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Abstract 26 

Satellite-derived frontal metrics describe characteristics of oceanic thermal fronts, such as 27 

their strength or persistence. They are used in marine science to investigate spatio-temporal 28 

variability of thermal fronts or in ecological studies to assist in explaining animal 29 

distributions. Although the metrics are based on sometimes complex algorithms, little 30 

guidance is available on their correct application in quantitative analyses, in particular for 31 

non-specialist users. This research aims to improve accurate use of frontal data.  This case 32 

study investigates the inter--annual and seasonal variability of two tidal mixing fronts on the 33 

Celtic Sea shelf, based on monthly time series of daily frontal maps at ~1km
2
 resolution from 34 

1990 to 2010. Some metrics are almost identical and can be grouped, e.g. frontal probability, 35 

persistence and so-called “composites” (Pearson correlation: r=0.8-1.0; p<0.001), whereas a 36 

metric describing frontal strength was distinct from other ones. Strength and metrics of the 37 

frontal probability group showed pronounced differences in their inter-annual and seasonal 38 

variability: Strength displayed an oscillating pattern between 1990 and 2010 while there were 39 

no significant changes in probability over time. In addition, seasonal variability estimates 40 

were affected  by frontal segments not belonging to the fronts of interest, which could result 41 

in biased estimates. Most important, there was a doubling of available satellite imagery 42 
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between 1990 and 2010 due to a greater number of operational satellites, which negatively 43 

affected frontal probability, positively frontalstrength and consequently, changed the 44 

temporal pattern of both. When using frontal maps for temporal analyses, we should choose 45 

the metric carefully, be aware of biased estimates caused by variability from unwanted frontal 46 

segments in the data and account for the variable data availability. This clear guide on the use 47 

of frontal metrics will be helpful to improve correct interpretations of statistical analyses.  48 

 49 

1 Introduction 50 

Marine thermal fronts are transition zones in which steep gradients in temperature can be 51 

observed over a relatively small distance, often associated with changes in other physical 52 

properties, complex hydrodynamics and elevated biomass. Thermal fronts occur over a wide 53 

range of spatio-temporal scales, ranging from the large-scale Polar Front to small, short-lived 54 

tidal intrusion (Owen, 1981). Frontal metrics derived from remote sensing satellite imagery  55 

describe characteristics of these thermal fronts, such as their strength or frequency, in the area 56 

of interest and for a desired period. They come in the form of images called frontal maps, 57 

which are usually a fusion of multiple satellite images, because single images are often cloud-58 

covered (Miller, 2009). Combining multiple images into one map creates (ideally) a cloud 59 

free view on the ocean surface. The resulting frontal maps are a mosaic of pixels containing 60 

values describing a front (frontal values) or not (cloud free pixel that cover an area of sea 61 

without fronts). The frontal maps provide information on the surface signal of thermal fronts 62 

over large spatio-temporal scales, which makes them very popular for scientists from a 63 

variety of backgrounds, including oceanographers and ecologists.  64 

 65 

Frontal maps are particularly applicable to the study of large-scale processes because of their 66 

spatio-temporal coverage: a global and contiguous time series since the 1980’s. They have 67 

been used to describe their spatio-temporal variability (Hopkins et al. 2010; Lee et al., 2015; 68 

Park et al. 2007; Belkin et al., 2009; Nieblas et al. 2014; Oram et al. 2008) and to create maps 69 

of surface fronts all over the world (e.g. Canary Upwelling System: Nieto et al., 2012; the 70 

Pacific Ocean: Belkin and Cornillon, 2003; Canadian waters: Cry & Larouche, 2015; 71 

California Current System: Armstrong et al., 2012; Indian Ocean: Roa-Pascuali et al. 2015).  72 

Satellite-derived frontal metrics have also become popular in recent years amongst marine 73 

ecologists to explain and predict species distributions, particularly for marine apex predators 74 

(e.g. Bauer et al. 2015; Nieto et. al 2017; Priede et al. 2009;). The potential of fronts to act as 75 

biodiversity hotspots has also received attention from policymakers involved in development 76 

of spatial conservation measures such as Marine Protected Areas (MPAs), and future 77 



 

 3 

monitoring of mobile species as part of the Marine Strategy Framework Directive (MSFD) 78 

(Defra, 2009;2012; European Union, 2008). Initially, frontal maps were used only 79 

descriptively and compared to tracks or distribution maps of marine biota (Doniol-Valcroze et 80 

al., 2007; Edwards et al., 2013; McClathie et al. 2012; Wingfield et al. 2011). Now, they are 81 

increasingly being used in statistical models to investigate bio-physical coupling and 82 

ecosystem dynamics (Broodie et al. 2015; Pirotta et al., 2014; Xu et al. 2017).  83 

 84 

 85 

Frontal metrics represent highly processed data and can be based on complex algorithms, 86 

making it difficult for the user to understand the meaning and their limitations when applying 87 

statistical analyses, particular for scientist not specialist in the field of remote frontal 88 

detection. Although results of quantitative analyses can vary depending on the metric 89 

employed, not much guidance for researchers is available in the scientific literature on the use 90 

of frontal metrics, the differences between them and factors to consider during their statistical 91 

processing. Considering the complex process of generating frontal maps and metrics, this 92 

represents essential information for users outside the field to ensure best practice and avoid 93 

pitfalls during quantitative analysis.  94 

 95 

There is also a lack of information regarding factors influencing the metrics directly, such as 96 

the quantity of data used to create a frontal map or the effect of spatial averaging over larger 97 

areas in order to create time series. However, it is essential to consider these factors in order 98 

to avoid incorrect estimates of a front. For example, there has been a steep and continuous 99 

increase in satellite passes over the past 20 years, resulting in an increased number of satellite 100 

images per day and therefore, higher data availability, which affects temporal variability 101 

pattern (Oram et al. 2008). Although varying sampling size can affect the results of statistical 102 

analyses, not many studies concerning long-term trends of satellite-derived frontal metrics 103 

account for this  (e.g. Belkin et al., 2005; Kahru et al., 2012; Ullman et al., 2007). Some 104 

studies ensure data quality during the processing stage, e.g. only images with at least 90% 105 

cloud-free pixels are used, but do not account for data availability during statistical analysis 106 

(Obenour 2013). 107 

 108 

This paper provides guidance on the use frontal metrics and their quantitative analysis, 109 

particularly directed towards users outside remote frontal detection. We demonstrate the 110 

necessity to account for influencing factors and how to deal with them, including i) a strong 111 

non-linear effect of data availability, ii) bias introduced by not distinguishing between 112 

different frontal types and iii) the choice of metric to be used. We show how these factors 113 

influence the distinct temporal pattern of some commonly used frontal metrics over 20 years 114 
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from January 1990 to December 2010. The focus of this study are two tidal mixing fronts, 115 

which form in the Celtic Sea during the spring when the water is stratified, namely the Celtic 116 

Sea and Ushant Front. These two fronts separate the Celtic Sea from the Irish Sea and 117 

Western English Channel respectively (Figure 1). Tidal mixing fronts are transition zones 118 

between tidally-mixed coastal and seasonally-stratified shelf waters and are critical in shaping 119 

oceanographic and biological processes during the summer months (LeFevre, 1986; Simpson 120 

and Sharples, 2012). The temporal variability of the Celtic Sea and Ushant Front is well 121 

documented from four decades of in-situ and modelling studies (Brown et al., 2003; Elliott et 122 

al., 1991; Holt et al., 2010; Neil et al., 2013; Pingree et al., 1978; Young et al., 2004), which 123 

provide a reference for the results of this research. 124 

 125 

 126 

 127 

 128 

 129 

 130 
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Figure 1 (colour): Frontal density map (June 2009) showing thermal fronts of the Celtic 131 
Sea. Red colours refer to strong and persistent fronts and blue colours to no frontal activity. 132 
The white dotted circles highlight the tidal mixing fronts UF=Ushant Front, SIF=Scilly Isles 133 
Front,CSF=Celtic Sea Front and the shelf break front=SBF. The white polygons refer to the 134 
two sampling areas used in this research (Celtic Sea and Ushant Front). Parametrisation of the 135 
boundary definition for the two front polygons can be found in section 2.4 and in the 136 
supplement. 137 
 138 

2 Methods 139 

2.1 Processing of frontal maps 140 

Frontal maps used in this research are based on Advanced Very High Resolution Radiometer 141 

(AVHRR) data from National Oceanic and Atmospheric Administration (NOAA) satellites.  142 

These raw data were acquired, translated into SST values, geo-corrected, cloud masked, and 143 

mapped at 1.1km
2
 resolution by the NERC Observation Data Acquisition and Analysis 144 

Service (NEODAAS) (www.neodaas.ac.uk/data). Both day and night images were 145 

considered. Fronts were detected on each satellite image by application of the Single Image 146 

Edge Detection algorithm (SIED) developed by Cayula and Cornillon (1992). In this 147 

approach, a histogram of the SST frequency distribution is created, based on a user-defined 148 

array of pixels, but usually 32x32 pixels (also used in this research). If the histogram has a 149 

bimodal form, it suggests the presence of two different water masses. In order to qualify as 150 

two separate water masses, the temperature difference between the two populations has to be 151 

at least 0.4°C as recommended when applied to low-noise SST data (Miller, 2009). The SIED 152 

then marks the transitional values between the two modes of the histogram as valid pixels = 153 

frontal (Fvalid). 154 

 155 

A SIED-derived frontal map from a single satellite image is unsuitable for the description of 156 

meso-scale features due to their high spatio-temporal variability and the frequency of cloud 157 

cover in the study region, which disguises dynamic processes (Miller, 2009). Therefore, in 158 

this research we used frontal maps at monthly resolution, which means that all fronts detected 159 

on single SST images during a given month are aggregated into a single map for each metric 160 

as defined below, in order to highlight stable frontal features (Miller, 2009). Although higher 161 

temporal resolution would have been more desirable to investigate seasonal pattern of tidal 162 

mixing fronts, weekly and fortnightly frontal maps were still highly affected by cloud cover 163 

(even during the summer months and particularly at the beginning of the study period in the 164 

early 1990’s) and were unsuitable for the analysis. In addition, the resolution of the frontal 165 

maps was scaled down to 4.8km
2
 by taking the mean of a four by four pixel array on the final 166 

map. Spatial downscaling was performed to reduce variability around the frontal contours, 167 

which facilitated the determination of the sampling area (see supplementary section 6.1). 168 
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Further steps of data processing depend on the metric chosen and are explained in detail 169 

below.  170 

 171 

2.2 Frontal metrics used in this research 172 

In the following description, the word image refers to a satellite image of the study area, 173 

which consists of an array of pixels.  Maps refer to the satellite images after frontal 174 

algorithms have been applied and show frontal metrics. The example pixel is at a given 175 

location of an image (e.g. uppermost left corner), on a map or over a sequence. 176 

 177 

Fclear and Fvalid: For each pixel in the monthly map, Fclear and Fvalid simply provide the 178 

total amount of clear and valid pixels respectively. Valid pixels (Fvalid) are pixels that have 179 

been identified by the SIED-algorithm as frontal (described in section 2.1). Clear pixels are 180 

pixels that were not cloud covered and had a clear satellite view on the ocean, whether or not 181 

a front was observed. For example, if 40 images were obtained over the period of one month, 182 

30 of these had clear views on an example pixel, and in the other ten images this pixel was 183 

obscured by clouds, the Fclear value for this pixel would be 30. Out of the 30 clear views, if 184 

the example pixel was identified as a front 20 times by the SIED-algorithm, the Fvalid would 185 

be 20. 186 

 187 

Fprob (Figure 2 and Table 1) represents the probability of observing a front in a given pixel 188 

over the sequence of images used (Miller, 2009). As in the example above, out of the 30 clear 189 

views, if the example pixel was identified as a front 20 times by the SIED-algorithm, then the 190 

Fprob value for this pixel would be: 191 

 192 

 𝐹𝑝𝑟𝑜𝑏 =  
𝑓𝑟𝑜𝑛𝑡 𝑝𝑖𝑥𝑒𝑙𝑠

𝑐𝑙𝑒𝑎𝑟 𝑝𝑖𝑥𝑒𝑙𝑠
=  

20

30
= 0.67.  193 

 194 

Frontal (also called valid) and clear pixels are described in more detail further below under 195 

Fvalid and Fclear. The higher the Fprob value, the more often a front was detected in the 196 

pixel. Therefore, clusters of pixels with high Fprob on a frontal map represent areas of higher 197 

frontal occurrences. The advantage of Fprob is that it is simple and easy to understand. 198 

However, there are two apparent disadvantages. Firstly, it is a proportion and can easily be 199 

biased when the relationship between the numerator and denominator is not linear or if both 200 

change in the same direction, but at different rates. Secondly, Fprob does not provide 201 

information on the strength of a front.  202 

 203 
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Fmean  provides information on the temperature gradient (temperature change per pixel) and 204 

hence, an indication of the strength of a front (Miller, 2009). After applying the SIED-205 

algorithm to a single image, the temperature gradients between a front pixel and its 206 

neighbouring pixels are calculated. The value of the greatest gradient found is assigned to the 207 

example pixel. This is done for all valid pixels on a map and all images going into a map. For 208 

the monthly map, the mean of all temperature gradient values is calculated for the example 209 

pixel. However, the mean is only based on front pixels in the sequence and not on pixels that 210 

were cloud free but non-frontal as it is the case for Fprob. This is in order to avoid degrading 211 

the metric with gradients not associated with fronts, or with low gradients observed where a 212 

dynamic front was previously located. Using the same example as above, the temperature 213 

gradient was calculated for the 20 front observations of the example pixel.: 214 

 215 

 𝐹𝑚𝑒𝑎𝑛 =
𝑠𝑢𝑚 𝑜𝑓 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 (20 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑜𝑛𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠
= (𝑒. 𝑔. ) 

21.4

20
= 1.07 216 

 217 

It should be noted that  Fmean  disregards of clear pixels. One the one hand, this makes 218 

Fmean less sensitive to data availability (Fclear) and does lessen the visualisation of 219 

ephermal features. On the other hand, it does not distinguish between pixels that were 220 

identified as frontal frequently versus ones that were not. For instance, the example pixel was 221 

identified as frontal 20 times in the sequence of 30 clear images and had an Fmean of 1.07. 222 

Another pixel has been identified as frontal twice in the sequence of 30 clear images, but also 223 

had a temperature gradient of 1.07 each time. This pixel will receive the same value on the 224 

map as first one although its frontal frequency was very small. This results in maps containing 225 

many transient frontal segments that are displayed with the same strength as the persistent 226 

ones, which can introduce noise to a map.  227 

 228 

Fpers  is the product of multiplying the final (in our case monthly) map of Fmean by the final 229 

map of Fprob: 230 

 231 

𝐹𝑝𝑒𝑟𝑠𝑓𝑖𝑛𝑎𝑙 = 𝐹𝑚𝑒𝑎𝑛𝑓𝑖𝑛𝑎𝑙  ×  𝐹𝑝𝑟𝑜𝑏𝑓𝑖𝑛𝑎𝑙  

 232 

By weighting Fmean by a measure of persistence (Fprob), areas of frequently occurring 233 

fronts are highlighted and noise introduced by short-lived frontal segments is reduced (Miller, 234 

2009). While the multiplication of Fprob and Fmean aids visualisation of more consistent 235 

features, it complicates interpretation of the metric itself, because it is comprised of two 236 

entities that have different meanings.  A change in Fpers cannot be directly attributed to 237 

either changes in Fprob or Fmean (or both), whereas it might be crucial to know which 238 
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metric is more affected, e.g. if interested in the meteorological drivers of the observed 239 

variability.  240 

 241 

In Fcomp maps  an additional weighting factor (Fprox) is applied to the monthly map of 242 

Fpers, which considers the spatial proximity of frontal pixels (Miller, 2009):  243 

 244 

𝐹𝑐𝑜𝑚𝑝𝑓𝑖𝑛𝑎𝑙 = 𝐹𝑝𝑒𝑟𝑠𝑓𝑖𝑛𝑎𝑙  ×  𝐹𝑝𝑟𝑜𝑥   

 245 

Pixels near or in clusters of valid pixels, will receive an additional boost. The closer the pixel 246 

is to a frontal cluster, the more it will be boosted. This process will ignore pixels located 247 

beyond a certain distance from any frontal clusters. The resulting maps further emphasise 248 

persistent features and further reduce the occurrence of noise. Like Fpers, Fcomp obscures 249 

the influence of each of the components for the final product and it is not possible to identify 250 

the most variable component.  251 

 252 

Fdens  is an Fcomp map with an additional spatial smoother (in this case a Gaussian filter of 253 

five pixels width) applied to the final Fcomp map in order to turn the discrete front segments 254 

into a continuously-varying spatial map (Scales et al., 2015). Fdens is particularly useful for 255 

visualisation of persistent, spatially stable features as it removes nearly all transient frontal 256 

segments: 257 

 258 

𝐹𝑑𝑒𝑛𝑠𝑓𝑖𝑛𝑎𝑙 = 𝐹𝑐𝑜𝑚𝑝𝑓𝑖𝑛𝑎𝑙  ×  𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑟 

 259 

 260 

 261 

 262 

Table 1: List of metrics used in this research and their abbreviations, common names, 

quantitative derivation, value range and spatio-temporal resolution. 

Metric Common 

name 

Definition  Value range Spatio-

temporal res. 

Fvalid Valid pixels Total of valid (frontal) pixels in 

a sequence of images 

Any positive 

integer 

Monthly 4.8km
2
 

Fclear Clear pixels Total of clear pixels in a 

sequence of images 

Any positive 

integer 

Monthly 4.8km
2
 

Fprob Frontal 

probability 

𝐹𝑣𝑎𝑙𝑖𝑑

𝐹𝑐𝑙𝑒𝑎𝑟
 

0-1 Monthly 4.8km
2
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Fmean Temperature 

gradient 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

𝐹𝑣𝑎𝑙𝑖𝑑
 

0-2.54 Monthly 4.8km
2
 

Fpers Frontal 

persistence 
𝐹𝑝𝑟𝑜𝑏 ×  𝐹𝑚𝑒𝑎𝑛 0-0.254 Monthly 4.8km

2
 

Fcomp Frontal 

composite 
𝐹𝑝𝑒𝑟𝑠 ×  𝐹𝑝𝑟𝑜𝑥 

Fprox= additional boost, when 

other frontal clusters in the 

neighbourhood 

0-0.254 Monthly 4.8km
2
 

Fdens Frontal density 𝐹𝑐𝑜𝑚𝑝 + 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑟 0-0.254 Monthly 4.8km
2
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Figure 2 (colour): Monthly maps for Fvalid, Fprob, Fmean, Fpers, Fcomp and Fdens 

from June 2009. Pixels covering land are no-value pixels and therefore, come up as white.  

 

2.3 Spatial averaging of frontal pixels over the sampling area  263 

To investigate inter-annual and seasonalvariability of the selected frontal metrics at the Celtic 264 

Sea and Ushant Front, a time series for each metric shown in figure 2 and Fclear was created. 265 

For this, all pixels within each of the two frontal areas were spatially averaged to obtain a 266 

single value per front and monthly map. The position of tidal mixing fronts varies seasonally, 267 

in response to tidal movements, storm events and other factors. Therefore, the sampling area 268 

for each front needed to be large enough to capture the spatial variability of the fronts, but 269 

small enough to exclude unwanted features in the vicinity as much as possible, which could 270 

bias estimates of the fronts of interest (e.g. other fronts such as river plumes or coastal 271 

currents). In order to identify a suitable sampling area, core frontal areas were visually 272 

identified using Fcomp maps for the Celtic Sea and Ushant Front. Position and extend of each 273 

front are known from previous studies (Ref) . Based around the core area different sized 274 

subsets were created, which were resampled to find the most suitable sampling area and to 275 
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ensure no bias caused by an area size effect was introduced. Details of the resampling 276 

approach can be found in the supplement (Section 6.1) 277 

  278 

The spatial averaging can either include all pixels (including non-frontal, but clear) or frontal 279 

pixels only. Since the subjects of interests are fronts, one might consider using frontal pixels 280 

only, and hence, extract merely information on the fronts. However, using only frontal pixels 281 

would result in highly variable sampling sizes of the spatial averages, because there will be 282 

fewer frontal pixels during winter and more during the summer due to the seasonal nature of 283 

the fronts of interest (Sup.Table 1). In addition, there will be more frontal pixels during 284 

periods of higher Fclear (e.g. the summer months or good weather periods). Sampling size 285 

can affect the results of statistical analyses. In order to avoid a sample size effect, spatial 286 

averaging in this research was performed using all pixels, including both front and non-frontal 287 

pixels.  288 

 289 

2.4 Statistical analyses 290 

Correlation analyses showed that the metrics Fprob, Fpers, Fcomp were strongly related. 291 

Fdens displayed highest correlations with Fcomp and Fmean (Table 2). Subsequently, 292 

analyses in this research were conducted on Fprob (representative for the group Fprob, 293 

Fcomp and Fpers) and Fmean only. Fprob was selected because it is a) more comprehensible 294 

than other complex metrics, b) frequently used in remote sensing research, and c) the driving 295 

component in Fcomp and Fpers in our dataset (although this can differ in other systems). 296 

Fmean has been less frequently used in ecological or oceanographic time series, but is 297 

included because it provides useful information on the strength of the front and hence, other 298 

characteristics than Fprob. Time series plots of metrics not included in the analysis (Fpers, 299 

Fcomp and Fdens) can be found in the supplement (Sup. Figure 3 and Sup. Figure 4). 300 

 301 

Table 2: Pearson Product Moment correlation coefficients (r) after extraction of the seasonal 

variability for all metrics combinations. Lower left diagonal (blue font) refers to Celtic Sea 

Front and upper right diagonal (black front) to Ushant Front correlations. Coefficients above 

0.7 are in bold and, italic numbers are coefficients of correlation analyses with p-values 

<0.05. 

Metric/r Fprob Fpers Fcomp Fmean Fdens 

Fprob - 0.9 0.9 -0.04 0.3 

Fpers 0.9 - 1.0 0.2 0.5 

Fcomp 0.9 1.0 - 0.2 0.6 

Fmean -0.3 0.06 0.06 - 0.6 

Fdens 0.3 0.5 0.6 0.6 - 

 302 



 

 12 

Inter-annual and seasonal  variability of Fprob and Fmean and the effect of Fclear on this 303 

variability were investigated using anomalies. Anomalies for statistical analysis were created 304 

by subtracting the overall mean of the time series from each data point of the time series 305 

(each month-year combination).  Temporal explanatory variables were year to account for 306 

interannual variability, month to account for seasonal variability and Fclear to account for 307 

variations in data availability. To demonstrate the effect of Fclear on Fprob and Fmean, 308 

predictions of monthly and yearly variability of the two metrics are shown from two models, 309 

one with and one without the Fclear variable. For visualisation purposes, monthly and yearly 310 

anomalies were calculated by subtracting the overall mean from the mean of each month/year 311 

respectively. For inter-annual variability plots only months March to November were 312 

considered (see below) to avoid the unwanted inclusion of wintertime fronts (present in the 313 

study area) not associated with the tidal mixing fronts.   314 

 315 

Generalized Additive Mixed Models (GAMMs) with an autoregressive correlation structure 316 

of order one (AR(1)) were used in order to account for temporal autocorrelation and the non-317 

linear relationship between the response and explanatory variables. The GAMMs take the 318 

structure as specified by Hastie and Tibshirani (1987) and were fitted using the gamm 319 

function in the mgcv package (Wood, 2006). Smoothed terms were fitted as regression splines 320 

with fixed maximum degrees of freedom (k=6) for the covariate month and Fclear in order to 321 

avoid overfitting. The variable month was modelled using cyclic cubic regression splines, 322 

setting knots manually between 3 (March) and 11 (November) in order to account for the 323 

circular nature of this term. Model selection was conducted using manual stepwise-backwards 324 

selection. Model fit was examined by means of residual analysis. Residual analysis displayed 325 

a few single outliers in the Celtic Fprob model. The outliers were excluded and the model re-326 

run, which improved model fit, but did not affect significances of the variables. 327 

3 Results 328 

3.1 Temporal variability of Fmean and Fprob  329 

Due to the distinct nature of the two metrics, their temporal patterns differed significantly. 330 

Overall, Fmean displayed sinusoidal fluctuations with an initial decrease from 1990 to 1996, 331 

followed by an increase from 1997 to 2010 at both fronts (Figure 3). A notable low in Fmean 332 

occurred in 1996 at the Celtic Sea and Ushant Front. In contrast to Fmean, Fprob anomalies 333 

were positive until 1996 and dropped sharply thereafter at both fronts. Apart from minor 334 

variations, temporal variability of Fprob was consistent for the remainder of the time series. 335 

Extremely high values of Fprob were observed in 1990 and 1996 at the Celtic Sea Front, 336 

which were less pronounced at the Ushant Front. Overall differences between the Celtic Sea 337 



 

 13 

and Ushant Front were low for each metric and occurred predominantly in the first ten years 338 

of the time series. In addition, values for both metrics were slightly higher at the Celtic Front 339 

compared to the Ushant Front: Fmean Celtic: 0.220.09, Ushant: 0.190.08; Fprob Celtic: 340 

0.0780.03, Ushant: 0.0720.03). 341 

 342 

There was a fairly consistent increase in Fclear and Fvalid from 1990 to 2010 (Figure 3). 343 

Anomalies became positive at both fronts in the middle of the time series, around 2001. 344 

However, since 2005 the trend stagnated and there was even a slight decrease in Fclear and 345 

Fvalid in the late 2000’s. Notable lows in Fclear and Fvalid coincided with the low Fmean 346 

and high Fprob years of 1990 and 1996. The relationship between the observed increase in 347 

Fclear and interannual variability of Fprob and Fmean is described in the following section 348 

3.22. 349 

  350 

Fmean displayed a typical seasonal curve at both fronts with increasing values from the 351 

beginning of the year until August/September and a sharp decrease thereafter (Figure 4). 352 

Seasonal patterns for Fprob differed between the Celtic Sea and Ushant Front. Fprob values 353 

at the Ushant Front were decreasing until April, became positive in June and did not drop to 354 

negative until December. At the Celtic Sea Front, seasonal fluctuations of Fprob were more 355 

variable. Anomalies were positive during the summer from June to September, negative 356 

between October and November, positive again until February and again negative until June 357 

(Figure 4). The positive Fprob anomalies during the winter months, when tidal mixing fronts 358 

are absent, indicate the inclusion of frontal segments that are not the focus of this study. In 359 

this case, this unwanted signal was likely introduced by parts of a coastal current that runs 360 

along the east coast of Ireland. By restricting the sampling subset to 12km away from the 361 

coasts, it was anticipated to exclude coastal influences, which was clearly not sufficient.  362 

 363 

Fclear and Fvalid exhibited typical seasonal cycles, similar to the one seen for Fmean (Figure 364 

4). Positive anomalies of Fvalid occurred from May to September at the Celtic Sea Front and 365 

May to October at the Ushant Front. Anomalies of Fclear were positive throughout March to 366 

September at both fronts. However, Fclear values dropped notably in July and increased 367 

slightly again thereafter.  368 

 369 
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 370 

Figure 3 (colour): Yearly anomalies of Fmean, Fprob, Flcear and Fvalid at the Celtic Sea 371 
and Ushant Front from 1990 to 2010. Anomalies are based on a seasonal subset (March to 372 
November). Blue bars represent negative anomalies and red positive anomalies. Black line 373 
represents loess smoother (= 0.6). 374 
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 375 

Figure 4 (colour): Monthly anomalies (based on the entire time series) for of Fmean, 376 
Fprob, Flcear and Fvalid at the Celtic Sea and Ushant Front. Blue bars represent negative 377 
anomalies and red positive anomalies. 378 

 379 

3.2 Effect of Fclear on variability of Fmean and Fprob 380 

Preliminary analyses indicated a correlation between Fclear and the two metrics Fprob and 381 

Fmean. The temporal pattern seen for Fprob and Fmean might not purely be a result of 382 

changes in meteorological or hydrodynamic forcing over seasonal and interaannual cycles, 383 

but caused to a certain degree by variations in available data. To investigate an effect of 384 

Fclear on temporal variability of Fmean and Fprob, inter-annual and seasonal variability of 385 

both metrics were modelled including Fclear as an explanatory variable. In a follow up 386 
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analysis, which is not presented here, temporal variability of these fronts was investigated in 387 

relation to meteorological factors known to influence frontal dynamics (e.g. heat flux, wind 388 

speed), but which are also partly correlated with Fclear (Suberg, 2015). However, an Fclear 389 

effect remained even when accounting for atmospheric forcing and can therefore, not be 390 

explained by covariability with meteorological factors alone. For brevity purposes, this 391 

analysis focuses on Fclear only. 392 

 393 

The relationship between Fclear and Fmean at both fronts was very strong and overall, 394 

positive (Figure 5 and Table 3). The relationship was stronger at the lower value range of 395 

Fclear and levelled off with increasing Fclear (Figure 5). In consequence, accounting for 396 

Fclear resulted in changes in the interannual pattern of Fmean. The decrease at the beginning 397 

of the time series was stronger and the increase in the second half was less steep compared to 398 

the pattern seen in Figure 3. When Fclear was not included in the model, the relationship 399 

between Fmean and time was positively linear (Fig. 5, red lines). Although the model fit 400 

should be interpreted with caution as it appears to be an oversimplification of the real 401 

relationship. Not accounting for Fclear results generally in a less steep drop at the beginning 402 

of the time series, followed by a stronger increase than.  Seasonal variability on the other 403 

hand, was not greatly affected by Fclear and still displayed the seasonal cycle and timing as 404 

seen in Figure 4. While factors Fclear and months explained considerable amount of the 405 

variability, year only lead to a 0.03/0.04 (Celtic Sea/Ushant) increase in the model R
2
 (Table 406 

3). 407 

 408 

There was also a significant effect of Fclear on Fprob (Figure 6 and Table 3). In contrast to 409 

Fmean, the relationship was negative and levelled off at higher Fclear values (Figure 6). The 410 

inclusion of Fclear caused a notable modification of the interannual pattern of Fprob . The 411 

model accounting for Fclear did not suggest significant interannual variability in Fprob at the 412 

Celtic Sea and Ushant Front, whereas a model without Fclear suggests a negative trend over 413 

time (Figure 6, red lines). In addition, the seasonal curve of Fprob was more distinct when 414 

accounting for Fclear and showed the expected pattern with higher Fprob values in summer 415 

and lower values during the winter, when tidal mixing fronts are absent. A summary of the 416 

effect of Fclear on temporal variability of Fprob and Fmean is given in Table 4. 417 

 418 
 419 
 420 
 421 
 422 
 423 
 424 
 425 
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 426 
 427 
Table 3: Summary of GAMMs with AR1 structure for a seasonal subset of Fmean and Fprob 

(March/April to November) anomalies for Celtic Sea and Ushant Front modelled as a 

function of year, month and Fclear (coefficients for model including Fclear shown in black, 

model without Fclear shown in red).. Only significant covariates are listed, including their 

estimated degrees of freedom (edf), F-values, p-values and reduction in AIC. The adjusted R
2
 

for the final model is given in bold (Adj.R
2
) and increase for each additional variable. 

Metric Front Covariate (edf) F-value p-value -AIC Adj. R
2
 

 

 

Fmean  

Celtic 

Front 

Year (2.77; 1.0) 

Month (3.85; 3.8) 

Fclear (4.21) 

4.85; 8.5 

99.96; 68.3 

24.67 

  0.004; 0.004 

<0.001; <0.001 

<0.001 

4.33; 3.6 

167.0; 137 

67.16 

0.03; 0.03 

0.69; 0.68  

0.82 

Ushant 

Front 

Year (4.27; 1.0) 

Month (3.66; 3.7) 

Fclear (4.26) 

4.27; 9.5 

67.5; 40.1 

47.09 

<0.001; 0.002 

<0.001; <0.001 

<0.001 

17.54; 4.7 

103.82; 86.8 

111.9 

0.04; 0.03 

0.53; 0.53 

0.78 

 

Fprob 

Celtic 

Front 

Month (3.82; 3.3) 

Fclear (6.82) 

Year (1.4) 

36.1; 10.5 

33.65 

13.1 

<0.001; <0.001 

<0.001 

<0.001 

 

108.93; 25.6 

156.98 

11.2 

0.2; 0.2 

0.81 

0.4 

Ushant 

Front 

Month (3.54; 2.9) 

Fclear (4.47) 

Year (1.9) 

26.03; 7.7 

27.58 

10.7 

<0.001; <0.001 

<0.001 

<0.001 

48.72; 15.7 

60.05 

11.7 

0.18; 0.2 

0.59 

0.4 

 428 
 429 
 430 

 431 
 432 
Figure 5: GAMM predictions showing temporal variability (year and month) of Fmean 433 
anomalies with (black) and without (red) accounting for Fclear and the relationship 434 
between Fmean and Fclear  at the Celtic Sea Front and Ushant Front. An AR1 structure 435 
was added to the GAMM to account for temporal autocorrelation. The model is based on a 436 
seasonal subset of Fmean (March/April to November, N=189/168). Upper panel shows Celtic 437 
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Sea Front, lower panel Ushant Front. Solid lines represents fitted values, dotted lines 95% 438 
confidence intervals.  439 
 440 

 441 
Figure 6: GAMM predictions showing temporal variability (year and month) of Fprob 442 
anomalies with (black) and without (red) accounting for Fclear and the relationship 443 
between Fprob and Fclear. An AR1 structure was added to the GAMM to account for 444 
temporal autocorrelation. The model is based on a seasonal subset of Fprob (March/April to 445 
November, N=189/168). Upper panel shows Celtic Sea Front, lower panel Ushant Front. 446 
Solid lines represents fitted values, dotted lines 95% confidence intervals. Note: factor “year” 447 
was insignificant for the inclusive Fclear model (black lines) and is not shown in table 3. 448 
 449 
 450 
Table 4: Summary table of the significance of the number of clear pixels and its effect on 

inter-annual and seasonal variability of Fmean and Fprob at both fronts Celtic Sea and 

Ushant Front. 

Metric Front Effect of Fclear 

 

 

 

Fmean 

 

Celtic Front  
Significance: Yes (positive correlation) 

Inter-annual variability: Strong effect  

Seasonal variability: Weak effect 

 

Ushant Front 
Significance: Yes (positive correlation) 

Inter-annual variability: Strong effect  

Seasonal variability: Weak effect 

 

 

 

Fprob 

 

Celtic Front  
Significance: Yes (negative correlation)  

Inter-annual variability: Strong effect  

Seasonal variability: Weak effect 

 

 

Ushant Front 

Significance: Yes (negative correlation) 

Inter-annual variability: Strong effect  

Seasonal variability: Weak effect  

 451 
 452 
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4 Discussion 453 

This research uses time-series analyses of two seasonal shelf-sea fronts as a framework for 454 

the first coherent guide on the use of satellite-derived frontal metrics in quantitative analyses. 455 

The results of the study will be discussed in the context of managing frontal metrics in 456 

quantitative analyses. 457 

 458 

4.1 Recommendations on the choice of metric for temporal analyses 459 

Temporal pattern of Fprob and Fmean differed clearly, because they describe two distinct 460 

characteristics of a front; probability versus strength. It is therefore, essential to be clear about 461 

the study hypothesis prior to analysis, and to choose the metric accordingly . Both metrics 462 

appear suitable to study temporal variability of fronts – a result that concurs with previous 463 

research. The seasonal cycles of Fmean and Fprob are in agreement with the onset and 464 

breakdown of stratification in the Celtic Sea and previous observations of the Celtic Sea and 465 

Ushant Fronts (Eliot and Clarke, 1991; Pingree, 1975; Young et al., 2004). Model simulations 466 

of stratification in the Celtic Sea predict the thermocline to establish around the Celtic Deep 467 

first (near the Celtic Sea Front) around April, advancing over the shelf and reaching the 468 

Western English Channel (location Ushant Front) within a month. The delay in frontal 469 

development between the Ushant and Celtic Sea Front was also indicated by the satellite data 470 

(Figure 4, 5 and 6).  471 

The results of the long-term analysis suggest that the strength of the frontal temperature 472 

gradient oscillated between 1990 and 2010 at both fronts (Figure 5 and 6). Oscillations in 473 

frontal strength are expected in response to meteorological forcing (Holt et al, 2010). In a 474 

follow up analysis, which investigates the underlying drivers of the observed temporal 475 

variability, SST and net heat flux were found to be the predominant meteorological factors 476 

explaining the variation in Fmean (Suberg, 2015). An increase in SST in the study area could 477 

have caused the observed intensification of Fmean over the later ten years of the time series. 478 

This is in accordance with modelling studies, predicting tidal mixing fronts in the Celtic Sea  479 

to intensify due to increasing water temperatures during this century (Holt et al, 2010; Marsh 480 

et al., 2015). Inter-annual pattern of Fprob showed abnormally high values (and low values in 481 

Fmean) in 1990 and 1996.  These extremes are partially caused by confounding factors, such 482 

as higher than usual cloud cover, which led to a reduction of available satellite imagery. Other 483 

explanations will be discussed in the next section (4.2). Apart from these extremes, no 484 

obvious changes in Fprob occurred over the study period. 485 

 486 

Fcomp, Fpers or Fdens were not analysed in detail here to their high correlation with Fprob 487 

and/or Fmean. This is essentially due to the fact that Fprob and Fmean are base metrics for 488 
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describing frontal characteristics and all other metrics are derivates of either one or both. In 489 

general, we recommend the use of Fmean or Fprob for temporal analysis over Fcomp, Fpers 490 

or Fdens, because the later complicate interpretation without providing additional 491 

information.  In spatial analysis on the other hand, complex metrics like Fdens or Fcomp 492 

provide advantages as they allow for clearer distinction between low and high frontal 493 

frequency areas. Spatial differences between the metrics can be seen in Figure 2. As 494 

mentioned earlier, the choice of metric needs to be well thought through and may differ 495 

depending on spatial or temporal analyses.  496 

 497 

 498 

 499 

4.2 Effect of data availability on variability of frontal metrics 500 

Fclear had significant, but contrasting effects on the temporal pattern of Fmean and Fprob. 501 

Overall, the relationship between Fclear and Fmean was positive, but levelled out at high 502 

numbers of clear pixels. More clear pixels will lead to more cloud free scenes and 503 

subsequently, a higher detection rate of frontal segments. In addition, indirect factors increase 504 

the relationship between Fmean and Fclear. Stronger temperature gradients across tidal 505 

mixing fronts are likely to be correlated with summer months or good weather periods with 506 

less cloud cover, stronger solar irradiance and higher temperatures. Under these conditions, 507 

tidal mixing fronts will strengthen or develop quicker (Holt et al., 2010; Young et al., 2004). 508 

At the same time, summer months and decreased cloud cover are also linked to higher Fclear. 509 

Therefore, it is essential to account for data availability when using Fmean for quantitative 510 

analyses. Fmean has not been widely used in time series analysis and comparisons with other 511 

studies are not possible. 512 

 513 

In contrast to Fmean, the relationship between Fprob  Fclear in the lower value ranges was 514 

negative. The reason for the negative correlation is that Fprob is a simple proportion between 515 

valid and clear pixels (Fvalid and Fclear). There was a strong positive correlation between 516 

Fvalid and Fclear (r=0.8) and a notable increase over time for both. In addition, years with 517 

notably low Fclear, and for that matter low Fvalid (e.g. 1990 and 1996), showed 518 

disproportionally high Fprob values. This contradictive pattern is due to a divisor effect. Over 519 

the time frame of this research, the increase in number of satellites has led to an increase in 520 

the number of clear pixels (Fclear), which was much higher than the increase in the number 521 

of front pixels (Fvalid). For example, from the first five years of the time series (1990-1994) 522 

the average number of front pixels in a given location (pixel) increased from 0.97±0.42 to 523 

1.91 ±0.86 in the last five years (1996-2010) at the Celtic Sea Front (Ushant: from 0.88 ±0.45 524 
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to 1.56 ±0.9), whereas clear pixels have risen from 11.62  ±6.15 to 30.75 ±13.38 (Ushant: 525 

from 10.7 ±6.55 to 27.28 ±15.22). This represents a 2.65-fold increase in clear pixels (Ushant: 526 

2.55), but only a 1.97-fold increase in front pixels (Ushant: 1.77). Therefore, the number of 527 

front pixels is divided by an increasingly higher number of clear pixels over time, which 528 

results in a decrease of Fprob (Fprob= Fvalid/Fclear). The average Fprob for 1990-1994 was 529 

0.08 compared to 0.06 between 2006 and 2010 at both fronts. According to this, frontal 530 

probability has decreased by 25% from the first to the last quarter of the time series, which is 531 

unlikely and not supported by any other studies concerning interannual variably of Fprob 532 

(e.g. Belkin et al., 2005; Kahru et al., 2012).  533 

 534 

The Fclear effect also adds to the high Fprob values observed during winter. Tidal mixing 535 

fronts are absent during this time of the year and the high Fprob indicates, on the one hand, 536 

the inclusion of signals from wintertime fronts, which will be discussed in section 4.3. 537 

However, the signal was much lower in Fmean. It is likely that higher cloud cover during 538 

winter leads to fewer clear pixels and hence, Fvalid being divided by a smaller number of 539 

Fclear, which resulted in an elevated Fprob, while Fmean was not affected by the divisor 540 

effect. 541 

 542 

The relationship between Fprob and Fclear has largely been ignored in the majority of 543 

research that uses satellite imagery to investigate temporal variability of fronts (e.g. Belkin et 544 

al., 2005; Kahru et al., 2012) and only been mentioned in a couple of studies (Obenour, 2013; 545 

Oram et al. 2008; Ullman et al., 2007). Oram et al. 2008 note that the increase in available 546 

satellite images during the second half of their study (1997-2002) caused bias in their 547 

detection probabilities (Fprob). Ullman et al. (2007) suggested that the non-linear relationship 548 

between clear and front pixels is caused by the failure of the SIED-algorithm to identify all 549 

frontal pixels as such, particularly in partially cloud-covered scenes. The clouds block the 550 

contour-following part of the SIED algorithm, resulting in Fprob being underestimated. 551 

Obenour (2013) suggests the SIED-window should be at least 90% cloud-free during image 552 

processing in order to avoid exactly this problem and subsequently, avoid temporal variability 553 

of Fprob caused by the fraction of clear pixels. Obenour (2013) addresses the Fclear effect by 554 

increasing data quality at the expense of data quantity: that approach differs to the one used in 555 

this study, which accounts for the amount of clear pixels during the statistical analysis stage, 556 

regardless of the difficulties caused by partially cloudy scenes. 557 

 558 

Most temporal variability studies focus on seasonal variability and did not report any 559 

discontinuities of Fprob caused by Fclear (e.g. Castelao et al., 2014; Hickox et al., 2000; 560 

Mavor et al., 2001). However, the Fclear effect appears to be less obvious when investigating 561 
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seasonal variability, as seen in this study. Less research has focused on interannual patterns 562 

and mostly reported an increase in Fprob over time. For example, Belkin and Cornillon 563 

(2005) found a surprising 50% rise in the annual mean of Fprob between 1985-96, averaged 564 

over the entire Bering Sea. Similarly, Kahru et al. (2012) showed a significant increase in 565 

Fprob in the California Current System over 29 years (1981-2009). However, both studies did 566 

not consider the changes in available data. Ullman et al. (2007) used frontal maps from 1985 567 

to 2001 to investigate temporal and spatial variability of Fprob in four regions of the North 568 

Atlantic. They mentioned the dependency of Fprob on Fclear, which could lead to an 569 

underestimation of Fprob. However, they concluded that it did not influence their results, 570 

because seasonal peaks of Fclear did not coincide with peaks in Fprob. In this research the 571 

seasonal pattern between Fprob and Flcear were not identical either, showing different 572 

seasonal peaks, but the  relationship became evident only during the modelling process. 573 

Therefore, Ullman et al. (2007) might have underestimated the effect of Fclear. Obenour 574 

(2013) is the only study to our knowledge that accounts for the clear pixel issue in their 575 

analyses, using the method described above (SIED-window >90% cloud free). Despite 576 

accounting for Fclear, Obenour (2013) still found an overall increase in global Fprob from 577 

1981 to 2011, which varied between different (selected) regions of the world. 578 

 579 

Although most of these studies did not account for Fclear, they generally report a rise in 580 

Fprob over time. Direct comparisons between this study and previous research are difficult, 581 

because of different study locations (e.g. California Current System, Bering Sea), study 582 

periods and durations, and the fact that these studies combine distinct fronts by spatially 583 

averaging over large areas. Subsequently, winter and summer time fronts, which may have 584 

different long-term trend pattern, are merged. For example, Belkin and Cornillon (2005) use 585 

frontal maps from before 1995, a period when the increase in satellite imagery was not as 586 

marked. It is possible that a divisor effect in other parts of the world is not as significant 587 

because of different weather patterns and cloud cover throughout the year. It is also possible 588 

that in this research the effect of Fclear has been overestimated by the statistical model, 589 

masking genuine temporal variability in the other metrics.  590 

 591 

In summary, the effect of Flcear on Fmean and Fprob is strong and the amount of available 592 

data should always be considered in any analysis. Because of the non-linear relationship 593 

between Fclear and Fprob/Fmean, not all variability will be removed when accounting for 594 

Fclear and variability relating to actual changes in frontal occurrence can still be observed. In 595 

addition, Fclear is mostly an issue in the lower value ranges. Therefore, one could use data 596 

above a certain Fclear threshold only (determined via statistical analysis on the given dataset) 597 

and make the assumption that all the variability observed is actually due to changes in the 598 
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frontal structure. It clearly requires more investigations on how to best account for an Fclear 599 

effect. A combined approach appears sensible, whereby an Fclear effect is reduced during 600 

frontal map processing (Obenour, 2013) and subsequently, tested for during statistical 601 

analysis (this research). 602 

 603 

4.3 Importance of differentiating between distinct types of fronts  604 

High values of Fprob were found during winter at the Celtic Sea Front, which were likely  605 

frontal segments not belonging to the front of interest, but to a coastal current. The inclusion 606 

of this signal affects the results of temporal analyses, because it adds variability independent 607 

of the front of interest. Different types of fronts respond to atmospheric and hydrodynamic 608 

forcing in specific ways and subsequently, display a distinct spatio-temporal variability 609 

(Hickox et al., 2000). When summarising frontal activity over large areas, e.g. entire seas, 610 

fronts with different temporal variability pattern will be combined and their individual 611 

temporal signals blurred. Therefore, it is difficult to draw meaningful conclusions about 612 

frontal activity from a cumulative temporal signal obtained over large areas.  613 

 614 

It would make sense for any type of temporal analyses, seasonal or trend, to separate distinct 615 

types of fronts. In addition, individual fronts or particular types often play a specific role in 616 

oceanographic or biological processes and their effect on the ecosystem can vary (Scales et 617 

al., 2014). It is therefore of interest for ecologists and oceanographers alike to be able to 618 

distinguish between individual features and study them in isolation. Isolating features of 619 

interest is difficult, particularly in areas with high frontal activity, where various fronts exist 620 

in close proximity and often merge, such as shelf-seas (Achta et al 2015). In this research, the 621 

study area was refined by resampling different sized subsets (see supplement 6.1). Although 622 

the process was parameterized as much as possible, there is some arbitrariness and the 623 

possibility of unwanted features entering the study region. A newly developed technique, 624 

called synoptic front maps, could prove useful for isolating fronts for analysis. It is based on a 625 

novel line-clustering algorithm, which first involves smoothing the Fmean map with a 626 

Gaussian, then the most prominent frontal observations and directions are identified and 627 

followed to generate contiguous contours. This front simplification algorithm is in preparation 628 

for publication (Miller, in preparation). 629 

 630 

 631 

 632 

 633 
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5 Conclusions  634 

Frontal maps were initially developed to visualise fronts, using image processing algorithms 635 

to detect, identify and enhance frontal features. However, for statistical analysis the user 636 

should be aware of their qualities and limitations. This guide on frontal metrics highlights 637 

essential points to think about before and during the analysis stage. Metrics belonging to the 638 

group Fprob, Fpers, Fcomp were highly correlated, whereas Fmean and Fdens displayed 639 

weaker correlations with other metrics. We recommend using Fprob for temporal analysis of 640 

frontal persistence and Fmean for frontal strength; the more complex metrics hinder 641 

interpretation without adding information. However, for visual analysis, frontal maps based 642 

on complex metrics (e.g. Fdens, Fcomp) may be more appropriate, because they highlight 643 

persistent features and suppress transient segments that add noise to the maps. Although this 644 

appears to make the use of complex metrics in spatial analysis more desirable, e.g. in ecology 645 

to explain animal distribution, we still recommend the use of interpretable metrics such as 646 

Fprob and Fmean. Alternatively, a combination of metrics (complex, but spatially clean 647 

versus simple and noisy, but interpretable) can be used to entangle the relationship between 648 

fronts and animal distribution. Secondly, data availability has to be accounted for as it can 649 

introduce spurious trends: Fprob and Fmean were strongly affected by Fclear. A combination 650 

of improving data quality during the data processing stage as well as including Fclear as a 651 

factor in statistical models is recommended. We used frontal maps at monthly resolution and 652 

focused on a specific type of front in this research. It would be useful to investigate the Fclear 653 

effect on fronts in other regions, on other types of fronts and at higher temporal resolutions. 654 

For example, frontal types other than tidal mixing fronts, which are not subject to 655 

meteorological factors (which tends to covary with Fclear) as much could be less sensitive to 656 

Fclear. Finally, depending on the research question, scientists should consider studying 657 

individual fronts in isolation to avoid blurring of signals due to contrasting temporal food 658 

prints of different frontal types. 659 

 660 
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