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Key message: 

We describe seasonal and regional variability in carbonate chemistry around the north-west 

European shelf, from a large and unique 1.5 year dataset of biogeochemical sampling 

combined with underway pCO2 data. The data has improved understanding of carbonate 

chemistry in relation to nutrient biogeochemistry, showing seasonal variations between the 

well-mixed inner shelf and seasonally stratified outer shelf regions.  
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Abstract 

In 2014-5 the UK NERC sponsored an 18 month long Shelf Sea Biogeochemistry research 

programme which collected over 1500 nutrient and carbonate system samples across the NW 

European Continental shelf, one of the largest continental shelves on the planet.  This 

involved the cooperation of 10 different Institutes and Universities, using 6 different vessels. 

Additional carbon dioxide (CO2) data were obtained from the underway systems on three of 

the research vessels. Here, we present and discuss these data across 9 ecohydrodynamic 

regions, adapted from those used by the EU Marine Strategy Framework Directive (MSFD). 

We observed strong seasonal and regional variability in carbonate chemistry around the shelf 

in relation to nutrient biogeochemistry. Whilst salinity increased (and alkalinity decreased) 

out from the near-shore coastal waters offshore throughout the year nutrient concentrations 

varied with season. Spatial and seasonal variations in the ratio of DIC to nitrate concentration 

were seen that could impact carbon cycling. A decrease in nutrient concentrations and a 

pronounced under-saturation of surface pCO2 was evident in the spring in most regions, 

especially in the Celtic Sea. This decrease was less pronounced in Liverpool Bay and to the 

North of Scotland, where nutrient concentrations remained measurable throughout the year. 

The near-shore and relatively shallow ecosystems such as the eastern English Channel and 

southern North Sea were associated with a thermally driven increase in pCO2 to above 

atmospheric levels in summer and an associated decrease in pH. Non-thermal processes (such 

as mixing and the remineralisation of organic material) dominated in winter in most regions 

but especially in the northwest of Scotland and in Liverpool Bay. The large database 

collected will improve understanding of carbonate chemistry over the North-Western 

European Shelf in relation to nutrient biogeochemistry, particularly in the context of climate 

change and ocean acidification.  

1.0 Introduction 

 

Continental shelf seas are important net sinks of atmospheric CO2, occupying only 

7% of the global sea surface area (Chen & Borges, 2009). However, there are considerable 

uncertainties in the contributions of individual shelf seas to regional (and global) carbon 

budgets (Borges, 2005). Continental shelves have high levels of biological activity due to 

cross shelf and riverine nutrient supply, and to rapid organic matter recycling from the close 
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pelagic-benthic coupling on the shelf (Liu et al., 2010). The seawater partial pressure of CO2 

(pCO2) is controlled by seasonal changes in temperature and phytoplankton productivity 

(Zeebe & Wolf-Gladrow, 2001). Additional factors such as coccolithophore calcification 

(Harley et al., 2010) can influence seasonal variations in seawater pCO2.  

The northeast Atlantic continental shelf is a net CO2 sink, of about -17 Tg C yr
-1

 

(compared with the global estimated shelf sink of -0.2 Pg C yr
-1

; Laruelle et al., 2014) and 

thus significant on both a regional and global basis as a hotspot of CO2 uptake. It comprises 

both well-mixed and stratified regions, which have different capacities to take up CO2. 

Generally the well mixed near-shore heterotrophic ecosystems act as sources of CO2 to the 

atmosphere and the seasonally stratified autotrophic continental shelf systems act as sinks of 

atmospheric CO2 (Borges, 2005; Chen & Borges, 2009). An example of the former is the 

southern North Sea (Thomas et al., 2004) and the south western English Channel (Borges, 

2005; Marrec et al., 2013, 2015). An example of the latter is the seasonally stratified northern 

North Sea, which is an order of magnitude stronger CO2 sink than the well-mixed eastern 

English Channel (Thomas et al., 2004, 2007). In the boundary between the off-shelf and on-

shelf waters, a continuous injection of nutrients can arise due to processes such as internal 

tides, internal waves, eddies and slope current mixing, which can enhance productivity 

(Pingree, 1975; Garcia-Soto and Pingree, 1998) and the potential CO2 sink.  

Monitoring the seawater total alkalinity (TA) and dissolved inorganic carbon (DIC), 

along with its pCO2, will help describe the oceanic carbonate system. The exact definition of 

TA is complicated but it can be summarised as the stoichiometric sum of bases in solution 

(Wolf-Gladrow et al., 2007). Many processes can influence TA such as benthic calcification 

and dissolution, the growth of coccolithophore blooms (Harlay et al., 2010); the contribution 

of organic matter (Koeve et al., 2012; Hoppe et al., 2012); changes in riverine input (Hydes & 

Hartman, 2012) and nitrate uptake (Brewer & Goldman, 1976).   

The anthropogenic increase in atmospheric CO2 and uptake by seawater is driving a 

decline in oceanic pH known as ocean acidification (OA) (Caldeira & Wickett, 2003; Doney 

et al., 2009; Gattuso & Hansson, 2011). It is also important to measure nutrient 

concentrations as an indication of potential primary production, as this will influence pCO2 

(and therefore seawater pH) through the balance between photosynthesis and respiration. 

The general features of the annual cycle of nutrient and plankton concentrations on 

the northwest European shelf have been established for some time (Cushing, 1973; Johnston, 

1973; Gerlach, 1988; Nelissen & Stefels, 1988). Within the North Sea, the NERC North Sea 
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Programme in 1988-89, provided the first data set with sufficient information to allow 

seasonal changes in nutrient concentrations and plankton biomass to be investigated 

quantitatively (Howarth et al., 1996). Seasonal variation in carbonate chemistry has also been 

followed at time series sites (eg: the L4 and Stonehaven sites during the 2008-2010 

DEFRApH project, Hydes et al., 2011) or through surveys around the NW European shelf 

(e.g. Thomas et al., 2004, which was based on 4 surveys of the North Sea). 

UK-SSB was established in 2014 to improve our understanding of carbon and nutrient 

cycling within shelf seas. As part of the ‘CANDYFLOSS’ (Carbon and Nutrient DYnamics 

and Fluxes Over Shelf Systems) component of UK-SSB, sampling was carried out across the 

entire NW European continental shelf for DIC, TA and inorganic nutrients. The UK-SSB 

sampling campaign was a large marine research community effort that started in January 

2014 and continued for eighteen months, involving the cooperation of 10 institutes and 

universities and 6 vessels. One aim of the present study was to increase the density and 

spatial coverage of carbon and nutrient sampling across the entire NW European shelf, using 

the shelf wide sampling component of the UK Shelf Sea Biogeochemistry research 

programme (UK-SSB, http://www.uk-ssb.org/). Our aim was to describe how the 

biogeochemical variables are distributed and interrelated on the shelf, both through the year 

and across 9 ecohydrodynamic regions, adapted from those used by the EU Marine Strategy 

Framework Directive (MSFD). 

 

2.0 Materials and methods 

 

2.1 Division of data into Ecohydrodynamic regions 

Ecohydrodynamic regions of the NW European Shelf are defined for reporting under 

the EU Marine Strategy Framework Directive (MSFD). The regions have been adapted from 

those defined in Charting Progress 2 (UKMMAS, 2010) and Bresnan et al., (2015), with the 

addition of the Irish Continental Shelf and the Norwegian Trench. They are distinguished by 

water depth (and seasonal stratification), proximity to the coast, riverine inputs (salinity) and 

water temperature ranges.  These regions and the sampling positions are shown in Figure 1.  
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Figure 1: Map of the sampling positions (black dots) during UK-SSB (2014-2015). Coloured 

areas 1—9 show the UK ecohydrodynamic regions used for MSFD reporting (adapted from 

Bresnan et al., 2015 to now include Ireland and the Norwegian Trench and showing the 200m 

contour). White plusses show the time series sites SH (Stonehaven) and L4. 

Complex tidal fronts and topography separate the well-mixed and seasonally stratified 

waters across the shelf. This will strongly influence the biogeochemical dynamics of the area 

(as shown by Simpson & Hunter, 1974). The biogeochemical divide along the 50m contour 

separates the seasonally stratified northern North Sea (region 1) from the shallower, well-

mixed southern North Sea (region 2). The North Sea is influenced by the Atlantic Ocean to 

the North (Huthnance et al., 1997) and by riverine input, especially to the south (Hydes et al., 

1999; Bresnan et al., 2015). The northern North Sea acts as a down-welling system 

(Huthnance et al., 2009). In the southern North Sea the entire water column remains well 

mixed throughout the year, likewise the eastern Channel (region 3) has shallow (0-100m) and 

tidally well mixed waters. The deeper western Channel and Celtic Sea (region 4) has strong 

seasonal stratification with Atlantic influences in the Celtic Sea (Pingree, 1993; Simpson & 

Hunter, 1974). The relatively shallow and enclosed Irish Sea and especially Liverpool Bay 

(region 5) have a high influence of fresh water input (Hydes & Hartman, 2012; Greenwood et 

al., 2011). 
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Waters west of Scotland and the Minches (region 6) are made up of North Atlantic 

Ocean waters and form part of the continental shelf current but are modified by coastal 

influences (Bresnan et al, 2015). The Scottish and Irish continental shelf (region 7) are 

characterised by seasonal stratification and, as defined here, have a western limit of the 200m 

depth contour. This region is influenced both by exchanges with the North Atlantic deep 

water and by water flowing from the south in the shelf edge current (Pingree, 1993; 

Huthnance, 1995 &1997; Hydes et al 2004).  The deep-sea waters beyond the 200m contour 

are oceanic in origin and the Atlantic Approaches (region 8) encompasses the Rockall Trough 

and the Faeroe/Shetland Channel. The Norwegian Trench (region 9) is the main outflow path 

for water leaving the North Sea, and it is permanently stratified (Van Leeuwen et al., 2015).   

 

2.2 Sample collection 

Between January 2014 and August 2015, multiple organisations collected samples 

from the underway water supply of their vessels on a daily basis whenever they were at sea 

around the NW European shelf (Figure 1). Data were obtained from RRS Discovery (8 

cruises), RRS James Cook (1 cruise), RV Cefas Endeavour (34 cruises), RV Celtic Explorer 

(6 cruises), RV Scotia (7 cruises), RV Corystes (15 cruises), with additional samples from the 

fixed point monitoring sites Stonehaven in the North Sea and L4 in the English Channel 

(Figure 1). All data are available from BODC http://www.uk-ssb.org/data/ and as listed in the 

references from Humphreys et al., 2017 (a-h).  

On approximately 1500 occasions, surface samples were collected from the underway 

seawater supply (nominal 5m depth). For DIC and TA analysis the samples were collected 

into borosilicate glass bottles (preserved with 0.05 ml saturated mercuric chloride solution 

following Dickson et al., 2007), and the nutrient samples were filtered and frozen. At the time 

of sampling the temperature and salinity was recorded from the underway sensors. Additional 

near surface (0-20 m) samples were taken using a rosette sampler on the UK-SSB cruises in 

the Celtic Sea, on the RV Cefas Endeavour and on a supporting cruise to the Hebrides Shelf 

(Painter at al., 2016; Hartman et al., 2017).  

 

2.3 Chemical analysis 

http://www.uk-ssb.org/data/


  

7 
 
 

DIC and TA were mostly (>95%) measured using VINDTA 3C (Marianda, Germany) 

instruments in our shore based laboratory in Southampton. DIC analysis on the VINDTA 

involves reaction with 10% phosphoric acid, which converts DIC to CO2 gas. This is carried 

by nitrogen into the coulometer cell where it reacts with monoethanolamine forming a 

titratable acid, which causes fading of the blue indicator. Responding to the colour change, an 

electrical current generates base to remove the acid and restore the indicator to the original 

colour. The amount of CO2 can be estimated from the total current required (corrected for a 

blank), and DIC concentration can then be calculated given the sample volume. TA was 

measured by titration with hydrochloric acid (HCl ~0.10 mol l
-1

) using an open cell 

procedure, with a pH half-cell electrode (glass bodied Orion 8101SC, Ross, USA) and an 

Ag/AgCl reference electrode (model 6.0729.100, Metrohm, Switzerland). A modified Gran 

plot approach was used to calculate TA (Humphreys, 2015). Approximately 5% of the DIC 

and TA measurements were conducted using the Apollo SciTech (USA) DIC Analyzer (AS-

C3) and Total Alkalinity Titrator (AS-ALK2). The AS-C3 functions similarly to the 

VINDTA 3C except that the final CO2 measurement is by infrared absorbance (LI-COR). The 

AS-ALK2 performs a potentiometric titration with 0.1M HCl to determine the TA.  

In order to calibrate the results, seawater reference material (RM) obtained from A.G. 

Dickson (Scripps Institution of Oceanography, USA) were analysed each day (Dickson et al., 

2003). Precision was assessed through repeated measurements of pooled seawater samples 

(n>3) before each batch of sample analysis. The 1σ precision for the whole dataset was 

estimated as ±2.6 μmol kg
-1

 for DIC and ±2.7 μmol kg
-1

 for TA for VINDTA measurements. 

For the Apollo measurements, precision was estimated as ±4.0 μmol kg
-1

 and ±3.9 μmol kg
-1

 

for DIC and TA respectively (Humphreys et al., 2017, this issue). 

During the SSB shelf wide sampling, underway pCO2 was measured on-board the RV 

Cefas Endeavour and on the NERC research vessel RRS Discovery using PML-Dartcom 

systems (Kitidis et al., 2012). Briefly, this comprises of a vented ‘showerhead’ equilibrator, 

Peltier cooler for partial drying of the equilibrated gas stream, non-dispersive infrared 

detection (Licor; LI-840) and associated mechanical/electronic hardware. The system was 

calibrated against three reference gases (BOC Gases, UK; nominal concentrations 250, 380 

and 450 ppmv CO2 in synthetic air mixtures; changing from 450ppm to 600ppm on the RV 

Cefas Endeavour from November 2014) which were referenced against primary reference 

gases (National Oceanic and Atmospheric Administration, 244.9 and 444.4 ppm CO2). A 

recent at-sea inter-comparison with a similar but independent system, along with other 
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carbonate observations, found the system was precise to within ±4 μatm (Ribas-Ribas et al., 

2014). The atmospheric pCO2 was calculated from monthly averaged pCO2 measured at 

Mace Head (53.33° N, 9.90° W) (Humphreys et al., this issue).  

Inorganic nutrients were analysed using a ‘Bran and Luebbe AA3’ segmented flow 

colorimetric nutrient auto-analyser. The analytical methods were phosphate and silicate using 

Kirkwood (1989) and nitrate (plus nitrite) with Brewer and Riley (1965) methods. The 

standard deviation for duplicate measurements was within 2% and quality was assured 

through daily use of certified reference materials provided by KANSO (Japan). Sampling 

protocols and methodologies were carried out where possible according to the GO-SHIP 

nutrient analytical procedures manual (Hydes et al., 2010) including assessment of detection 

limits (eg: 0.1 µmol kg
-1

 for nitrate).  

 

2.4 Calculations 

The carbonate system is characterised through knowing any two parameters out of 

TA, DIC, pCO2 or pH and then using equilibrium equations and constants (Park, 1969) and 

the CO2SYS program (Lewis et al., 1998) to calculate the remaining parameters. The shelf 

wide UK-SSB measurements of DIC, TA temperature, salinity and nutrient data, were used to 

calculate pH (free scale, as recommended by Waters & Millero, 2013), pCO2, calcite (Ωc) and 

aragonite (Ωa) saturation using the CO2SYS program (Lewis et al., 1998) with the Mehrbach 

constants (according to Dickson & Millero, 1987). Known uncertainties associated with 

calculations in CO2SYS using bottle DIC and TA results as inputs lead to an uncertainty of 

±6µatm in the calculation of pCO2 (eg: Millero et al., 2002). These arise from inaccuracies in 

the measurements and in the determination of dissociation constants. Calculated pCO2 values 

were checked against direct measurements of pCO2 measured by underway systems on 60 

occasions on-board the RV Cefas Endeavour and RRS Discovery research vessels. The 

average difference was 2 μatm with a variation of up to ±27 μatm between the calculated and 

measured pCO2.  We calculated pH from DIC and TA, despite this pair not being ideal for 

this purpose (errors will be ±0.006; Millero et al., 2002), in order to give a general picture of 

seasonal and regional variations in pH on the shelf.  

The thermal and non-thermal components of pCO2 were calculated by assessing the 

change in pCO2 relative to the average of all winter data in the survey, the winter mean state 

(386 μatm), then calculating the thermal component at the mean winter temperature (9.1°C) 



  

9 
 
 

following Takahashi et al., (2002). The residual between the total and thermal component of 

change was calculated to assess the non-thermal, or largely biological, component.  

 

3.0 Results  

All results are presented with January to March defined as winter, April-June as 

spring, July-September as summer and October-December as autumn when describing the 

seasonal distribution in biogeochemical variables. Table 1 shows the seasonal mean average 

(and standard deviation) for each variable and region. As the sampling was not distributed 

evenly in space and time some regions remain under-sampled, especially the Minches (region 

6) in autumn and in the Norwegian Trench (region 9), as indicated in Table 1. 

 

3.1 Hydrographic variability 

Figure 2 shows the seasonal variation in sea surface temperature (SST) around an 

average of 14 °C. The coldest surface waters (average 7.65 °C) were seen in winter, 

especially in the North Sea (region 1, Table 1a). The warmest surface waters were generally 

observed to the south and in the summer, (eg: average of 18.27 °C Eastern English Channel 

(region 3). Warm sea surface temperatures (16.69 °C), were still apparent in the autumn in 

the Eastern English Channel (region 3). Overall the regional variations were dominated by a 

decrease in SST to the north (Figure 2). 
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Figure 2: Seasonal maps of sea surface temperature (SST), using sensor data taken at the 

point of sampling on the SSB surveys. Figures 2-9, 12-15 are all mapped from 48 to 62°N, 

16°W to 8°E showing winter (Jan-Mar), spring (Apr-Jun), summer (Jul-Sep) and autumn 

(Oct-Dec).   

 

Figure 3 shows the seasonal and regional variation in sea surface salinity (SSS). 

Regional variation dominated over seasonal variability and the shelf waters were fresher than 

the oceanic waters. The mean SSS for the whole data set was 34.5 with higher salinities from 

oceanic influence observed to the west on the Atlantic northwest approaches (35.6, region 8). 

A tongue of high salinity water was observed in the northern North Sea (region 1). This 

feature was especially prominent in summer (Figure 2, where the average SSS was 34.6, 

Table 1a), showing the influence of the advection of Atlantic water into this region.  
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Figure 3: Seasonal maps of sea surface salinity (SSS) as practical salinity, using sensor data 

taken at the point of sampling on the SSB surveys.  

 

3.2 Chemical variability 

3.2.1 Nutrients  

Figures 4 and 5 show the seasonal and regional variation in surface inorganic 

nutrients. Generally nitrate concentrations were relatively high offshore, in the Atlantic 

waters off shelf (region 7) compared to the inner shelf regions in all seasons. In contrast, the 

silicate concentrations were generally lower on the outer shelf compared with the inner shelf 

(see Figure 4 and 5). For example to the west of Ireland (in region 7) the average nitrate 

concentration in winter was relatively high (7.9 µmol kg 
-1

) when the silicate concentrations 

were relatively low (4.6 µmol kg 
-1

) as shown in Table 1. 

Seasonally the highest nitrate and silicate concentrations were observed in winter, in 

all regions (Figures 4 and 5). For example, the winter nutrient concentrations were high in the 

Irish Sea (region 5) with average winter nitrate and silicate of 9.9 µmol kg 
-1

 and 7.5 µmol kg 
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-1
 respectively.  However, relatively low nitrate concentrations (6.3 µmol kg 

-1
) were 

observed in winter off the Scottish west coast (region 6).  

In spring the lowest nitrate concentrations were observed in the northern North Sea 

(average 0.5 µmol kg 
-1

, region 1) and the Minches (1.0 µmol kg 
-1

, region 6) but remained 

relatively high offshore to the north of Scotland (6.7 µmol kg 
-1

, region 8) and in the Irish Sea 

(3.9 µmol kg 
-1

, region 5) . By summer, nitrate concentrations were depleted in most regions 

(Figures 4 and 5).  However in Liverpool Bay (in region 5), nutrient concentrations were 

never fully depleted although the largest seasonal changes were observed here, with a winter 

to summer decrease of 8 µmol kg
-1

 for nitrate and 5 µmol kg
-1

 for silicate (see also Tables 1a 

and 1b). On the Scottish continental shelf (region 7), to the northeast of Scotland, nitrate 

concentrations also remained above detection (average 1.2 µmol kg
-1

) into summer. In the 

autumn, nutrient concentrations had started in increase in Liverpool Bay (in region 5), earlier 

than in other regions (Figures 4 and 5).  

Phosphate concentrations were measured but have not been mapped here as they were 

uniform around the whole of the UK shelf (with a winter mean of 0.55 µmol kg
-1

, Table 1a), 

although some deviations in the ratio of nitrate to phosphate are discussed in section 4.1.  
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Figure 4: Seasonal maps of sea surface nitrate concentrations, from SSB bottle samples.  

 

Figure 5: Seasonal maps of silicate concentrations, from SSB bottle samples. 
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3.2.2 Total Alkalinity 

Figure 6 shows the seasonal and regional TA distribution. The annual mean TA for 

the whole dataset was 2320 µmol kg
-1

. There was a relatively large range of values, 

especially in the northern North Sea (region 1), where the seasonal mean TA increased from 

2275 µmol kg
-1 

in spring to 2310 µmol kg
-1 

in winter (Table 1b). In the high salinity Atlantic 

waters of the northwest approaches (region 8), seasonal mean TA values were relatively high 

(above 2330 µmol kg
-1

) and the seasonal range was small (Table 1b).  Overall, TA 

distribution was generally similar to salinity with higher TA offshore throughout the year and 

the lowest values on the shelf.  

 

 

Figure 6: Seasonal maps of total alkalinity (TA) measurements, from SSB bottle samples. 

 

3.2.3 Dissolved Inorganic Carbon 

Figure 7 shows the seasonal and regional distribution of DIC. The largest seasonal 

change in DIC was in the northern North Sea (region 1) where there was over 100 µmol kg
-1 
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decrease in the seasonal mean DIC from winter to spring (Figure 7, Table 1b). The lowest 

DIC concentrations observed were in spring in the northern North Sea (2034 µmol kg
-1

, 

region 1) and the Minches (region 6, around 2065 µmol kg
-1

) and in summer on the 

continental shelf (region 7, around 2097 µmol kg
-1

, Table 1b). DIC concentrations peaked in 

winter and decreased in the spring and summer in all regions (Table 1b), therefore DIC 

showed a similar distribution to nutrient concentrations.  

 

 

Figure 7: Dissolved Inorganic Carbon (DIC) measurements, from SSB bottle samples. 

 

3.2.4 Partial pressure of carbon dioxide 

Figure 8 shows the seasonal and regional variations in measured and calculated pCO2. 

Taking an atmospheric pCO2 of 400 µatm (Humphreys et al., this issue) then under-saturated 

values (relative to atmospheric pCO2) are indicated by the blue colours and over-saturated by 

the warmer colours in Figure 8. Generally, the highest values were seen in the autumn and the 

lowest values for each region were in the spring (Figure 8). 

In the seasonally stratified northern North Sea (region 1) pCO2 values were generally 

under-saturated from winter (352 µatm, Table 1b) to summer. However, there is some 



  

16 
 
 

variation within this region where relatively oversaturated values were observed close to the 

Scottish coast from autumn to winter (Figure 8). The largest seasonal variation in pCO2 was 

observed in the southern North Sea, (region 2) with an increase of over 100 μatm between the 

spring and autumn (Figure 8, Table 1b).   

A seasonal over-saturation in CO2 was especially prominent in the relatively shallow 

inner shelf regions in summer and autumn (Figure 8 and Table 1b). For example, a marked 

increase in pCO2 from spring to summer was observed in the relatively shallow eastern 

English Channel (region 3, from 333 to 452 µatm, Table 1b).  

 

 

Figure 8: Surface pCO2, calculated from bottle samples analysed for DIC/TA (using 

CO2SYS) and measured pCO2 from underway systems on the RRS Discovery and RV Cefas 

Endeavour (2014-2015). 

 

In the Celtic Sea (region 4) pCO2 was predominantly under-saturated throughout the 

year (Figure 8). However, pCO2 increased near to the coast in autumn when the average was 

407 µatm (Table 1b). In contrast, the relatively shallow Irish Sea (region 5) showed a general 
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year round over-saturation in pCO2 (with seasonal averages above 409 µatm, Table 1b) 

except for in spring.    

 3.2.5   Calculated pH 

Figure 9 shows the seasonal and regional variation in calculated pH around the shelf. 

It is important to note that the colour scale is reversed in Figure 9 for easier comparisons with 

pCO2 as an inverse relationship is expected.  Overall, calculated pH was lowest around the 

coast in autumn and the highest calculated pH was observed in spring (Figure 9). For 

example in the northern North Sea (region 1) the seasonal mean pH in spring was 8.19 when 

pCO2 was low (see Table 1b). In the southern North Sea (region 2) there was a spring to 

summer decrease in the calculated pH (from 8.15 to 8.05, Table 1b). Likewise, in the eastern 

Channel (region 3) the pH decreased to a similar extent from spring to summer (Table 1b). In 

the Irish Sea (region 5) and the Minches (region 6) the seasonal mean pH was lowest in 

winter (when pCO2 was high) and increased in the spring (from 8.06 to 8.18 in region 6, 

Table 1b).  

 

 

Figure 9: pH (freescale), calculated from bottle samples analysed for DIC/TA (using 
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CO2SYS). 

 

4.0      Discussion 

4.1 An overview of seasonal variations in relation to regions 

Dividing the UK-SSB dataset into 9 ecohydrodynamic regions revealed large regional 

variations in carbonate chemistry parameters in relation to nutrients and hydrography. Figure 

10 illustrates the relationship between hydrography (SST) and surface nutrient concentrations 

s for each of the regions considered.  

 

 

Figure 10: Measured nitrate concentrations and sea surface temperature for each month and 

region. 
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Overall, there was a winter peak in nutrient concentrations, then a rapid decrease in 

the spring and summer months. The rapid depletion in nitrate (and DIC) concentrations in 

spring are likely to result from their assimilation in the production of organic material by 

phytoplankton, during the ‘spring bloom’ (Frigstad et al., 2015). The dominant pattern on the 

shelf was for low nitrate concentrations throughout the spring to summer months, in warming 

water. Then, in the autumn months there was an increase in nitrate concentrations (as the 

water cools), observed in all regions where data were available (Figure 10). The increase in 

nitrate concentrations during autumn months is likely to be due to the remineralisation of 

organic matter, the break down the thermal stratification of the surface waters and the onset 

of vertical mixing. This seasonal variability is as expected at temperate latitudes (Smith et al., 

2014) and gives a triangular distribution to the data points (Figure 10). Similar patterns would 

be expected for DIC, especially in winter months when seasonal stratification breaks down 

and nitrate plus DIC accumulates in the surface waters.  

The winter peak in nutrient (and DIC) concentrations are also likely due to organic 

matter remineralisation and the convective mixing of colder high nutrient and DIC rich 

waters from below (Körtzinger et al., 2008). Maximum concentrations were reached just 

before the return of stratification in spring in all regions (Figure 10). However, in the 

Northern North Sea the autumn SST is relatively cold and associated with higher nitrate 

concentrations compared with other regions (Figure 10).  The relationship between SST and 

nitrate concentrations is less clear in the Southern North Sea (region 2, Figure 10). Relatively 

low salinities were observed in the east of the southern North Sea in summer (region 2, in 

Figure 3) due to fresh water entering the North Sea from the major European continental 

rivers (such as the Rhine). Therefore, riverine inputs are likely to have contributed to the 

higher nitrate concentrations seen in this region.  

In the well mixed eastern English Channel (region 3) there was a pronounced 

‘triangular’ shape in the relative nitrate and SST variability (Figure 10). The nitrate 

concentrations increased earlier in the year (compared with other regions), starting in the 

summer whilst SST was still relatively high. This may be due to the continuous injection of 

nutrients into the euphotic zone that is seen in many well mixed systems (L’Helguen et al., 

1996).  High nitrate (and silicate, Figure 5) concentrations were observed for most of the year 

in the eastern Channel (region 3), probably from the remineralisation of organic material in 

these relatively shallow and well-mixed regions.  
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In the western English Channel and the Celtic Sea (region 4), an area characterised by 

seasonal thermal stratification (Smyth et al., 2010; Smith et al., 2014), the highest nitrate 

concentrations were generally observed in the winter (Figure 10, from January to March).  In 

the central Irish Sea (region 5) nitrate was never depleted, even during spring and summer, 

possibly due to riverine inputs (Greenwood et al., 2011). The seasonal mean salinity 

remained relatively low (~33.9, Table 1a) throughout the year in the Irish Sea and Liverpool 

Bay (region 5) showing a high influence of fresh water input to the region (Hydes & 

Hartman, 2012;  Greenwood et al., 2011). Silicate concentrations in the Irish Sea (region 5) 

were at least 1 µmol kg
-1 

higher than other regions throughout the year (Figure 5), probably 

due to this riverine influence. Seasonal coverage is relatively poor for the Minches (region 6) 

and the Norwegian trench (region 9), as seen in Figure 10. 

In the more open ocean continental shelf (region 7) and Atlantic northwest approaches 

(region 8) there was a linear relationship between nitrate and temperature, likely due to the 

spring nitrate depletion and autumn nitrate regeneration (Figure 10). To the far north of 

Scotland (in region 7) nitrate concentrations remained high (> 5 µmol kg
-1

) until the summer 

months (Figure 10), probably due to the general northward delay in bloom timing (Siegel et 

al., 2002).  From the linear relationship seen in Figure 10 the nitrate concentrations could 

almost be predicted from SST, as shown by Sathyendranath et al., (2001); Henson et al., 

(2003).  

 

4.2 Stoichiometry 

Figures 11(a-c) shows the relationship between nitrate and phosphate.  These figures 

confirm the similarity in spatial distributions between nitrate and phosphate, although most of 

the values were below the open ocean ‘Redfield’ stoichiometric ratio of 16:1 (Redfield et al., 

1963; Anderson and Sarmiento, 1994). In the present study, some especially low nitrate 

values, relative to phosphate concentrations, were seen in both the southern North Sea (region 

2, Figure 11a) and the Irish Sea (region 5, Figure 11b). Likewise there is a relatively low N:P 

in the Celtic Sea (region 4, Figure 11b). The N:P relationship approaches the 16:1 (Anderson 

and Sarmiento, 1994) ratio in the more Atlantic influenced off shelf areas (regions 6-8, Figure 

11c). 

Nutrient concentrations are likely to be higher near the coast than in the open ocean, 

particularly where there are riverine inputs. However, a key feature established in the North 
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Sea Project data (Hydes et al., 1999) was that the maximum nitrate concentrations observed 

in the Central North Sea (Hydes et al., 1999) and in the Irish Sea (Gowen et al., 2002 and 

2008) were below those observed in ocean waters adjacent to the shelf (Hydes et al., 2004). 

This resulted in low nitrate to phosphate (N:P) ratios (Hydes et al 1999; Gowen et al., 2002), 

probably from denitrification in the sediments of these relatively shallow (and well mixed) 

seas (Setzinger and Giblin., 1996). Recently Kitidis et al. (2017) also showed that sediment 

anaerobic ammonium oxidation and denitrification removed 6-9 % of the nitrate in the Celtic 

Sea over an annual cycle.  

Figures 11(d-f) show the relationship between DIC and nitrate. Overall, there was a 

positive correlation between DIC and nitrate around the northwest European Shelf. However 

there was large variability in this relationship within and between the regions. For example in 

the northern North Sea (region 1) most points were above the line shown in Figure 11d (that 

represents the open ocean C:N of 7.3, Anderson and Sarmiento, 1994). In the southern North 

Sea (region 2) there was a pronounced variability in the C:N relationship at very low nitrate 

concentrations (Figure 11d). In the Celtic Sea (region 4) there was a variation in the C:N ratio 

as the nutrient concentration increased (Figure 11e). However, on the Irish and Scottish shelf 

(region 7) most of the points followed this line (Figure 11f).  
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Figure 11: A comparison of the (a-c) nitrate and phosphate concentrations (in groups of 3 

regions for ease of viewing) showing the Anderson and Sarmiento (1994) N:P ratio of 16:1 as 

a solid line and (d-f) the relationship between DIC and nitrate with the C:N ratio of 7.3 as a 

solid line (Anderson and Sarmiento, 1994).  

 

A positive correlation was generally observed between DIC and nitrate, as both are 

influenced by productivity and the breakdown of organic material. Where the variability in 

the C:N relationship was pronounced at very low nitrate concentrations, for example in the 

southern North Sea (region 2), this may be a further indication of denitrification. This process 

is significant in the North Sea (Hydes et al, 1999) and could contribute to the relatively low 

nitrate values observed in both the N:P and C:N ratios (Figure 11) in this region. However, 

riverine input can be an additional source of variability in the C:N relationship in the more 

coastal systems through both nutrient input (Greenwood et al., 2011) and DIC input 

(McGrath et al., 2016).  

In the Celtic sea (region 4), the points were above the line at low nitrate 

concentrations and below the line at higher concentrations (> 8µmol kg 
-1

, Figure 11e). So, 

the C:N ratio was initially high in the potentially productive periods (periods of productivity 

were identified for the Celtic Sea by Hickman et al., this issue), when nitrate concentrations 

were lower. Then the C:N decreased at high nitrate concentrations. High C:N suggests a more 

efficient recycling of nitrate compared with carbon and that the organic material exported 

from the surface would be carbon enriched (Sambrotto et al., 1993). Therefore spatial and 

seasonal changes in C:N could have a significant impact on carbon cycling and export off the 

shelf via the continental shelf pump (Gruber and Galloway, 2008; Painter et al., 2017).  

Variation in the C:N will also have implications for methods that calculate productivity from 

the depletion in DIC or nitrate (Frigstad et al., 2015 and references therein) using the 

‘standard’ C:N Redfield ratio of 6.6:1 (Anderson and Sarmiento, 1994).  

 

4.3 Controls on seawater pCO2 

The solubility of CO2 depends mainly on temperature (increased solubility at low 

temperature, decreased at high temperatures). In turn, biological production processes tend to 

decrease surface water pCO2, whereas respiration and remineralisation processes tend to 

increase surface water pCO2 (Shadwick et al., 2011). The dominance of these processes 
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varies through the year and with region (Takahashi et al., 2002; Jiang et al., 2013).  To study 

this further we assessed the physical and biological forcing on pCO2.  Figure 12 shows the 

thermal component of the change in pCO2 calculated following Takahashi et al. (2002). 

Figure 13 shows the residual between the total and thermal component of change and 

represents the non-thermal component, which we assume to be largely biologically driven. 

This is either through the remineralisation of organic matter in the surface layer, or the 

addition of remineralised nutrients from the deep layer through vertical mixing. The 

magnitude of this component may be reduced by any air-sea gas exchange.  

Our study showed the dominance of thermal control (Figure 12) on the pCO2 

especially in the spring and summer. Temperature can be the main factor influencing the 

pCO2 variability, through the control on stratification and stabilisation of the water column 

triggering production.  

The spring time decrease in pCO2, to under saturated levels was seen in all regions and 

coincided with a large decrease in nutrients in these productive waters (Table 1), as shown by 

Thomas et al., (2005). Biological production can impact surface pCO2 in summer in stratified 

systems by the presence of subsurface phytoplankton blooms below the (shallow) 

thermocline (Shadwick et al., 2011). Non-thermal or biological control dominated from 

autumn through to winter (Figure 13) due largely to regeneration from the respiration of 

organic material.  

There were clear regional variations in the balance of thermal and non-thermal 

controls. For example in the central region of the northern North Sea (region 1) there was a 

thermally driven increase in pCO2 of about 70 µatm from winter to spring (Figure 12), and a 

non-thermal decrease of 110 µatm (Figure 13). This region seasonally stratifies and DIC is 

transported off shelf (Huthnance et al., 2009). Overall, in the seasonally stratified northern 

North Sea (region 1), the control of pCO2 was predominantly non-thermal (biological, as 

shown in Figure 13), as has been shown previously (Thomas et al, 2005 & 2006; Van 

Leeuwen et al., 2015). In contrast, in the well-mixed, shallower southern North Sea (region 2) 

thermal controls on pCO2 dominated (Figure 12).  In this region, water temperature was the 

dominant control on both pCO2 and nutrient concentrations (Thomas et al, 2005 & 2006; Van 

Leeuwen et al., 2015). 
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Figure 12: The thermal component of the change in pCO2 calculated following Takahashi et 

al. (2002).  

 

Figure 13: The non-thermal component of the change in pCO2 (calculated following 

Takahashi et al., 2002 as the residual between the total and thermal component of change).  
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Our study suggested that the eastern English Channel (region 3) was over-saturated in 

CO2 in the autumn (Figure 8). This was when non-thermal heterotrophic processes, such as 

organic matter remineralisation, dominated (Figure 13). An autumnal over-saturation of CO2 

has been observed previously in the eastern English Channel (Frankignoulle et al., 1996; 

Jiang et al., 2013). Borges (2005) also suggested that the permanently well-mixed and 

shallow ecosystems within the eastern English Channel were seasonally over-saturated and a 

seasonal source of CO2.  

Overall pCO2 in the Celtic Sea (region 4) was close to the atmospheric pCO2 for most 

of the year (Figure 8), with a pronounced under-saturation in spring (to a mean average of 

364 µatm, Table 1). This is similar to the observations made by Kitidis et al., (2012). The 

seasonal variations in pCO2 were dominated by biology rather than advection in the northern 

part of the western English Channel (Figure 13).  In contrast, the data suggested that in the 

Irish Sea (region 5) pCO2 was over-saturated for most of the year (Figure 8). There was a 

dominance of non-thermal controls on pCO2 in autumn and winter in the Irish Sea (region 5), 

and the non-thermal influences were especially high near to the coast (Figure 13). pCO2 

remained higher here than if it were in equilibrium with the atmosphere for most of the year 

(Table 1), except for in the spring when there was a pronounced under-saturation in the 

surface waters.  

In the Minches (region 6), the non-thermal component was especially high in winter 

and had little influence for the rest of the year. In the wider sub-polar Atlantic, the seasonal 

cycle of pCO2 was dominated by the mixing of cold water (leading to increased CO2 

solubility). This was seen to the west of Ireland (region 7) where both the thermal and non-

thermal components increased pCO2 in the autumn and winter.   

In summary, the largest thermal component observed was in the summer to the south 

of the UK (Figure 12), especially in the southern North Sea (region 2) and the eastern English 

Channel (region 3) where the highest SST had been observed in summer (Figure 2).  The 

largest non-thermal component observed (Figure 13) was in winter, especially around the 

coast in Liverpool Bay (region 5) and the Minches (region 6). In all of these well-mixed and 

shallower regions, it is likely that the decaying bloom, and breakdown of organic material 

(Carr et al., this issue), increased the pCO2 in autumn and winter. As these regions remain 

mixed the pCO2 super-saturation persists until the next spring.  
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Our seawater pCO2 data has been used to assess potential sources and sinks around 

the shelf (Kitidis et al., 2018 in prep.). The direction of air-sea gas fluxes are driven by 

concentration differences between the seawater and atmosphere. Where pCO2 in seawater 

was under-saturated compared with the atmospheric pCO2 it suggests that this area will be a 

sink; if it exceeded pCO2 in air then this suggests the region will be a source to the 

atmosphere. However, the magnitude of the flux is modulated by other processes, for which 

wind speed can be used as a proxy (Wanninkhof, 2014). This is explored further in Kitidis et 

al. (2018, in prep.) and the NW European shelf was found to be net autotrophic and a CO2 

sink over the period of our study. 

The separation into ecohydrodynamic regions (after Bresnan et al., 2015) was done to 

distinguish the different hydrographical regions. These separations correspond well to the 

biogeochemical variability observed from the data. However, if you go further into the details 

then more complex and dynamic hydrographical systems are observed, such as tidal fronts 

between the year round well-mixed and seasonally stratified ecosystems, shelf break systems 

and estuarine systems. The on-shelf tidal frontal zones between the permanently well-mixed 

and seasonally stratified areas are particularly productive and can influence CO2 exchange 

and examples of these frontal regions are seen in the Irish Sea (Simpson & Hunter; 1974) and 

in the Celtic Sea (Pingree & Griffiths, 1978). For example within the seasonally stratified 

Celtic Sea (region 4) the southern part of the western English Channel and the waters around 

Land’s End (Marrec et al., 2013), can be distinguished in the hydrography. Within the 

western Channel and Celtic Sea (region 4) there was a clear division between the northern 

sub-region, where there was a dominance of non-thermal control of pCO2 in winter and the 

southern part where thermal effects dominated (Figure 12).  

 

4.4  Changes in alkalinity and pH  

The TA and salinity distribution is generally similar as both are strongly influenced 

by evaporation, riverine freshwater inputs and precipitation. TA can be considered as 

conservative in the open ocean where TA and salinity tend to be linearly related (Lee et al., 

2006; Jiang et al., 2014). Near coastal waters, with a strong salinity gradient, are ideal places 

to get a TA: S linear relationship. However in the current study the real near coastal water 

area was not assessed, and it was difficult to get see a linear TA:S relationship in such diverse 

ecosystems although the low salinity water was generally associated with low TA values. The 
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offshore increase in salinity (Figure 3) and TA (Figure 6) dominated over any seasonal 

variations. 

Many processes result in a TA increase in near coastal waters (Cai et al., 2011; 

Thomas et al., 2007), such as the increase in TA by the oxidation of organic material in 

marine sediments (Froelich et al., 1979). The southern North Sea (region 2) and the eastern 

Channel (region 3) both showed large variability in TA compared with other regions as these 

shallow areas are influenced by high organic material (Salt et al., 2016). Coastal regions are 

also influenced by riverine input, where the presence of calcareous limestone bedrock can 

increase TA in shelf waters. For example, the high TA river Liffey near Dublin inputs to the 

Irish Sea (region 5) although in this case the effects will only be observed near to the coast 

due to a low riverine discharge (McGrath et al. 2016). Previous studies have shown some 

seasonality in TA due to productivity, for example Hydes & Hartman (2012) showed higher 

TA during the spring bloom in the Liverpool Bay sub-region of the Irish Sea (region 5). On 

the northwest European shelf large coccolithophore blooms can also strongly influence 

alkalinity and calcification will affect the TA and seawater pCO2 (Harlay et al., 2010)  

In the present study, large seasonal variations in pH were observed around the shelf, 

(up to 0.2 units, Table 1b). The pH range is influenced by DIC, TA and changes in 

temperature and by the balance between photosynthesis and respiration.  There is generally 

an inverse relationship between pCO2 and pH, due to the increase in H
+
 ions (i.e. decreased 

pH) when CO2 dissolves in seawater (Zeebe and Wolf-Gladrow, 2001).  pH increased in 

spring in all regions (Table 1b) when photosynthesis dominated over respiration. pH then 

decreased in summer in most regions (Table 1b): for example in the Southern North Sea 

(region 2) pH decreased from spring to summer (8.15 to 8.05, Table1), as respiration became 

more important (Provoost et al., 2010). Previous studies found similar large seasonal 

variations in pH (up to 0.3) especially off the east coast of Scotland, around the Stonehaven 

time series site (Hydes et al., 2011; Ostle et al., 2016).  

In the North Sea (regions 1 and 2) and the eastern Channel (region 3), where 

temperature control on pCO2 dominated, there was a winter to summer increase in pCO2 (and 

associated pH decrease), possibly influenced by the remineralisation of organic matter in 

these shallower regions. The pCO2 increase (and pH decrease) at the end of summer, is likely 

to be due to the influence of temperature and the remineralisation of organic matter by 

microbial processes through the sediment-water interface in these relatively shallow regions. 
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The process of denitrification over muddy sediments could also influence pH although we 

would expect a pH increase due to this process (Froelich et al., 1979; Provoost et al., 2010).  

The strong pH fluctuations in shelf seas and coastal waters (Duarte et al., 2013; Ostle 

et al, 2016; Waldbusser & Salisbury, 2014) imply that the concept of ocean acidification 

(OA) is difficult to transpose to coastal ecosystems, where the rates and variability of OA are 

higher than in the open ocean (Doney et al., 2009).  The occurrence of vibrant biological 

communities in areas with large regional and seasonal variations in seawater pH imply that 

they possess an inbuilt tolerance to pH changes (Bates et al., 2014; Kitidis et al., 2017). This 

tolerance may occur due to the ability of seawater to buffer some of these pH changes 

through its alkalinity. TA will buffer the hydrogen ions so the buffering capacity of seawater 

is a direct function of TA as regions with high TA will be less prone to rapid changes in OA. 

The DIC:TA relationship for example can be strongly linked to different buffer factors (eg: 

Egleston et al., 2010). Studies such as ours give some indication of the present pH variability 

over the NW European Shelf, which will be useful in the future in the context of ocean 

acidification. This study also identified regions where the lowest TA values coincided with 

the lowest pH, such as the Southern North Sea (region 2, see Table 1). The low TA may 

suggest regions with a decreased capacity to buffer pH changes in the future.  

Future OA could have detrimental effects on calcifying organisms (Feely et al., 2009; 

Riebesell & Tortell, 2011; Doney et al., 2011). In the current study, calcite (Figure 14) and 

aragonite (Figure 15) were not generally under-saturated. Calcite saturation was always in the 

range of 1.5 to 4.8 and aragonite was virtually never under-saturated (1.0 to 3.1; about 0.3% 

of total measurements were <1). Aragonite is the most soluble form of calcium carbonate in 

the marine environment and saturation will decrease as pH decreases (Feely et al., 2009), 

giving an indication of susceptibility of a region to ocean acidification.  Low saturation 

coupled with low pH would affect the ability of organisms to form shells and skeletons 

(Fabry et al., 2008). Model data from Artioli et al., (2014) showed localised potential under-

saturation of aragonite in the German Bight by the end of the 21
st
 century. Changes in 

temperature, pCO2 and calcification would all further increase the vulnerability of these 

regions to OA in the future (Bates et al., 2014). 
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Figure 14: Calcite saturation (Ωc) calculated from SSB bottle DIC and TA.  

 

 

Figure 15: Aragonite saturation (Ωa) calculated from SSB bottle DIC and TA.  
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As the seasonal variation in pH can be large (Ostle et al., 2016) long-term time series 

measurements are required to detect any inter-annual trends (Bates et al., 2014). Ideally, over 

25 years of consistently measured data are required to detect pH trends (Henson et al., 2016) 

although ICES studies in the central North Sea (Beare et al., 2013) and southern North Sea 

(Duarte et al., 2013) have reported a decadal decline in pH. This decline in pH was associated 

with physical drivers (Salt et al., 2013) and changes in nutrients and eutrophication (Provoost 

et al., 2010). Hydes et al., (2011) showed a trend of decreasing pH around the NW European 

Shelf of -0.002 to -0.004 pH units per year between 1995 and 2009. If sample collection were 

to be continued around the shelf, the present study could be used to extend this emerging time 

series.  

5.0 Conclusions 

We have synthesised the spatial distributions of nutrients and carbonate chemistry 

around the northwest European shelf. The data were divided into 9 ecohydrodynamic regions 

including well-mixed inner shelf and seasonally stratified outer shelf regions.  The general 

trends in carbon chemistry were related to changes in the hydrography and nutrients 

(representing biological activity and riverine input). The seasonally stratified regions, (for 

example off shore on the Continental slope, region 7), showed a clear inverse relationship 

between SST and surface nitrate (and DIC) concentrations. This was in contrast to the well 

mixed regions, such as the eastern channel (region 3), where the regeneration of nutrients 

occurred at higher temperatures. The regional variations in the DIC to nutrient relationship 

will have implications for calculations of carbon export.  

The effects of thermal and non-thermal processes influencing pCO2 have been shown 

for different seasons and regions. For example in the near-shore and relatively shallow 

ecosystems such as the eastern English Channel (region 3) and southern North Sea (region 2) 

there was a thermally driven increase in pCO2 to above atmospheric levels in summer. Non-

thermal processes (such as mixing and the remineralisation of organic material) dominated in 

winter, especially to the northwest of Scotland (region 6) and in Liverpool Bay (region 5). In 

all regions, the seawater pCO2 was under-saturated in spring in respect to the atmospheric 

equilibrium. In the well-mixed inner shelf regions pCO2 was over-saturated for the rest of the 

year whereas pCO2 remained under-saturated throughout the year in the seasonally stratified 

regions such as the Celtic sea (region 4). The seasonal variations in under and over saturation 

of pCO2 will have implications in calculations of shelf wide net CO2 flux, presented and 
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discussed in Kitidis et al., (in prep., 2018). TA concentrations remained relatively constant 

seasonally and showed a similar distribution to salinity, as both are influenced in part by 

evaporation and precipitation. However, the lowest TA and lowest pH values were observed 

at the end of winter in the northern North Sea (region 1). We have shown that calcite 

saturation values are currently above 1.0 in all regions and such results will be useful for 

studies of ocean acidification in the future.  

This synthesis provided a 18 month ‘snapshot’ of the diverse and dynamic ecosystems 

around the northwest European shelf.  It is complicated to catch the variability of complex 

ecosystems as the ecohydrodynamic regions studied were very diverse and dynamic. Within 

each region further subdivisions were identified and the seasonal variation in 

biogeochemistry within these regions will have implications for using such broad 

hydrographic divisions to study biogeochemical variations on the northwest European shelf. 

Incorporating high frequency underway data (as was available for pCO2 measurements) 

improved both the seasonal and spatial coverage over what was possible with bottle sampling 

alone. Generally, the wintertime period was under sampled, as were some regions year round, 

including the Norwegian Trench (region 9) and the Minches (region 6). Addressing these 

issues could be the focus for further sampling campaigns. The increased use of autonomous 

measurements on robust platforms (such as buoys and autonomous surface vehicles) would 

help in this regard.  

The data have sufficient coherence and breadth of coverage to develop models that 

would link physical and biogeochemical processes. The SSB data set could also be used to 

extend existing studies to create a time series.  Once we have a longer time series, we could 

use this data set to quantify trends in pH and pCO2, so we recommend that the sampling 

continue to quantify year-to-year variability and elucidate trends in the data. In conclusion, 

the large database collected as part of the shelf wide sampling within the SSB project will 

improve the understanding of carbonate chemistry in relation to nutrient biogeochemistry 

over the North-Western European Shelf, particularly in the context of climate change and 

ocean acidification. 
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Table 1 a) The mean average (and standard deviation) for the hydrograph and nutrient data in winter (jan-mar), spring (apr-jun), summer (jul-

sep) and autumn (oct-dec) for each of the 9 ecohydrographic regions (numbered 1-9). Where insufficient samples exist, n/a has been used.  

 

 
Temperature (°C)   

 

 Practical 

salinity 

 

    

Phosphate (µmol 

kg
-1

)    

 Silicate 

(µmol kg
-1

)   

 

  

Nitrite 

(µmol kg
-1

)      

 

jan-

mar apr-jun jul-sep oct-dec 

jan-

mar apr-jun jul-sep oct-dec 

jan-

mar apr-jun jul-sep oct-dec 

jan-

mar apr-jun jul-sep oct-dec 

jan-

mar apr-jun jul-sep oct-dec 

1 7.65 13.78 14.36 11.65 33.26 34.11 34.61 34.78 0.54 0.08 0.09 0.36 3.59 0.95 0.75 3.07 0.12 0.03 0.06 0.18 

 (0.52) (2.44) (1.27) (0.45) (3.9) (0.40) (0.61) (0.02) (0.08) (0.11) (0.08) (0.01) (1.55) (0.57) (0.60) (0.49) (0.08) (0.07) (0.10) (0.01) 

2 7.86 12.40 17.69 14.24 34.08 34.56 34.43 34.67 0.35 0.10 0.16 0.50 2.13 0.80 1.92 3.72 0.14 0.02 0.10 0.59 

 (0.85) (1.27) (1.67) (1.28) (1.53) (0.36) (0.42) (0.34) (0.12) (0.07) (0.13) (0.44) (1.48) (0.53) (1.77) (2.13) (0.10) (0.05) (0.15) (0.46) 

3 9.44 12.25 18.27 16.69 34.95 30.64 34.86 35.15 0.53 0.08 1.91 0.35 5.10 2.88 3.62 3.76 0.10 0.11 0.09 0.19 

 (0.70) (1.93) (0.80) (1.25) (0.54) (10.81) (0.29) (0.11) (0.05) (0.07) (6.46) (0.26) (2.33) (9.18) (5.72) (1.44) (0.06) (0.25) (0.13) (0.14) 

4 9.48 11.32 16.63 15.84 35.22 35.27 34.12 33.39 0.53 0.21 0.09 0.27 4.23 2.14 0.80 2.27 0.10 0.07 0.08 0.23 

 (0.57) (1.56) (2.68) (5.89) (0.14) (0.17) (4.42) (6.43) (0.12) (0.16) (0.16) (0.23) (0.90) (0.93) (1.17) (1.62) (0.08) (0.05) (0.29) (0.17) 

5 8.00 10.53 15.37 14.06 33.80 33.81 34.02 34.19 0.64 0.36 0.25 0.95 7.54 3.00 2.13 5.31 0.13 0.11 0.15 0.23 

 (1.40) (1.84) (1.14) (0.89) (0.78) (0.81) (0.46) (0.36) (0.22) (0.21) (0.18) (2.15) (3.34) (2.30) (1.19) (5.59) (0.18) (0.09) (0.23) (0.36) 

6 9.35 12.14 12.47 n/a 34.45 34.00 34.24 n/a 0.53 0.19 0.24 n/a 4.53 1.29 1.43 n/a 0.06 0.10 0.25 n/a 

 (0.39) (0.73) (0.35) n/a (0.09) (0.35) (0.16) n/a (0.02) (0.12) (0.03) n/a (0.32) (0.78) (0.39) n/a (0.01) (0.07) (0.18) n/a 

7 8.74 9.70 14.01 18.41 34.53 34.94 35.11 34.87 0.59 0.42 0.13 0.36 4.56 1.54 0.48 2.65 0.27 0.23 0.06 0.31 

 (0.58) (1.80) (1.05) (10.87) (0.50) (0.42) (0.27) (0.2) (0.04) (0.27) (0.11) (0.03) (1.01) (0.79) (0.29) (0.43) (0.13) (0.14) (0.05) (0.18) 

8 9.88 11.31 16.16 14.12 35.39 35.65 35.54 35.58 0.62 0.43 0.10 n/a 3.30 2.25 0.36 n/a 0.07 0.17 0.04 n/a 

 (0.15) (1.49) (1.69) (0.39) (0.04) (0.99) (0.15) (0.00) n/a (0.18) (0.07) n/a n/a (1.39) (0.17) n/a n/a (0.06) (0.05) n/a 

9 n/a 10.75 14.03 n/a n/a 34.26 34.65 n/a n/a 0.17 0.04 n/a n/a 1.29 0.42 n/a n/a 0.16 0.01 n/a 

 n/a (1.91) (0.80) n/a n/a (0.61) (0.43) n/a n/a (0.14) (0.02) n/a n/a (0.56) (0.29) n/a n/a (0.26) n/a n/a 
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Table 1 b) The mean average (and standard deviation) for nitrate and carbonate data in winter (jan-mar), spring (apr-jun), summer (jul-sep) and 

autumn (oct-dec) for each of the 9 ecohydrographic regions (numbered 1-9). Where insufficient samples exist, n/a has been used.  

 

 

Nitrate (µmol 

kg
-1

)       

DIC (µmol 

kg
-1

)       

TA (µmol 

kg
-1

)       pH       

pCO2 

(µatm)       

 

jan-

mar apr-jun jul-sep oct-dec jan-mar apr-jun jul-sep oct-dec jan-mar apr-jun jul-sep oct-dec jan-mar apr-jun jul-sep oct-dec 

jan-

mar apr-jun jul-sep oct-dec 

1 7.40 0.51 0.33 5.42 2133.27 2033.72 2063.51 2110.95 2309.71 2275.17 2291.11 2294.62 8.18 8.19 8.15 8.09 351.51 331.07 362.89 427.85 

 (1.52) (1.42) (0.56) (0.01) (23.38) (31.65) (17.24) (0.45) (29.42) (28.38) (19.02) (7.21) (0.15) (0.06) (0.04) (0.01) (81.80) (52.03) (73.54) (8.78) 

2 4.60 1.11 0.66 6.10 2147.12 2097.67 2110.98 2144.89 2319.90 2314.85 2316.10 2331.90 8.12 8.15 8.05 8.06 382.05 376.22 483.40 469.14 

 (3.22) (2.70) (1.06) (7.39) (44.05) (18.89) (37.72) (24.54) (31.15) (29.59) (42.68) (32.12) (0.03) (0.07) (0.10) (0.01) (31.20) (58.66) (79.58) (11.83) 

3 9.56 4.13 3.77 3.45 2133.52 2102.09 2089.84 2102.80 2326.21 2341.57 2316.24 2323.77 8.13 8.19 8.09 8.10 377.89 333.08 452.43 436.64 

 (3.51) (10.42) (9.91) (3.24) (8.08) (36.38) (14.69) (10.39) (14.26) (26.17) (12.97) (10.25) (0.02) (0.06) (0.02) (0.04) (19.73) (54.69) (29.21) (48.60) 

4 6.55 2.05 0.49 3.37 2140.49 2111.78 2086.91 2116.19 2332.68 2333.32 2335.20 2337.16 8.12 8.17 8.14 8.12 388.10 354.57 389.88 405.53 

 (3.69) (2.44) (2.28) (4.06) (7.93) (23.78) (18.09) (21.57) (9.60) (10.09) (14.97) (16.05) (0.01) (0.03) (0.04) (0.04) (13.26) (31.18) (49.11) (44.77) 

5 9.86 3.94 1.03 5.27 2143.20 2095.01 2076.72 2110.78 2298.23 2294.04 2293.79 2305.37 8.07 8.14 8.12 8.08 435.29 364.82 409.35 446.75 

 (6.09) (3.86) (1.25) (4.54) (18.26) (52.36) (25.23) (12.83) (26.64) (30.14) (12.89) (10.68) (0.04) (0.10) (0.05) (0.03) (40.78) (62.10) (54.79) (28.48) 

6 6.31 0.99 1.94 0.00 2129.04 2065.03 2090.22 n/a 2287.09 2294.17 2286.60 n/a 8.06 8.18 8.11 n/a 452.97 333.27 402.89 n/a 

 (0.99) (1.50) (1.07) (0.00) (15.18) (30.84) (7.20) n/a (10.89) (10.11) (7.31) n/a (0.05) (0.05) (0.03) n/a (62.04) (43.92) (27.48) n/a 

7 7.88 5.53 1.21 4.91 2117.70 2112.53 2090.19 2127.98 2320.55 2323.43 2301.07 2316.16 8.16 8.17 8.11 8.10 347.37 342.94 411.17 418.57 

 (3.37) (4.11) (1.27) (0.64) (47.20) (30.49) (15.82) (27.17) (31.78) (14.33) (8.49) (26.90) (0.05) (0.04) (0.04) (0.02) (51.67) (29.78) (41.43) (19.97) 

8 10.23 6.71 0.59 n/a 2138.65 2129.34 2089.56 n/a 2332.34 2335.43 2329.87 n/a 8.12 8.15 8.15 n/a 386.80 369.86 372.79 n/a 

 n/a (2.99) (1.00) n/a (2.94) (16.17) (11.36) n/a (8.47) (6.30) (17.18) n/a n/a (0.03) (0.03) n/a n/a (24.80) (32.84) n/a 

9 n/a 0.67 0.14 n/a n/a 2070.94 2060.83 n/a n/a 2298.60 2294.63 n/a n/a 8.19 8.16 n/a n/a 325.05 355.18 n/a 

 n/a (0.91) n/a n/a n/a (0.13) (12.05) n/a n/a (35.53) (0.06) n/a n/a (0.03) (0.04) n/a n/a (12.54) (38.98) n/a 


