organism ID = 6573) at 34%. Surprisingly, sequences from
the genus Mytilus were less represented in the search at approximately 3% with the Mediterranean
mussel Mytilus galloprovincialis (Organism ID = 29158) representing approximately 1% of identified
sequences. This may be due to a lack of genomic information available for this genus in the UNIPROT
database, even though a genome sequence is available [97].

Differentially expressed proteins (DEPs) were determined using a quasi-likelihood GLM.
Comparison of each dose per treatment (B[a]P: 5, 50 and 100 µg/L, nC60: 0.01, 0.1 and 1 mg/L,
and a mixture: 5, 50 and 100 µg/L B[a]P and 1 mg/L nC60) with the control group was visualised
using Venn diagrams (Figure 5). Minimal overlap between varying concentrations was observed
for the mixture treatment (average of 2%) (Figure 5c) when compared to B[a]P (Figure 5a, 9%) or
nC60 (Figure 5b, 8%). Volcano plots were used to visualise statistically significant changes in protein
abundance for varying concentrations of the above treatments following comparison to controls
(Figure S5). Applying a 1% FDR threshold, 401 differentially expressed proteins were identified
following B[a]P treatment (all concentrations) and 297 differentially expressed proteins were identified
following treatment with the mixture of B[a]P and nC60. No differentially expressed proteins (p < 0.05)
were identified in C60 treated samples. The identified DEPs can be further broken down based on
treatment with 42, 50 and 164 DEPs identified at 5, 50 and 100 µg/L B[a]P. Following exposure to a
mixture solution, 95, 108 and 94 DEPs were identified at each concentration respectively (1 mg/L of
C60 and 5, 50 and 100 µg/L of B[a]P) with Figure 6 representing a visual comparison of commonalities
between single exposure versus combined exposure. A subset of DEP based on the top three unique
proteins per concentration is displayed in Table 2, with the full list of unique proteins and associated
p-value and FDR correction (Spreadsheet S1). The majority of differentially expressed proteins detected
in this study (B[a]P and mixture exposure) were downregulated (52%) between the treatment and
control conditions irrespective of concentration.
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The trend towards higher protein alterations in single exposures versus co-exposures suggests a
non-additive combine effect and is in agreement with prior studies which reported generally higher
protein alterations of B[a]P and Cu under single exposure then when co-exposed together [77]. The data
in this study suggest that an interaction occurs between B[a]P and C60 whereby the effect of the mixture
is different from the presumption of additivity (were by dose response relationships of mixtures are
enhanced in comparison to the individual components) as outlined in Rosa et al. [98]. In this case, the
data suggests an antagonistic relationship between B[a]P and C60 at the higher concentrations of 50
and 100 µg/L. This observation has previously been observed in Mytilus edilus digestive gland [67].
However, this trend is not replicated at the lowest concentration of 5 µg/L whereby mixture exposure
resulted in higher DEPs than single exposure. This difference in DEPs may potentially be related
to reduced accumulation of B[a]P at the higher concentrations due to saturation of mussel tissue
and thereby limiting protein changes. In previous studies, increased impact and accumulation of
B[a]P at lower concentrations in M. galloprovincialis have been attributed to tissue saturation [99].
The increase in differentially expressed proteins at the lower concentration may also reflect the inability
of membrane transporters such as p-glycoprotein to efflux this particular nanoparticle [100] and as
such acts to bypass typical protective mechanisms initiated to protect the organism from PAH stress.
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Table 2. Significantly expressed proteins of B[a]P, C60 and mixture (5–100 µg/L and 1 mg/L C60). Species
id’s are as follows: 6573 = Mizuhopecten yessoensis, 6551 = Mytilus trossulus, 29159 = Crassostrea gigas
and 94323 = Crassostrea ariakensis.

Treatment Species Protein Name UNIPROTKB GO
Annotation Regulation

B[a]P (5 µg/L) 6573 Arrestin domain-containing
protein 3 A0A210PE39 Up

B[a]P (5 µg/L) 6573 Orexin receptor type 2 A0A210PSC6 GO:0004930,
GO:0016021 Up

B[a]P (5 µg/L) 6573 Ran-specific
GTPase-activating protein A0A210Q6H5 GO:0005622,

GO:0046907 Up

B[a]P (50 µg/L) 6573 5-hydroxytryptamine
receptor 1A-alpha A0A210R4M3

GO:0004993,
GO:0005887,
GO:0008283,
GO:0042310,
GO:0046883,
GO:0050795

Down

B[a]P (50 µg/L) 6573 Adenylate kinase isoenzyme
5 A0A210QMB2

GO:0005524,
GO:0006139,
GO:0019205

Up

B[a]P (50 µg/L) 6573 Uncharacterised protein A0A210Q912 Up

B[a]P (100 µg/L) 6573 Helicase with zinc finger
domain 2 A0A210PQ46 GO:0004386,

GO:0030374 Up

B[a]P (100 µg/L) 29159 Peroxiredoxin-4 K1QLH0
GO:0005623,
GO:0045454,
GO:0051920

Up

B[a]P (100 µg/L) 29159 Hypoxia up-regulated
protein 1 K1QBF7 GO:0005524 Up

B[a]P (5 µg/L) +
C60 (1 mg/L) 94323 Ras-like GTP-binding

protein RHO H9LJA2

GO:0003924,
GO:0005525,
GO:0005622,
GO:0007264

Up

B[a]P (5 µg/L) +
C60 (1 mg/L) 29159

Zinc finger CCCH
domain-containing

protein 13
K1PKC9 GO:0046872 Up

B[a]P (5 µg/L) +
C60 (1 mg/L) 29159 Myosin heavy chain,

non-muscle (Fragment) K1QXX7

GO:0003774
GO:0003779,
GO:0005524
GO:0016459

Up

B[a]P (50 µg/L) +
C60 (1 mg/L) 6551 Ribosomal protein S20 A0A077H0N2

GO:0003723,
GO:0003735,
GO:0006412,
GO:0015935

Down

B[a]P (50 µg/L) +
C60 (1 mg/L) 6573 Nucleolar and coiled-body

phosphoprotein 1 A0A210Q9W0 GO:0005730 Down

B[a]P (50 µg/L) +
C60 (1 mg/L) 29159 Tripartite motif-containing

protein 2 K1QBD4 GO:0005622,
GO:0008270 Up

B[a]P (100 µg/L) +
C60 (1 mg/L) 6573 Ran-specific

GTPase-activating protein A0A210Q6H5 GO:0005622,
GO:0046907 Down

B[a]P (100 µg/L) +
C60 (1 mg/L) 29159 Uncharacterized protein K1R543 Down
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Figure 6. Venn diagram visualising the overlap between 5 µg/L (a), 50 µg/L (b) and 100 µg/L (c) of
B[a]P with a mixture solution containing the same B[a]P concentrations in addition to 1 mg/L of C60

following 24 h exposure. Overlap is based on p < 0.05 and FDR set at 1%.

3.4.2. GO Functional Enrichment

Gene ontologies were directly annotated using a custom annotation database derived from
UNIPROTKB (bivalvia) with enrichment carried out using GOfuncR. This provides a controlled
vocabulary to describe gene product characteristics in three independent ontologies viz. biological
process, molecular function and cellular components. Based on the R package GOfuncR, 31, 35 and 23
GO nodes were found enriched at a threshold of p < 0.05 (Family wise error rate (FWER) correction)
following treatment with B[a]P, C60 or co-mixtures (5–100 µg/L B[a]P and 1 mg/L C60). The top GO
terms are listed in Table 3 (threshold set FWER = 0.01), while the full list separated by treatment
and concentration can be found in supplemental material (Spreadsheet S1). Irrespective of treatment,
biological process records the majority of enriched terms. The ability of a stress organism to adjust its
cellular processes via transcriptional and subsequently proteomic processes allows it where possible to
minimise cellular damage, which may lead to organism death. GO analysis revealed 30 enriched proteins
following B[a]P exposure, 42 following C60 exposure and 31 in the mixture exposure. The response
of M. galloprovincialis to B[a]P is characterised by a predominant enrichment of Biological processes
(67% or 20 GO’s) with the majority of these occurring at 100 µg/L. When compared to the mixture
model at the same concentration, seven terms are absent in the mixture model compared to the single
exposure viz. DNA metabolic processes (GO:0006259), DNA repair (GO:0006281), Cellular response to
DNA damage stimulus (GO:0006974), cellular response to stress (GO:0033554), metabolic processes
(GO:0008152), cellular metabolic processes (GO:0044237) primary metabolic processes (GO:0044238)
and organic substance metabolic processes (GO:0071704). The absence of these enriched terms at
the highest mixture concentration of B[a]P and C60 in association with the reduction in differentially
expressed proteins (when compared to single exposure and 50 µg/L) suggest an antagonistic interaction
between the two common contaminants. This may be explained by known properties of the chemicals.
nC60 is an exceptional free radical scavenger [101,102], while B[a]P has been shown to produce
free radicals under a variety of conditions [103]. B[a]P contributes approximately 50% of the total
carcinogenic potential of the PAH group [104]. Transcriptomic alterations related to B[a]P are likely to
be related to genotoxic mechanisms in addition to other biological processes such as mitochondrial
activities and immune response as outlined previously [33]. In contrast, Zhang et al. demonstrated that
aqueous C60 aggregates induced apoptosis of macrophage by changing the mitochondrial membrane
potential [105]. As predicted by the literature, enriched GO terms following single nC60 exposure
are predominantly related to changes to the membrane-enclosed, organelle and intracellular lumen,
while mixed exposure resulted in enrichment of mitochondrial components (viz. matrix, ribosome
and protein complex). This enrichment of organelle cellular components correlates with enrichment
of the ribosome KEGG pathway (ko03010, 35 proteins at 1 mg/L C60), suggesting an increase in the
production of newly synthesised organelle proteins which must find its way from site of production
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in the cytosol to the organelle where it functions. It was not feasible to quantify changes in cellular
components in the digestive gland during this study; however, we can postulate from prior studies
that observed changes may be linked to changes in the mitochondria. Mitochondria are essential
eukaryotic organelles required for a range of metabolic, signalling and development processes. Using
fullerenol, a polyhydroxylated fullerene derivative, Yang et al. demonstrated significant changes
to isolated mitochondria via mitochondrial swelling, collapse of membrane potential, decreased of
membrane fluidity and alterations to the ultrastructure [106]. The increase in protein production via
the ribosome at the highest concentration may reflect the activation of a repair mechanism for damage
to this structure. In a recent review, the main negative molecular and cellular responses associated
with carbon nanotube (CNTs) in mammals were associated with oxidative stress which can promote
inflammation, mitochondrial oxidation and activation of apoptosis [107]. Additionally, Zhang et al.
reported on a loss in mitochondrial membrane potential in a mouse in vitro model, in association with
increase in cellular ROS suggesting mitochondria associated apoptosis [105]. In a typical aquatic NP
exposure, uptake is followed by localisation into the endosomes, lysosomes and digestive associated
cells as well as the lumen of digestive tubules [22,27,108]. This NP exposure response can be followed
by disruption or modification to mitochondrial activity [30]. Although the current study would support
the hypothesis of mitochondrial damage/repair, further work will need to be carried out to verify.

Table 3. Subset of enriched Gene Ontology (GO) terms with an family wise error (FWER) threshold
of 1% (or 0.01) following B[a]P (5–100 µg/L ), C60 (0.01–1 mg/L) and a mixture of B[a]P (5–100 µg/L)
and C60 (1 mg/L) treatments. Cellular component and biological processes are abbreviated to CC and
BP, respectively.

Treatment Ontology GO-ID GO-ID Name FWER

B[a]P (100 µg/L) BP GO:0006139 Nucleobase-containing compound metabolic process 0.01
B[a]P (100 µg/L) BP GO:0006725 Cellular aromatic compound metabolic process 0.01
B[a]P (100 µg/L) BP GO:0034641 Cellular nitrogen compound metabolic process 0.01
B[a]P (100 µg/L) BP GO:0046483 Heterocycle metabolic process 0.01
B[a]P (100 µg/L) BP GO:0090304 Nucleic acid metabolic process 0.01
B[a]P (100 µg/L) BP GO:1901360 Organic cyclic compound metabolic process 0.01
C60 (0.01 mg/L) BP GO:0000226 Microtubule cytoskeleton organization 0.01
C60 (0.1 mg/L) CC GO:0031974 Membrane-enclosed lumen 0.01
C60 (0.1 mg/L) CC GO:0043233 Organelle lumen 0.01
C60 (0.1 mg/L) CC GO:0070013 Intracellular organelle lumen 0.01

3.4.3. KEGG Pathway Enrichment

To further analyse the identified proteins per treatment, KEGG pathway analysis was performed.
Using the bioconductor package clusterProfiler, protein sequences were assigned to DEPs (p < 0.05) and
submitted to GhostKoala to obtained KEGG Orthology numbers (KO). In general, 52–56% of entries
were successfully annotated with approximately 92% of annotations associated with the mollusca
taxonomy. Variation between enrichment was described per treatment and concentration as follows:

B[a]P: at 5 µg/L exposure, 52 enriched processes were identified and include ribosome processes
(26 genes), thermogenesis (19 genes), protein processing in endoplasmic reticulum (13 genes) and
mTOR signalling pathway (nine genes). At 50 µg/L exposure, 38 pathways were enriched and ribosome
(26 genes), protein processing in the endoplasmic reticulum (17 genes) and phagosome (13 genes).
Finally, at 100 µg/L, 26 enriched processes were identified including ribosome (26 genes), RNA transport
(16 genes), protein processing in the endoplasmic reticulum (16 genes), biosynthesis of amino acids
(16 genes) and endocytosis (15 genes). The mTOR signalling pathway was not enriched at either 50 or
100 µg/L.

The majority of enriched pathways identified can be grouped under genetic information processing,
cellular processes, environmental information processing and metabolism. The top enriched pathways
identified per concentration were plotted to identify commonalties and differences between differing
concentrations of B[a]P (Figure 7a) based on genes identified in that pathway. Interestingly, unique



Nanomaterials 2019, 9, 987 17 of 27

pathways appear to be activated dependent on exposure concentration, with only the ribosome
pathway consistently present and enriched at all concentrations potentially indicating the high degree
of translation which may be occurring as a consequence of PAH exposure.
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Figure 7. Dotplot of enriched KEGG pathways for differentially expressed genes (DEGs) (p < 0.05) that
were common between concentrations of B[a]P (a), C60 (b) and a mixture of 5, 50 and 100 µg/L with
1 mg/L C60 (c). Along the x-axis, genes represent the number of genes identified as enriched in this
particular pathway. The size and colour of each dot represents the gene number and adjustment p
based on FDR correction.

C60: at 0.01 mg/L exposure, 33 enriched pathways were identified while 12 enriched pathways
were identified at 0.1 mg/L exposure and 35 enriched pathways identified at 1 mg/L exposure (p < 0.05,
FDR = 5%). The top enriched pathways were illustrated in Figure 7b, with an absence of enrichment
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of certain pathways dependent on treatment concentration. For example, thermogenesis was only
enriched at the highest concentration of 1 mg/L with 12 genes identified in the pathway. The ribosome
is the top enriched pathway at all concentrations of C60 with 19 genes enriched at 0.01 mg/L exposure,
24 genes enriched at 0.1 mg/L exposure and 35 genes enriched at the highest concentration of 1 mg/L.
This is closely followed by protein processing in endoplasmic reticulum, which is broadly comparable
in terms of genes between 0.01 mg/L (17 genes), 0.1 mg/L (11 genes) and 1 mg/L (16 genes, Figure 8)
exposure. The enriched pathways can be broadly grouped into predominantly genetic information
processing, metabolism and cellular processes.

Mixtures: Under mixture scenario, C60 at a constant concentration of 1 mg/L was mixed with
5, 50 and 100 µg/L of B[a]P resulting in 50, 38 and 54 enriched pathways, respectively. At the lower
mixture concentration of 5 µg/L B[a]P and C60, the top three enriched descriptive terms were related
to the ribosome (29 genes), protein processing in endoplasmic reticulum (20 genes) and pathways in
cancer (23 genes). At 50 µg/L B[a]P and C60, the top three enriched descriptive terms were related to the
ribosome (23 genes), carbon metabolism (23 genes) and protein processing in endoplasmic reticulum
(19 genes).
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Figure 8. Interaction network of differentially expressed genes in the digestive gland of
M. galloprovincialis involved in protein processing in the endoplasmic reticulum during exposure
to 1 mg/L nC60. Genes which are differentially expressed during exposure are highlighted in red.

Finally, at 100 µg/L B[a]P and C60, the top three enriched descriptive terms were related to the
ribosome (25 genes), pathways in cancer (23 genes) and mitogen-activated protein kinase signalling
pathway (MAPK) signalling pathway (17 genes). Key genes consistently identified in the protein
processing in the endoplasmic reticulum (irrespective of treatment) include Hsp70, Hsp90, TRAP, PDIs
and OSTs. At the highest concentration of B[a]P and C60, genes identified in pathways in cancer
include GSTs, CASP3 and Wnt. The top pathways based on quantity of genes present in the pathway
were presented in Figure 7 with clear trends towards an absence of enrichment in certain pathways
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based on mixture concentration, e.g., MAPK signalling, which is only present at the top exposure
concentration combination.

KEGG pathway analysis can provide physiological pathway information for various experiments
with prior studies using it to aid in identification of mode of action of environmental contaminants [77].
In the current study, irrespective of exposure conditions or concentrations, the top enriched pathway
identified using KEGG was the Ribosome with 19–39 genes identified in the pathway dependent on
treatment and concentration. This was followed by protein processing in the endoplasmic reticulum
and carbon metabolism. The ribosome is a large complex molecule made of RNA and proteins that
perform the essential task of protein synthesis in the cell. They also serve as the initiation point for
several translation-associated functions including protein folding and degradation of defective or
nonstop mRNAs. Previous studies have demonstrated a change in regulation of genes which encode
ribosomal protein subunits following B[a]P exposure, with the suggestion that mRNA directed protein
synthesis is reduced in mussels exposed to higher B[a]P loads [33]. Additionally, M. galloprovincialis has
been shown to response to B[a]P exposure via changes in abundance of proteins related to synthesis
and degradation, energy supply (via ATP) and structural proteins [77]. Proteomic results for B[a]P
exposure to digestive gland tissue are in agreement with prior studies and support the observed trends
identified using transcriptomic methodologies. In the second most enriched pathway (viz. protein
processing in endoplasmic reticulum), three heat shock proteins viz. HSP70, HSP90 and HSP40 and
other molecular chaperones were identified dependent on exposure conditions. This is not surprising
given that many Heat Shock Proteins (HSPs) function as molecular chaperones to protect damaged
proteins from aggregation, unfold protein aggregates or refold damaged proteins or target them for
efficient removal [109]. These proteins regulate cell response to oxidative stress with HSP70 strongly
upregulated by heat stress and toxic chemicals. HSP70 plays several essential roles in cellular protein
metabolism [110,111] while HSP40 facilitates cellular recovery from adverse effects of damaged or
misfolded proteins (proteotoxic stress). Changes in HSPs, in addition to up/down regulation of HSP40,
HSP70 and HSP90 have typically been reported in response to thermal stress in bivalves [95,112,113]
and other environmental contaminants such as B[a]P [33]. In general, the consistent enrichment of genes
involved in the endoplasmic-reticulum associated protein degradation (ERAD) pathway suggest that
aqueous fullerene exposure targets the cellular pathway involved in targeting misfolding proteins for
ubiquitination (post-translational modification) and subsequent degradation by proteasomes (protein
degrading complex, breaks peptide bonds). It is interesting to note the overlap between organismal
response to fullerene exposure and that of organismal response to thermal stress. Observed enrichment
pathways in the current study viz protein processing in endoplasmic reticulum, apoptosis, ubiquitin
mediated proteolysis, endocytosis, spliceosome, and MAPK signalling pathway have been observed as
differentially enriched in oysters as a response to thermal stress [112].

3.5. Notes

The lack of consensus regarding C60 toxicity may be partly due to limited studies which
incorporate both a physiological and ecological approach. As a consequence, little is still known
about NP bioavailability, mode of uptake, ingestion rates and actual internal concentrations related to
ADME [27]. Generally, the greater the water solubility of fullerene aggregates (through e.g., stirring,
surface modifications, sonication), the less the toxicity associated with the exposure [88]. Gomes et al.
highlight that, while mussels represent a target for environmental exposure to nanoparticles, exposure
duration may significantly contribute to NPs’ mediated toxicity [114]. As such, it is possible that
the lack of differentially expressed proteins identified in this study is a factor of limited exposure
duration. Limited exposure duration in the region of days or hours is common in the literature, and
it would be of interest to explore long term exposure to NPs to look at the long-term impact and
adaptation of mussels in the marine environment. Species specific responses to C60 are abundant in the
literature and it would be remiss to not discuss how our results align with other marine invertebrates.
Exposure to ROS can cause a range of reversible and irreversible modifications of protein amino
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acid side-chains which has been reviewed by Ghezzi and Bonetto [115]. Within the field of aquatic
ecotoxicology, the toxic impact and potential mechanisms of single contaminant exposures have been
extensively studied via laboratory experiments (in vivo, in vitro and in silico) and field monitoring.
However, harder to predict is the effects of mixtures of pollutants in the environment. Biological
damage observed cannot simply be linked to the actual environmental condition as mixtures of
contaminants are known to exist in the aquatic ecosystem. This is further complicated with respect
to nanomaterials due to their inherent properties which can amplify or negate the toxic effects of
other compounds [75]. Complicated interactions may occur which make interpretation complex.
For example, proteomic analysis of Mytilus galloprovincialis revealed that single Cu and B[a]P exposure in
addition to a combination of the two generate different protein profiles with a non-additive profile [77].
Differences in mixture response compared to single exposure are likely to be related to individual
chemical properties and toxicity mechanisms of B[a]P and C60, as has been noted in B[a]P co-exposed
with various metals [116]. C60 concentration was kept constant with increasing concentrations of B[a]P
in an experimental design that has been previously carried out using algae and crustacean species [22].
This may reflect limited proteome changes at the exposure concentrations, with concentrations of C60

in the range of 10–500 ppb have been reported to be 10 fold below the no observable adverse effect
level (NOAEL) [117,118]. At 1 mg/L, an increase in Glutathione S-Transferase (GST) activity in the
digestive gland has been reported [108]. C60 is known to bind to minor grooves of double stranded
DNA and trigger unwinding and disruption of the DNA helix [100]. C60 adsorbs onto cell-membrane
P-glycoprotein through hydrophobic interactions, but the stability and secondary structure of the
protein are barely affected [119]. P-glycoprotein is present in Mytilus galloprovincialis [120]. C60 and
its derivatives are known to impact DNA and RNA in terms of stability, replication and reactivity
in addition to structural stabilisation [121,122]. In a recent study, Canesi et al. determined that C60

fullerene exposure to Mytilus galloprovincialis hemocytes did not induce significant cytoxicity, and
instead stimulated immune and inflammatory parameters such as lysozyme release, oxidative burst
and nitric oxide (NO) production [10]. Nanomaterial suspensions can induce inflammatory processes
in bivalve hemocytes akin to those observed in vertebrate cells [10]. Results from mammalian studies
suggest that C60 fullerene exposure results predominantly in inflammatory responses [123].

4. Conclusions

This study has confirmed our hypothesis of an interaction between B[a]P and C60, two ubiquitous
environmental contaminants. We demonstrated for the first time an apparent antagonistic relationship at
the genotoxic and the proteome expression level, which is not visible at lower exposure concentrations.
This response is not explained by expected strong sorption of B[a]P on C60 as no difference in
bioaccumulation was noted, but rather by the free radical scavenger propriety of C60. No Trojan
horse effects were observed for uptake or toxicity of the co-contaminants B[a]P in interaction with C60.
Proteome profile is dependent on concentration and treatment. The exposure to the three conditions
had overlap and common mechanisms of response irrespective of differences in mode of action. The
provided list of condition specific differentially expressed proteins and enriched pathways (Spreadsheet
S1) may represent a step towards definitively identifying mode of action of these compounds in bivalves
when combined with other OMICs based approaches. It should be noted that the antagonistic proteome
response observed in the current study between B[a]P and C60 is based on a single concentration
of the fullerene and as such represents a general overview of toxicological behaviour. It is possible
that that this antagonistic interaction will change when another dose range is selected [90]. Gomes
et al. previously highlighted that, while mussels represent a target for environmental exposure to
nanoparticles, exposure duration may significantly contribute to NPs’ mediated toxicity [114]. As such,
further work must be carried out to explore mixture effects at different concentrations and over differing
exposure duration.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/7/987/s1,
Figure S1: (a) bright-field TEM and (b) intensity-weighted particle size distribution of nC60 aggregates present in
mussel-exposed seawater, Figure S2: (a) bright-field TEM and (b) point EDX spectroscopy analysis of Er3N@C80,
Figure S3: Dark-field STEM and EDX spectroscopy mapping analysis of Er3N@C80, confirming the necessity
for spectroscopy to confirm the presence of labelled fullerenes, using the characteristic X-rays emitted from Er
upon electron irradiation, Figure S4: (a,c,e) dark-field STEM and (b,d,f) corresponding point EDX spectroscopy
analysis of cross-sections of mussel digestive gland exposed to Er3N@C80, Figure S5: Volcano plots representing
the differentially expressed proteins with exposure to B[a]P, C60 or a mixture of the two (5–50–100 µg/L B[a]P,
1 mg/L C60), Table S1: The influence of benzo[a]pyrene (B[a]P) of the hydrodynamic diameter (dH) of nC60 in
mussel-exposed seawater as determined by DLS, Table S2: The concentration of B[a]P in seawater at T0, day 1 and
day 3, Table S3: The concentration of nC60 in seawater at T0, day 1 and day 3, Spreadsheet S1: Full list of DEPs,
enriched Gene Ontology (GO) terms and KEGG pathways, R script S1: R script used for proteomics analysis.
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