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Abstract We report the first measurements of surfactant activity (SA) in the sea surface microlayer (SML)
and in subsurface waters (SSW) at the ocean basin scale, for two Atlantic Meridional Transect from cruises
50°N to 50°S during 2014 and 2015. Northern Hemisphere (NH) SA was significantly higher than Southern
Hemisphere (SH) SA in the SML and in the SSW. SA enrichment factors (EF = SASML/SASSW) were also higher in
the NH, for wind speeds up to ~13m s�1, questioning a prior assertion that Atlantic Ocean wind speeds
>12m s�1 poleward of 30°N and 30°S would preclude high EFs and showing the SML to be self-sustaining
with respect to SA. Our results imply that surfactants exert a control on air-sea CO2 exchange across the
whole North Atlantic CO2 sink region and that the contribution made by high wind, high latitude oceans to
air-sea gas exchange globally should be reexamined.

1. Introduction

The physics and biogeochemistry of the sea surface microlayer (SML) afford it a unique role in global element
cycling and in the production and removal of climate active gases [Upstill-Goddard et al., 2003; Cunliffe et al.,
2013; Carpenter and Nightingale, 2015]. Open ocean surfactants include polysaccharides, lipids and proteins
[Allan et al., 1972; Myklestad, 1974; Sakugawa and Handa, 1985], transparent exopolymer particles [Wurl and
Holmes, 2008], and chromophoric dissolved organic matter [Tilstone et al., 2010]. They are mainly biologically
derived, from phytoplankton [Ẑutić et al., 1981], via zooplankton grazing [Kujawinski et al., 2002] and from
bacteria [Kurata et al., 2016], with additional small components of terrestrial [Frew et al., 2002] origin and from
the in situ photochemical reworking of preexisting organics [Tilstone et al., 2010]. Surfactants accumulate in
the SML through bubble scavenging from subsurface water (SSW) [Tseng et al., 1992], generating marine
boundary layer aerosols [Leck and Bigg, 1999; Ovadnevaite et al., 2011] and lowering the air-sea gas transfer
velocity (kw) of CO2 and other climate-active gases [Nightingale, 2009]. Surfactant suppression of kw by up to
50%may be typical [Bock et al., 1999; Frew, 2005; Salter et al., 2011]. While strong spatiotemporal gradients in
SML surfactant, and hence in kw, have been reported for some coastal waters [Frew et al., 1990; Schneider-
Zapp et al., 2014; Pereira et al., 2016], surfactant distributions at the ocean basin scale are currently estimates
derived from proxies [Wurl et al., 2011]. Here we present the first comprehensive measurements of total
surfactant activity (SA) in the SML and SSW across large spatial scales and up to high wind speeds, from
two Atlantic Meridional Transect (AMT) cruises between 50°N and 50°S: AMT 24 (2014) and AMT 25 (2015).

2. Study Site and Sampling

The annual AMT cruises target distinct “biogeographical ocean provinces”, as defined by the regulation of
phytoplankton distributions by hydrographic properties [Longhurst, 1995; Reygondeau et al., 2013], between
~50°N and ~50°S. AMT 24 (21 September to 6 November 2014) and AMT 25 (11 September to 4 November
2015) both ran from Immingham (UK), to Punta Arenas (Chile) and Port Stanley (Falkland Islands), respectively
(Figure 1).

The SML was sampled twice daily, during predawn and solar noon hydrocasts when the ship (RRS James Clark
Ross: JCR) was on-station. Although collecting SML samples from a moving ship or from its stern disrupts SML
integrity [Wurl and Soloviev, 2014], the SML can be successfully sampled from the bow of a large vessel while
on-station. We achieved this by aligning JCR head to wind to minimize ship-derived contamination. Doing
this, we found that even under high-wind conditions surface water was continually advected toward the
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bow and the protrusion of the fore-
deck ~3m ahead of the waterline
ensured that sampling was always
well away from JCR’s hull. With such
conditions satisfied we previously
sampled the SML for surfactants from
the bow of a large research vessel
[Salter et al., 2011], and in another
study Kurata et al. [2016] similarly
sampled SML bacteria. Observing
these protocols we collected SML
samples by using a Garrett Screen
[Garrett, 1965] (mesh: 16, wire dia-
meter: 0.36mm, and effective surface
area: 2025 cm2), as in our previous
work [Salter et al., 2011].

Deployment and recovery of the
Garrett Screen followed standard
procedures described in Gašparović
et al. [2014], which also discusses
appropriate procedures for cleaning
and for optimizing sampling effi-
ciency. Each deployment typically

collected 15–16 cm3 of the SML, and each sample comprised water from three repeat deployments
(40–50 cm3) to provide a sufficient volume for analysis. SSW samples were collected simultaneously via a
hull-mounted “nontoxic” seawater inlet at 7m.

3. Analytical Methods

Samples were left unfiltered to retain particulate surfactants [Ćosović and Vojvodić, 1987; Wurl et al., 2011;
Pereira et al., 2016] and stored in clean, high-density polyethylene bottles prerinsed with analytical grade
water (18.2 ohm Milli-Q, Millipore System Inc., USA) followed by excess sample. SA was measured immedi-
ately in triplicate by phase sensitive AC voltammetry (797VA Computrace, Metrohm, Switzerland) using a
hanging mercury drop electrode [Ćosović and Vojvodić, 1987]. Calibration was against a nonionic soluble sur-
factant (Triton T-X-100 (Sigma-Aldrich, UK); data reported in mg L�1 T-X-100 equivalents) in a 0.55mol L�1

NaCl matrix. Samples were adjusted to the same ionic strength as the standards by adding of 3mol L�1

NaCl solution typically up to a maximum of 50μL. Analytical precision was always better than ±10% and
was frequently better than ±4%. Wind speeds from the ship’s anemometer were corrected to U10n, the value
at 10m height and neutral stability, as in Nightingale et al. [2000]. Total chlorophyll (Chl a–c) and total
pigments were measured according to Zapata et al. [2000], and total primary productivity and size-fractioned
phytoplankton productivity were determined according to Serret et al. [2001]; these data are currently avail-
able for AMT 24 only.

4. Results

Latitudinal SA distributions on AMT 24 and AMT 25 were rather similar (Figure 2), both in the SML and in the
SSW. Given that the two transects differed by up to 13° of longitude between ~40°N and 20°S, AMT25 pro-
ceeding further into the North Atlantic Gyre between 20°N and 40°N and somewhat more easterly between
the equator and 20°S (Figure 1), it appears that longitudinal SA gradients are comparatively small across a
substantial part of the Atlantic Ocean and that surfactant distributions remain relatively constant between
consecutive years. The most notable features of the data, common to both transects and in both the SML
and the SSW, were distinct SA maxima centered on ~40°N, in North Atlantic Drift Region (NADR) (AMT 24,
SML 1.00 ± 0.28mg L�1 T-X-100, SSW 0.36 ± 0.15mg L�1 T-X-100; AMT 25, SML 1.76 ± 0.1mg L�1 T-X-100,
SSW 0.58 ± 0.16mg L�1 T-X-100; Figure 2). On AMT 24 there were also two small SA maxima that were

Figure 1. Sampling locations on AMT 24 (red circles, n = 66) and AMT 25
(blue circles, n = 47) and corresponding biogeographical provinces
[Reygondeau et al., 2013]. NADR, North Atlantic Drift Region; NAST (E), North-
East Atlantic Subtropical gyre; NAST (W), North-West Atlantic Subtropical
gyre; NATR, North Atlantic Tropical gyre; WTRA, Western Tropical Atlantic;
SATL, South Atlantic Subtropical gyre; SSTC, South Subtropical Convergence;
FKLD, Southwest Atlantic Continental shelf.
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exclusive to the SML, between
~36°N and ~26°N (North-East/West
Atlantic Subtropical gyre (NAST))
and at ~10°N (Western Tropical
Atlantic (WTRA)).

During AMT 24 the ranges in U10

between 36°N and 26°N and between
12°N and 9°N (6.69 ± 1.33m s�1; 3.91
± 0.71m s�1) were somewhat higher
than on AMT25 (4.77 ± 1.14m s�1;
1.26 ± 0.35m s�1), consistent with
the possibility that these SML max-
ima are a consequence of enhanced
bubble scavenging under the some-
what more turbulent conditions
experienced during AMT 24. An
alternative explanation is that these
maxima reflect more intense and/or
more frequent local precipitation on
AMT 24 than during AMT 25.
Elevated SML surfactant following
rainfall has been ascribed to an
enhanced rate of delivery of parti-
culate organics to the SML [Wurl
et al., 2011], but in the absence of
precipitation data for either cruise
we are unable to substantiate or
otherwise, this possibility.

Additional high SA at ~50°S
(Southwest Atlantic Continental
shelf (FKLD)) (0.54 ± 0.01mg L�1 T-
X-100, n= 3) during AMT 24 may

indicate high local productivity, terrestrially derived surfactants on the Falklands shelf, or an aggregate
of both. During AMT 25 this feature was much less evident (Figure 2). While indices of terrestrially
derived surfactant are detectable offshore in other regions [Cuscov and Muller, 2015; Pereira et al.,
2016], they were not measured here and primary productivity, total chlorophyll, and total pigments
are unavailable for 50°S. We additionally did not detect any measurable difference in salinity that might
indicate a freshwater input signal at this location. The precise origin of this SA maximum thus
remains unknown.

These important details of the SA distributions aside, on both transects SA was significantly higher overall
(t test, p< 0.05) in the Northern Hemisphere than in the Southern Hemisphere, both in the SML and in the
SSW (Table S1 in the supporting information). Excluding the SA maxima, there were small but discernible
trends of progressively decreasing SA from north to south on both transects, both in the SML and in the SSW
(Figure 2). SA was enriched in the SML (enrichment factor, EF = SASML/SASSW) at 64 of 66 and 45 of 47 loca-
tions (EF> 1) during AMT 24 and AMT 25, respectively (maximum EF = 4.5; Figure 3 and Table S1); the remain-
ing four EF values being equal to unity within the analytical error (Table S1). Evidently, the SML is typically
enriched in SA at all values of U10n up to the highest recorded (12.9m s�1; Figure 4). In agreement with this
observation Wurl et al. [2011] consistently found EF> 1 in 44 oceanic samples (>20 km from land) from the
North Pacific (mean 2.7 ± 1.3; range = 1.1–5.6). On this evidence surfactant enrichment of the SML could be a
ubiquitous feature of the open ocean. In contrast, of 18 SML samples collected during seasonal transects up
to 20 km from the North Sea coast, two had EF< 1 and values overall (mean EF 1.2 ± 0.3; range = 0.8–1.5) were
comparatively low [Pereira et al., 2016]. Wurl et al. [2011] also found EFs< 1, in 21% of low wind speed
(0–2m s�1) and in 9% of moderate wind speed (2–5m s�1) samples from coastal and offshore sites

Figure 2. Surfactant activity (SA) during AMT 24 and AMT 25 in the Atlantic
Ocean. Latitudinal distribution of SA (top) in the SML and (bottom) in the
SSW (7m depth). The error bars represent the standard deviation of the
mean for each sample.
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(<20 km from land) in the North Pacific Ocean, Beaufort and Labrador Seas, and Baffin Bay. The persistent,
high EFs during AMT 24 and AMT 25 are mirrored in high surface enrichments in dissolved organic carbon
and amino acids in the subtropical Atlantic and western Mediterranean Sea at wind speeds approaching
10m s�1 [Reinthaler et al., 2008]. Mean EFs for the complete data set and for the Northern and Southern
Hemispheres individually were statistically identical for both transects (t test, p> 0.05; Table S1). As
observed for SA, mean Northern Hemisphere EF was higher than mean Southern Hemisphere EF, although
the difference was only significant during AMT 24 (t test, p< 0.05) (Table S1). For both transects high EFs
were mostly observed when SSW SA was <0.4mg L�1 T-X-100. For SSW SA> 0.4mg L�1 T-X-100, EF was
always <2.6 (Figure 4).

We found no clear relationships between SA in the SML and either total chlorophyll or total pigments, for
either the whole data set or on an individual province basis (Figure S1 in the supporting information), and
we similarly found no relationships with either total or size-fractionated primary production (Figure S2).
Although this is consistent with our finding no clear relationship between SA and chlorophyll a in the coastal
North Sea [Pereira et al., 2016], it contrasts with earlier work showing mean SA in the SML to increase linearly
with “trophic state,” as defined by using estimates of primary production, which implies at least a broad
relationship between SML SA and primary production [Wurl et al., 2011].

5. Discussion

The SA values we observed in the
SML between 50°N and 50°S in
the Atlantic Ocean (Figure 3) con-
stitute the first direct test of an ear-
lier prediction of SA distributions at
the ocean basin scale derived from
global maps of primary productiv-
ity and wind speed [Wurl et al.,
2011]. These authors reported SA
values of 0.49 ± 0.4mgL�1 T-X-100
in the SML (range: 0.1–1.57mgL�1

T-X-100) for several oligotrophic
regions including the North Pacific,
the subtropical North Pacific, and
the Arctic. Our ranges in SA and
EF (Table S1) were within those
given by Wurl et al. [2011], but our

Figure 3. Latitudinal distribution of SA enrichment factors (EFs) in the SML.

Figure 4. EF versus U10n in the Northern Hemisphere (NH) and the Southern
Hemisphere (SH). The dashed line represents EF = 1.
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failure to observe any relationships between SA and either total chlorophyll (Figure S1), total primary produc-
tion (Figure S2), or size-fractionated primary production (Figure S2) must challenge the validity of using either
estimates of total primary production or indices thereof in a predictive capacity for SA. Even so, we do not
find this surprising given the variability in surfactant production rates among individual species of phyto-
plankton [Ẑutić et al., 1981], by bacteria [Kurata et al., 2016], and following phytoplankton grazing
by zooplankton [Kujawinski et al., 2002]. While an additional possibility is that any relationships between sur-
factant and indices of primary productivity could be masked, at least in part, by the bacterial degradation of
surfactant, the evidence for surfactant degradation by bacteria is rather limited, being restricted to coastal
locations [Nguyen and Sigoillot, 1990; Sigoillot and Nguyen, 1996].

At ocean basin scales with diverse biogeochemical regimes, variability in the pathways of bacterial surfactant
production will likely be maximal, involving temporal signals and additional effects from advection and
mixing. Even so, our observations suggest a rather small interannual variability in Atlantic Ocean surfactant
distributions, with major latitudinal contrasts being maintained (Figure 2).

Wurl et al. [2011] also predicted that high EFs for SA, and presumably for some other SML components, pole-
ward of both 30°N and 30°S in the Atlantic Ocean, would be precluded by high ambient wind speeds
(>12m s�1). On the contrary, our data clearly show high EFs (up to ~4.5) both north of 30°N and south of
30°S (Figure 4) and up to the maximum wind speed we observed (U10n = 12.9m s�1; Figure 4). We contend
that high EFs at such wind speeds should not be unexpected because it has long been known that the
SML reforms rapidly following physical disruption [Dragcevic and Pravdic, 1981], something we later con-
firmed experimentally with respect to SA [Cunliffe et al., 2013]. It is now well established that rapid SML recov-
ery occurs because SML organics dispersed by breaking waves readily reabsorb to the surfaces of rising
bubbles generated by the same breaking waves [Stefan and Szeri, 1999; Woolf, 2005], to be released back
to the SML and or ejected to air via bubble bursting at the air-sea interface. Consequently, our data strongly
support the notion of an essentially self-sustaining SML and we have no reason to suspect that this mechan-
ism would cease to operate either at or beyond the maximum wind speeds we observed. The high level of
agreement in SA distributions in the SML between AMT 24 and AMT 25 therefore likely indicates a dynamic
equilibrium, whereby increased SML disruption at higher sea states is at least largely compensated by con-
comitantly increased bubble fluxes that act to continuously restore surfactant material to the SML. In other
words, the greater is the SML disruption, the greater is the bubble flux acting to restore the status quo.

An important outcome of our reasoning is that SA enrichment of the SML should be essentially decoupled
from ambient wind speed, a conclusion that was also reached by Wurl et al. [2011] for dissolved surfactant
and by Carlson [1983] for surface dissolved organic carbon. Indeed, SA EFs are evidently more closely corre-
lated with SSW SA. Our consistent observation of low EF coincident with high SSW SA (EF always<2.6 for SSW
SA values>0.4mg L�1 T-X-100 is also supported byWurl et al. [2011], who reported EF values<2.7 for SSW SA
values >0.6mg L�1 T-X-100 in waters ranging from nearshore to oceanic. We believe the most plausible
explanation for these observations is that for any given wind speed, bubble scavenging is proportionally
greater in low SA waters than in high SA waters. This is a result of there being a finite limit to the amount
of surfactant that can be supplied by any individual bubble to the SML. Consequently, SML enrichment is lim-
ited by the total number/surface area of bubbles and so in SSW of comparatively low SA a proportionately
larger fraction of the available surfactant pool is available for bubble scavenging (leading to high EF) than
in SSW of comparatively high SA (leading to low EF). An inverse relationship between EF and SSW SA is
therefore inevitable.

6. Implications and Conclusions

A better understanding of the spatial and temporal variabilities of SML surfactants [Frew, 2005; Schneider-
Zapp et al., 2014; Pereira et al., 2016] will be critical to improving future estimates of air-sea gas exchange
rates. Ultimately, such understanding will enhance our ability to predict the variability in regional- to
global-scale trace gas fluxes and feedback. For CO2 the lack of direct measurements of SA, both in the SML
and in the SSW, constitutes a large proportion of the current uncertainty surrounding the inherent spatiotem-
poral variability of kw. Even correcting for such errors in kw as may arise from methodological differences
[Asher, 2009], this uncertainty is much larger than the spatiotemporal uncertainty in surface ΔpCO2

[Takahashi et al., 2009]. Two aspects of our SA data from AMT are especially relevant. First, the elevated SA
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values we observed in the NADR between 38°N and 48°N strongly imply that surfactant control of the air-sea
exchange of CO2 may be important over at least a substantial fraction of the North Atlantic, an ocean region
that not only is a major CO2 sink [Watson et al., 1995; Takahashi et al., 2009], but which shows a high variability
in respect of its CO2 uptake rate on subdecadal time scales that remains incompletely understood [Schuster
and Watson, 2007; Schuster et al., 2009; Watson et al., 2009]. Second, our observations strongly imply that
high-wind, high-latitude oceansmaymake a smaller contribution to air-sea gas exchange globally than is cur-
rently perceived. High SA in the SML at high latitudes suggests that air-sea trace gas fluxes might be lower
than predicted from wind speed parameterizations alone, a conclusion that is supported by our earlier work
in which a deliberate surfactant release in the North Atlantic resulted in up to 55% reduction in kw relative to
adjacent waters that were surfactant unamended, at a mean wind speed of 11m s�1 [Salter et al., 2011]. For
coastal North Sea waters we also found evidence for strong kw control, due not only to variability in SA but
evidently also reflecting variability in the chemical composition of the surfactant pool that still remains largely
unresolved [Pereira et al., 2016].

To conclude, there is a clear need for continued measurements of SA in the SML and SSW at ocean basin
scales, at contrasting times of year and over the full range of environmental wind speeds. Moreover, the
mechanisms of surfactant production and consumption and the chemical composition of the surfactant pool
need to be much better characterized in order to further advance our understanding of one of the most
important environmental controls of kw, and ultimately of the global budgets of a suite of climate-
active gases.
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