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Abstract Supraglacial lake drainage events are common on the Greenland ice sheet. Observations
on the west coast typically show an up-glacier progression of drainage as the annual melt extent spreads
inland. We use a suite of remote sensing and modeling techniques in order to study a series of lakes
and water-filled crevasses within 20 km of the terminus of Helheim Glacier, southeast Greenland.
Automatic classification of surface water areas shows a down-glacier progression of drainage, which
occurs in the majority of years between 2007 and 2014. We demonstrate that a linear elastic fracture
mechanics model can reliably predict the drainage of the uppermost supraglacial lake in the system but
cannot explain the pattern of filling and draining observed in areas of surface water downstream. We
propose that the water levels in crevasses downstream of the supraglacial lake can be explained by a
transient high-pressure wave passing through the subglacial system following the lake drainage. We
support this hypothesis with analysis of the subglacial hydrological conditions, which can explain both the
position and interannual variation in filling order of these crevasses. Similar behavior has been observed
in association with jökulhaups, surging glaciers, and Antarctic subglacial lakes but has not previously
been observed on major outlets of the Greenland ice sheet. Our results suggest that the behavior of
near-terminus surface water may differ considerably from that of inland supraglacial lakes, with the
potential for basal water pressures to influence the presence of surface water in crevasses close to the
terminus of tidewater glaciers.

1. Introduction

Research has shown that hydrofracture can easily force a crevasse to penetrate through the full thickness
of an ice sheet [van der Veen, 2007], rapidly transporting large volumes of surface meltwater to the bed
[Das et al., 2008] and leading to increases in flow speed on diurnal [e.g., Shepherd et al., 2009] to seasonal
[e.g., Bartholomew et al., 2010] timescales. These increases in flow speed may be driven by high water pressures
in the subglacial system, which reduce basal friction and lead to rapid sliding [Iken, 1981; Iken and Bindschadler,
1986; Meier et al., 1994]. This is a widely observed phenomenon on alpine [Hubbard and Nienow, 1997] and
land-terminating glaciers [e.g., Bartholomew et al., 2010]. At marine-terminating margins, this mechanism has
been observed at Helheim Glacier, where ice velocity lags surface meltwater production by 1 day [Andersen
et al., 2011], as well as on the west coast of Greenland [Sole et al., 2011], and in Alaska [Kamb et al., 1994; Oneel
et al., 2001].

Supraglacial lakes, which frequently cause hydrofracture [e.g., Das et al., 2008; Danielson and Sharp, 2013;
Tedesco et al., 2013], are most commonly found in the south-western region of the Greenland ice sheet
(GrIS), with only 2% of lakes by number occurring in the South East [Selmes et al., 2011]. Studies and mod-
eling work on the behavior of supraglacial lakes have therefore mainly focussed on the southwest [e.g, Box
and Ski, 2007; Banwell et al., 2013; Clason et al., 2015]. Remote sensing investigations in this region have
found that supraglacial lakes typically drain at progressively higher altitudes as the melt season progresses
[Sundal et al., 2009; Doyle et al., 2013; Morriss et al., 2013], a process which has been reproduced in modeling
work [Arnold et al., 2014; Clason et al., 2015]. The up-glacier progression of drainage has also been observed
in the Canadian Arctic, where water-filled crevasses close to the terminus of Belcher Glacier were observed
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to drain by hydrofracture much earlier in the melt season than lakes at higher elevations [Danielson and
Sharp, 2013].

Despite the observed links between lake drainages, basal water pressure, and flow speed, observations of
the subglacial system following lake drainages are still limited, particularly at tidewater glaciers. A substantial
volume of work has investigated the subglacial hydrology of land-terminating glaciers through observations
[e.g., Hubbard and Nienow, 1997; Bartholomew et al., 2010; Chandler et al., 2013; Cowton et al., 2013] and mod-
eling [e.g., Banwell et al., 2013; Dow et al., 2015]. However, the subglacial systems of tidewater glaciers are
typically much more difficult to access using techniques such as boreholes, which are not suitable for the
highly crevassed surface of large tidewater glaciers. Further observations are vital in order to better under-
stand the dynamics of tidewater glaciers, as well as ice-ocean interactions and the impacts on fjord circulation
[Straneo et al., 2013].

Here we present the results from a range of techniques which were used to observe and model the growth
and drainage of a supraglacial lake and water-filled crevasses at Helheim Glacier, southeast Greenland. The
observations highlight an unusual pattern of filling and draining of these areas of surface water, not typically
observed on the Greenland ice sheet. We first assume that the observed drainage is driven by hydrofracture,
and attempt to model this behavior using a linear elastic fracture mechanics model. However, we find that this
model cannot explain the observations. We therefore propose an alternate hypothesis which is supported by
analysis of the basal hydrological conditions in the Helheim catchment.

2. Methods
2.1. Tracking Surface Water
A combination of Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data and
high-resolution aerial photography was used to monitor the growth and drainage of a lake and water-filled
crevasses close to the terminus of Helheim Glacier (Figure 1).

Atmospherically corrected, 250 m resolution MODIS Terra MOD09 Level 2 Surface Reflectance imagery [MODIS
Land Science Team, 2015] was used to automatically classify the presence of surface water at four locations.
Images were acquired from the Level 1 and Atmosphere Archive and Distribution System Distributed Active
Archive Center for the period 20 May to 30 September for all years from 2007 to 2014. Images were filtered
using the “250 m Resolution Surface Reflectance Band Quality Description” and the “1 km Resolution Data
State,” both produced during processing and supplied with imagery. Data were strictly filtered to exclude any
pixels which were not classified as “highest quality” after processing. Pixels not identified as highest quality
include those with an acute solar angle, noisy detector, or those that contain cloud or fall in the shadow
of cloud.

The lake, L, and areas containing water-filled crevasses W1, W2, and W3 (Figure 1) recur annually in the same
positions. We therefore defined a number of pixel windows within the MODIS images centered on these areas,
which we were able to use for all years. The sizes of the pixel windows are shown in Table 1. If any pixels
within the windows did not meet the filtering criteria, the entire window was discarded so as to avoid any
contamination of the window. This strict filtering left between 62 and 104 high-quality MODIS window images
per year.

Water area was classified within pixel windows using an automatic algorithm. The method used here took
the mean reflectance of the pixel window, and any pixels with reflectance values below a threshold of this
mean were taken to contain water. The thresholds and window sizes used here are shown in Table 1. This
technique has been widely used in previous work [e.g., Box and Ski, 2007; Selmes et al., 2011] and is reliable
where there is a strong difference in reflectance between the ice and the water surface. For area L, the win-
dow contained an area of dark-colored ice which led to a strong bias on the mean values from this window.
Therefore, for this window only, we took the mean value from an adjacent control window which fell entirely
on the light-colored ice.

In order to quantify the error in automatic classification, the area of lake L was manually digitized from 30 m
resolution Landsat 7 and 8 images. These images were acquired from the U.S. Geological Survey using the
LandsatLook Viewer, for the same day as the automatically classified MODIS images. From these images,
28 high-quality, coincident image pairs were found between 2010 and 2014. Comparison of the areas from
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Figure 1. Locations of water areas monitored via remote sensing. Water areas L (blue), W1 (turquoise), W2 (orange), and
W3 (red) are highlighted, and color-coding is consistent in subsequent figures. The catchment areas for each water area
are shaded and enclosed by a dashed outline. Background is a Landsat 8 image from 20 June 2014. Inset (a) photograph
of W2. Inset (b) location of Helheim Glacier over Greenland Mapping Project (GIMP) surface digital elevation model
(DEM) [Howat et al., 2014].

the automatic and manual classifications gave a root-mean-square error (RMSE) of 0.08 km2 and an R2 of 0.73,
showing that the automatic classification performed reliably.

The timing of maximum water area was picked automatically from the resulting time series. The lake L typically
has a single distinct maximum in area each year and is easily identified. In some years W1, W2, and W3 have
multiple maxima; in this situation the first maximum following the lake drainage is picked.
2.1.1. Estimating Lake Volume
Aerial photographs collected when the water level in lake L was relatively low were used to produce a dig-
ital elevation model (DEM) of the lake basin from which lake volume was derived. The photographs were
captured on 24 July 2007 using a fully calibrated, aircraft-mounted Wild RC-10 Aviphot vertical aerial camera
system and digitized with a high-precision scanner in order to maintain radiometric and geometric fidelity.
Photogrammetric processing was carried out in the SocetSET Photogrammetry Suite v.5.6 using ground

Table 1. Thresholds and Windows Sizes Used for Pixel
Windows Defined in MODIS Imagery

Window Size (pixels) Threshold

L 15 × 15 0.61

W1 15 × 15 0.80

W2 15 × 15 0.85

W3 12 × 12 0.80

control data extracted from a temporally coincident
airborne lidar DEM, as described in James et al. [2006].
The photogrammetric adjustment yielded an RMSE in
the adjusted ground control of 2.4 m in X and Y and
0.5 m in Z, which provides a good estimate of any
systematic errors. An initial DEM of the lake and sur-
rounding area was collected manually at a grid spacing
of 50 m taking advantage of SocetSET’s interactive 3-D
editing capabilities. This low-resolution surface was
used as a “seed” surface to constrain the automated
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terrain extraction in SocetSET’s NGATE module. The resulting 5 m resolution DEM was then manually edited
where required to produce the final DEM. Unlike most airborne lidar, which cannot penetrate even clear water,
features on the submerged lake bottom were easily visible to the aerial camera through the clear water and
thus were included in the final DEM without relying on interpolation.

The high water line of the lake was identified in the imagery as a change in the ice surface from smooth,
white ice within the lake basin, which we interpret as having been submerged, to rougher, darker ice, which
characterizes the surrounding area and does not appear to have been submerged. The boundary roughly
follows a line of constant elevation, and we therefore interpret this as the predrainage height of the lake in
2007, thus allowing the lake volume and depth to be derived.

2.2. Hydrofracture Modeling
2.2.1. Linear Elastic Fracture Mechanics Model
A linear elastic fracture mechanics (LEFM) model [van der Veen, 2007] was used to estimate drainage times,
assuming that hydrofracture was forced by surface runoff. Models based upon these equations have previ-
ously been used to model lake drainages [Clason et al., 2012, 2015] and have been compared to observed
crevasse depths [Mottram and Benn, 2009].

The LEFM model calculates the net stress intensity factor, KI, at the tip of a crevasse using

KI = 1.12Rxx

√
𝜋d − 0.683𝜌igd1.5 + 0.683𝜌wgb1.5, (1)

where Rxx is the tensile stress at a given point, d is the crevasse depth, and b is the depth of water in the
crevasse [van der Veen, 2007]. Ice density, 𝜌i, water density, 𝜌w , and gravitational acceleration, g, take standard
values of 917 kg m−3, 1000 kg m−3, and 9.81 m s−2, respectively.

When the tip stress, KI, reaches a critical fracture stress, KIC , the fracture begins to propagate downward.
Equation (1) is then solved iteratively with d increased until KI < KIC or the crevasse has reached the bed.
Following Clason et al. [2015], we used a KIC value of 150 kPa m1∕2. The model was forced with surface
stresses Rxx , derived through feature tracking of synthetic aperture radar (SAR) imagery, and water depth b,
determined using modeled runoff and an approximated crevasse geometry, both described in more detail
below.

We ran the model on a 40 m resolution grid within a 24 km× 28 km domain, covering the terminus of Helheim
Glacier. Within the domain, equation (1) was evaluated at each grid square with a time step of 1 day. The model
was initialized with zero water depth at the start of each year. The model was spun-up in the first time step,
allowing crevasses to penetrate to the depth resulting from the background stress field.
2.2.2. Surface Stresses
Surface velocities were derived using feature tracking between a pair of TerraSAR-X StripMap Mode SAR
images from 24 July to 8 August 2013. The images were chosen to represent the typical spatial pattern of
summer flow speeds across the region of interest. Features were matched by cross correlation within image
patches of 200 × 200 pixels (∼ 400 × 400 m) at a sampling interval of 20 pixels yielding a velocity grid with a
resolution of 40 m.

The two-dimensional plane strain rate tensor �̇�ij was calculated from velocity components ui and uj using

�̇�ij =
1
2

(
𝜕ui

𝜕xj
+

𝜕uj

𝜕xi

)
. (2)

We then calculated the deviatoric strain rate tensor �̇�′ij as

�̇�′ij = �̇�ij −
�̇�kk

2
𝛿ij. (3)

The deviatoric strain rate tensor �̇�′ij can be related to the Cauchy stress tensor 𝜎ij by an inverse form of the
creep relation [Nye, 1957] as follows:

𝜎ij = A−1∕n�̇�
(1−n)∕n
E �̇�′ij, (4)

where A is a flow parameter primarily dependent on the temperature of the ice, and n is a creep exponent. �̇�E

is the second invariant of the strain rate tensor, also known as the effective strain, calculated using

�̇�E =
√

1
2

(
�̇�′2xx + �̇�′2yy

)
+ �̇�′2xy + �̇�′2yx . (5)
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Table 2. Catchment Sizes and Flow Path Lengths for Each of the Water
Areas Modeled

Flow Length (km)

Catchment Area (km2) Maximum Mean

L 57 10.5 5.8

W1 33 11.5 4.4

W2 17 4.8 2.1

W3 24 7.2 2.7

Here we assumed an ice temperature of −5∘C, giving A a value of 9.3×10−25 s−1 Pa−3 [Cuffey and Paterson,
2010] and n a value of 3. These values are similar to those used by Clason et al. [2015] on the west of Greenland.

The von Mises stress (𝜎v) was then calculated directly from the Cauchy stress tensor as

𝜎v =
√

𝜎2
xx − 𝜎xx𝜎yy + 𝜎2

yy + 3𝜎2
xy . (6)

The resulting von Mises equivalent stress was used to represent the tensile stress Rxx in equation (1). The von
Mises stress has been shown to be reliable for predicting the failure of glacier ice by Vaughan [1993] and has
been widely used since [e.g., Hubbard and Hubbard, 2000; Clason et al., 2012; Albrecht and Levermann, 2014].
For the purposes of the model, the stresses can be assumed to be constant through the depth of the ice [van
der Veen, 2007].
2.2.3. Surface Runoff and Flow Routing
Daily runoff data were gathered from the MARv3.5.2 model forced with ERA-Interim Reanalysis data [Fettweis
et al., 2013]. An example of the runoff data averaged over the catchment of W3 is illustrated in Figure S2 in
the supporting information. The runoff was routed to surface water areas identified from remote sensing data
using a D-Infinity flow routing algorithm [Tarboton, 1997]. The flow was routed over a DEM which was pit filled
everywhere except for locations where water was observed on the surface; thus, sinks could only form in these

Figure 2. Crevasse geometry used to
calculate water depth in LEFM modeling,
where w is the width of a grid cell, wc
and d are the crevasse width and depth,
respectively, b is the resulting water depth,
and Rxx is the background tensile stress.
Modified from van der Veen [1998].

areas. Without this assumption we see a more uniform distribu-
tion of water on the ice surface and no cases of hydrofracture.
Any runoff flowing into sinks within a surface water area was
added to the volume of water within that area. This volume was
then distributed evenly across grid squares within each surface
water area. The catchments and approximated flow path lengths
are summarized in Table 2.
2.2.4. Crevasse Geometry
In order to calculate the water depth b required in equation (1),
some assumptions were made about the geometry of the lake
or crevasse being filled. We used the geometry illustrated in
Figure 2, where the water was allowed to fill a crevasse and any
remaining water pooled on the surface. Similar to Clason et al.
[2015], we used a crevasse width wc of 1 m, assumed to be uni-
form with depth, and we set the length equal to the grid size,
in this case 40 m. The crevasse depth d was initialized with a
depth of 1 m. During the first time step the model was spun-up,
allowing crevasses to penetrate to the depth driven by the back-
ground tensile stress.

There is some uncertainty in the selection of the crevasse width.
Based upon the work of Krawczynski et al. [2009], a width of 1 m is
a conservative estimate for the areas we are studying, where the
ice is around 1000 m deep and under moderate tensile stress gra-
dients. However, in order to address the uncertainty, sensitivity
tests were carried out on a range of values of the crevasse width.
Varying the crevasse length has a similar impact to the crevasse
width as it effectively increases the volume of the crevasse.

EVERETT ET AL. DOWN-GLACIER SURFACE WATER DRAINAGE 1823



Journal of Geophysical Research: Earth Surface 10.1002/2016JF003831

Table 3. Parameter Ranges and Results From Sensitivity Testing of the Modela

Range Percentiles (days) Relation

Parameter Units Lower Base Upper 5 25 50 75 95 to Range

Runoff factor – 0.5 1 2 −7 −5 0 4 10 U-L

Tensile stress kPa 220 300 889 −2 −1 0 0 1 U-L

Critical stress kPa m1∕2 10 150 400 0 0 0 1 1 L-U

Crevasse width m 0.1 1 2 −23 −13 −4 2 6 L-U

Spacing ratio – 0.1 1 1 0 0 1 1 1 U-L

Combined – As above −15 −8 −1 6 16 –
aThe five percentiles are quoted as the difference in days from the base case, where negative values indicate earlier

hydrofracture. Note that the order of the ranges does not necessarily correspond to the order of the percentiles. The final
column therefore indicates the order of the lower and upper values of the range in relation to the percentiles, i.e., L-U
shows that the 5th percentile corresponds to the lower range and the 95th to the upper, whereas U-L is the opposite.

2.2.5. Sensitivity Testing
Sensitivity tests were carried out on an idealized model setup in order to isolate the sensitivity of the model
from spatial variability in the model forcings. The setup was forced with a uniform background tensile stress
and an idealized runoff profile, illustrated in Figure S2. Five key parameters were tested, which are discussed
individually below. The sensitivity tests were run using a Monte Carlo method, where the likely range of each
parameter was defined and a different randomly selected value from within this range was used for each
model run. The probability distribution within each range was assumed to be uniform; however, as all of the
parameter ranges are skewed to some extent, an equal number of samples were selected from above and
below the base values.

Two types of test were performed. In the first, a single parameter was varied while all others were kept at
their base values, thus allowing the sensitivity of the model to each individual parameter to be tested. In the
second type of test, all parameters were varied simultaneously, allowing the overall uncertainty in the mod-
eled time of drainage to be tested. In each test the model was run for 5000 different randomly selected
parameter combinations. The range and base values of each parameter are discussed below and summa-
rized in Table 3. The results are discussed and presented as the difference in days from the base case, and the
interquartile range (IQR) is used as a metric to compare the relative sensitivity of the different parameters.
2.2.5.1. Runoff
The largest source of uncertainty in the runoff arises from the catchment delineation. Smaller catchments lead
to later hydrofracture, up to a threshold where there is insufficient water for hydrofracture to occur. However,
while small catchments may explain later hydrofracture, they cannot explain why water is only found in dis-
crete areas on the surface of the glacier. Based upon these limitations we set the lower bound of the runoff as
a 50% decrease in catchment area, and the upper bound as a doubling in catchment size. Further to this, we
tested an extended parameter range for runoff which represents a 90% reduction in the catchment size. Such
small catchments are difficult to reconcile with observations; however, it is informative to demonstrate the
model behavior under these conditions. A multiplication factor 𝛼f , consistent across catchments, was used to
alter the runoff in the model using values between 0.5 and 2, and a base value of 1, with the extended case
using a lower limit of 0.1.

The sensitivity tests show that the model is highly sensitive to the runoff, with the interquartile range (IQR) of
the difference between modeled and observed results equal to 9 days, the second largest IQR of the param-
eters tested. The extended parameter range shows that for 𝛼f < 0.2 hydrofracture frequently fails to occur,
therefore indicating a lower limit on the possible catchment size.
2.2.5.2. Crevasse Spacing
The effects of crevasse spacing were tested by van der Veen [1998] through modification of the tensile stress
term in equation (1) such that the first term becomes

K (1)
I = D(S)Rxx

√
𝜋dS, (7)

where S is the ratio of the crevasse spacing to the sum of the crevasse depth and the spacing, such that S→0
as the spacing decreases. D(S) is then an empirical function of S which varies between 0.5 and 1.12. For the
full definition of these factors, see van der Veen [1998].
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For the sensitivity tests performed here, a ratio of crevasse spacing to depth of 1:9 was taken as a lower bound
estimate of the spacing at Helheim, giving S a value of 0.1. As crevasse spacing increases S→1, therefore S=1
was taken as an upper bound on the range of S. In the absence of more detailed information, we also used
S=1 as the base value for other model runs, but as shown by the sensitivity results this had a minimal impact
on the results.

The results of the sensitivity testing show that the model is insensitive to the crevasse spacing. The IQR of the
parameters tested is 1 day, which is equal to the model time step. Closer inspection of the model results shows
that increased crevasse spacing leads to an increase in the initial crevasse depth forced by the background
stress field, but once runoff is added hydrofracture occurs at much the same time.
2.2.5.3. Tensile Stress
The parameter space for the tensile stress was defined by allowing for errors in the selection of the value
of A; a temperature dependent flow parameter used in the creep relation (equation (4)). Previous work has
assumed an ice temperature of −5∘C [e.g., Clason et al., 2012], which gives A a value of 9.3 × 10−25 s−1Pa−3

[Cuffey and Paterson, 2010]. We took the limits of our parameter space as 0∘C and −30∘C which give values of
2.4× 10−24 s−1 Pa−3 and 3.7× 10−26 s−1 Pa−3 for A, respectively. The effect of the choice of this parameter is to
alter the mean stress in the catchment from a base value of 303 kPa at −5∘C to lower and upper bounds of
220 kPa and 889 kPa for 0∘C and −30∘C, respectively. We therefore took these as the limits of our parameter
space in the Monte Carlo sensitivity testing.

Varying the tensile stress has a very similar impact to varying the crevasse spacing, in that the size of the first
term in equation (1) is increased or decreased relative to the other terms in the equation. It therefore has a
similar impact on the modeled results; crevasses penetrate deeper during spin-up, but the IQR of 1 day shows
a very minor impact on the day of hydrofracture.
2.2.5.4. Critical Stress Factor
Values of KIC between 100 and 400 kPa m1∕2 were used by van der Veen [1998] based upon previous laboratory
testing of glacier ice [see van der Veen, 1998, and references therein]. We extend this range to cover the values
used by Mottram and Benn [2009] who tested values as low as 10 kPa m1∕2, which may be more appropriate for
weaker ice close to the terminus of Helheim. The range of values for KIC used here therefore cover the range
10–400 kPa m1∕2, with 150 kPa taken as a base value consistent with previous work.

Consistent with previous studies [van der Veen, 2007; Scott et al., 2010; Clason et al., 2012], the results of sensi-
tivity testing show that the date of hydrofracture is insensitive to the value of KIC used in the model, with an
IQR of 1 day.
2.2.5.5. Crevasse Width
Field measurements and observations of crevasse widths forced by hydrofracture are limited. A maximum
crevasse width of 0.4 m was measured by Doyle et al. [2013], following hydrofracture of a lake on the west coast
of Greenland. Further research by Krawczynski et al. [2009] suggests that these widths may be up to 1–2 m
for very deep cracks (>1500 m) or for high longitudinal stress gradients. In order to capture this variation, we
tested a range of values between 0.1 and 2 m, taking a base value of 1 m.

The results of sensitivity testing show that the model is very sensitive to crevasse width, with the highest IQR
of 15 days. The results show a skew toward earlier hydrofracture, which occurs with reducing crevasse widths.
2.2.5.6. Combined
The combined sensitivity test allows all parameters to vary at random within the ranges defined above. This
provides an estimate of the overall uncertainty in the model and is used to define the error bars in result plots.
For the combined test, the results show an IQR of 14 days. The 5th and 95th percentiles show that 90% of the
model results lie within ± 15 days of the modeled date of hydrofracture. Given the wide ranges within which
the parameters are allowed to vary, it is unlikely that the error of the model is outside this range.
2.2.6. Model Limitations
Two potential errors are introduced by the flow routing assumptions used here. First, we do not account
for flow delay and retention in the catchment, potentially leading to an assumption of early hydrofracture.
However, as can be seen from Table 2 and Figure 1, the catchments are relatively small, average flow paths
are up to 5.8 km for area L and much smaller for other areas, and the catchments largely become snow free
early in the melt season, leading to minimal retention. The maximum flow path length is 12 km for area W1.
Based upon a conservative assumption that water travels at an average of 0.1 m s−1 within the catchment, the
longest flow path would only take around 36 h to drain the surface water areas. Therefore, we expect this to
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Figure 3. Results from remote sensing and modeling of surface water
areas. Filled diamonds represent water areas derived from satellite
imagery, where the maximum and minimum water areas have been
picked and used to scale diamonds in the vertical. Box plots are used
to represent the range of the modeled hydrofracture results, where
the whiskers represent the 5th and 95th percentiles, and the box
represents the first, second, and third quartiles. Crosses represent
the 95th percentile of the extended runoff sensitivity test. Colors of
diamonds and box plots correspond to colors of water areas used
in Figure 1.

have a minimal impact on the time of
hydrofracture. Second, by spreading the
water volume evenly over the maximum
water area we underestimate the maxi-
mum water depth in the early stages of
filling, potentially leading to an assump-
tion of later hydrofracture than in reality.
This is therefore a conservative assump-
tion for the purposes of this model.

We use a constant background stress field
in all years. This appears to be reasonable
based upon the sensitivity tests, which
show that the model is insensitive to the
background stresses. However, in order
to test this we also ran the model on
stress fields from images pairs collected
in November 2010, March 2011, and July
2012. The results showed variations of no
more than 1 day between years, consis-
tent with the sensitivity tests. This sug-
gests that the background stress field
does not have a significant impact on the
results from year to year.

2.3. Subglacial Hydrology
Hydraulic potential in Helheim catchment
was calculated from the Greenland Map-
ping Project (GIMP) surface DEM [Howat
et al., 2014] and the IceBridge BedMa-
chine Greenland Version 2 bed DEM
[Morlighem et al., 2014], both at a spatial
resolution of 150 m. Based upon the work
of Shreve [1972], the hydraulic potentialΦ
was calculated using

Φ = k𝜌ig(hs − hb) + 𝜌wghb, (8)

where hs and hb are the surface and bed elevations, and k is a fraction of overburden pressure, typically set to
1 based upon the assumption that the entire catchment is at overburden pressure. We relaxed this assump-
tion in order to test how variations in this fraction affected the hydraulic potential within the catchment
[Lindbäck et al., 2015]. We use values of k between 0.5 and 1.2 in order to test the likely range of basal effective
pressures.

In order to determine flow routing, the hydraulic potential surface was pit filled to remove any sinks. Flow
direction and flow accumulation were then calculated using a D-Infinity flow algorithm [Tarboton, 1997].

3. Results
3.1. Surface Water
A summary of results from all years is shown in Figure 3, and full results from the automatic classification
of surface water for all years are included in the supporting information (Figures S3–S10). The filling and
draining patterns of all water areas can be clearly identified, and variations in area are substantially larger
than the errors associated with the method. While there is considerable annual variability in the maximum
area of water, a number of clear patterns emerge. The most obvious is the consistent pattern of the drainage
of L preceding the filling and draining of W1, W2, and W3, all downstream and at lower elevations. Typically,
L drains between the 20 and 30 June, while W1, W2, and W3 generally drain in early July. The maximum area
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Figure 4. The 5 m resolution DEM of the lake L produced from aerial photography collected in 2007. The maximum
lake volume before overtopping is outlined in blue. The moulin is identified in the magnified image by the black arrow. Background is a Landsat 8 image from 20
June 2014.

of L ranges between 0.25 and 0.52 km2, with the maximum area of 0.52 ± 0.08 km2 observed in 2011. W1, W2,
and W3 have areas ranging between 0 and 0.48 km2, with W2 and W3 usually larger than W1.

The one exception to the down-glacier progression of drainage is 2009, where we see slow growth of
L with the maximum area occurring after W1, W2, and W3 have drained. The slow filling rate cannot be
explained by lower runoff, as we see no significant difference in runoff volume when compared to other
years (Figure S2). We therefore identify two possible explanations for this: (i) surface flow routing is differ-
ent in 2009, and runoff drains through a different connection to the bed rather than collecting in the lake, or
(ii) hydrofracture creates a constricted connection to the bed allowing drainage at a rate less than the input
of surface runoff. Both would result in suppressed lake growth but similar behavior to other years in W1,
W2, and W3.

Figure 4 shows the 5 m resolution DEM produced from aerial photography. From the DEM, the maximum
volume of L is estimated to be ∼9.7 × 106 m3 in 2007. The moulin down which the lake L drained in 2007 is
easily identifiable to the southeast of the lake. It is notable that in 2007 the lake is split by an ice divide, which
is crossed by a narrow channel; while this would still allow the majority of water to drain from the lake, it may
slow the rate of drainage.
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Figure 5. Modeled versus observed day of hydrofracture by area. Box plots are used to represent the range of the modeled hydrofracture results from sensitivity
testing, where the whiskers represent the 5th and 95th percentiles, and the box represents the first, second, and third quartiles. Crosses represent the 95th
percentile of the extended runoff sensitivity test. The black line represents a one-to-one relationship between the model and observations.

3.2. Hydrofracture Modeling
The results of the LEFM modeling are illustrated in Figure 3, alongside the observed results. Figure 5 divides
the results by area and more clearly shows the relationship, or lack of, between observed and modeled results.

The model consistently predicts the drainage of the lake L within 2 days of the observations, with the only
outliers being 2009, which has been discussed previously, and 2010, which the model also slightly underes-
timates. The RMSE of the difference between the modeled results and observations for L is 4 days, showing
that the model performs reliably for this area. However, the results for the lower water areas show much less
consistency; RMSEs are 24, 13, and 15 days for areas W1, W2, and W3, respectively. For W1 all observed dates
of hydrofracture lie above the 95th percentile of the results run with the standard parameter range. Extending
the runoff parameter range captures all of the observed drainage times, but this implies that both runoff and
crevasse width must be at the extremities of their parameter ranges to match the observations in a number
of years. The results for W2 and W3 are slightly more consistent, but still two out of eight results are above the
95th percentile of the standard parameter range for W2 and five out of eight for W3. The strong relationship
between modeled and observed results for L, which is not present in areas W1, W2, or W3, is clearly illustrated
in Figure 5. While the difference in an individual year could be attributed to uncertainty in parameter choice,
there is no consistency in this difference by area or by year. The lack of a relationship in the results would there-
fore require a different parameter selection for each year and area in order to see better agreement between
modeled and observed results.

3.3. Subglacial Hydrology
Figure 6 shows contours of hydraulic potential calculated assuming that the fraction of overburden k is equal
to 1. The locations of water-filled crevasses, identified in Figure 1, coincide closely with sinks and areas of
convergence in the hydraulic potential.
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Figure 6. Contours of hydraulic potential, with shaded output of flow accumulation algorithm indicating flow routing at
different values of k. Major and minor contour intervals are 1 MPa and 0.2 MPa, respectively. Water areas are highlighted
as for Figure 1. Background is a Landsat 8 image from 20 June 2014.

Two flow accumulation maps, calculated from the hydraulic potential, are also shown in Figure 6. These are
calculated using values for overburden fractions of 1.00 and 1.14. The full range of values 0.5< k< 1.2 are
presented in Movie S1. Figure 6 and the Movie S1 both highlight the dramatic changes in flow switching which
occur at different values of the overburden fraction k. At low values of k, the steep gradient of the hydraulic
potential drives water into the central parts of the glacier. The water areas are located within a few hundred
meters of the flow paths but may not be directly connected to the subglacial flow routing. As k increases, the
hydraulic potential gradient shallows. Flow paths migrate toward the locations of surface water, with a switch
connecting areas W2 and W3 around k = 0.97. Above k = 1, all areas of surface water appear to be connected
but are not in a downstream order until a major switch between areas W1 and W2 around k = 1.13. A number
of rapid switches in flow routing occur when k > 1; as the gradient of the hydraulic potential gets shallower,
rapid flow switching appears more likely to occur.

This is a major simplification of a highly complex system, but it is illustrative of the rapid switching which can
occur with changes in basal effective pressure. We also note that values of k will vary across the catchment,
rather than the uniform values used here; therefore, the calculated flow routing indicates that in different
years, and even within the same year, we would expect to see the flow routed in different ways within the
catchment.

4. Discussion

The down-glacier progression of drainage observed in our remote sensing data is unusual, and contrary to
the results of Sundal et al. [2009] and Danielson and Sharp [2013] amongst others, who identified the order of

EVERETT ET AL. DOWN-GLACIER SURFACE WATER DRAINAGE 1829



Journal of Geophysical Research: Earth Surface 10.1002/2016JF003831

drainage progressing upstream as the seasonal melt extent spread inland. The observations are particularly
significant as the pattern is seen to occur in the majority of years between 2007 and 2014.

The observations could simply be explained by water draining over the surface of the glacier between water
areas. However, we can clearly identify a moulin following the drainage of lake L from both Figure 4 and hand-
held photography collected in other years; this indicates that water is draining to either the subglacial or the
englacial system rather than over the surface. While englacial drainage is a possibility, the highly stressed,
heavily crevassed conditions at Helheim make it unlikely that water would flow for more than a few kilometers
without encountering existing fractures or weaknesses allowing access to the bed. Additionally, the work of
Andersen et al. [2011] suggests efficient drainage between the surface and the bed, implying that water is not
retained in a complex englacial system.

We attempted to explain the order of drainage with variations in surface melt and catchment size using
a LEFM model. The model correctly predicts the date of drainage of the lake L within a few days for the
majority of years (RMSE = 4 days); however, the results for the lower areas show much less consistency
with the observations (RMSE= 13 − 24 days). Sensitivity testing of the model shows that changes in two
parameters, the runoff and the crevasse width, could account for the difference between observed and
modeled results.

While the change in crevasse width could account for the difference between modeled and observed results
in an individual year, it cannot account for the variability in the difference from year to year. Uncertainty in
the crevasse width can largely be attributed to uncertainty in the shear modulus of ice [Krawczynski et al.,
2009, Figure 1]. Any error in the estimation of the shear modulus would introduce a systematic bias to the
results which would lead to a consistent overestimation or underestimation of the results. However, in order to
explain the interannual variation in the difference between observed and modeled results, the shear modulus
of the ice would have to vary by an order of magnitude from year to year. Variations in the tensile stress also
affect the crevasse width, but on the order of 0.1 m per year [Krawczynski et al., 2009, Figure 1], which could not
account for the interannual variability between observed and modeled results. It therefore seems unlikely that
the uncertainty in crevasse width could explain the interannual variability of the difference between modeled
and observed results.

Therefore, the only parameter which could be responsible for the interannual variation in hydrofracture
appears to be the runoff. However, for runoff to account for the difference in the modeled and observed
drainage times, catchment sizes would have to fluctuate in area by ±20–80% from year to year. The resulting
changes in catchment size would lead to dramatically different patterns of surface water in different years.
However, the observations show no such variation in the pattern of surface water, and, as drainage basins are
typically tied to bedrock topography, they would not be expected to vary significantly [Karlstrom and Yang,
2016]. The variation in catchment size necessary to explain this variability is therefore difficult to reconcile
with observations at Helheim, particularly the consistent locations and distribution of surface water. This evi-
dence strongly suggests that hydrofracture is not the cause of the observed pattern of filling and draining
at Helheim.

We therefore propose an alternate explanation which does not rely upon hydrofracture. We suggest that the
down-glacier order of filling and draining can be explained by a high-pressure wave propagating down glacier
following the lake drainage, controlling surface water levels as it passes. Transient high-pressure waves such as
this have been theorized and observed in association with jökulhlaups [Walder and Driedger, 1995; Tweed and
Russell, 1999], producing pressures sufficient to flood the surface in areas of weakness [Tweed and Russell, 1999;
Jóhannesson, 2009], and also during surges [e.g., Kamb et al., 1985; Fowler et al., 2001]. The propagation speed
of the inferred pressure wave at Helheim is an order of magnitude lower than those observed in jökulhlaups;
but drainage rates are similar to those observed in Antarctic subglacial lakes, where lower pressure gradients
are thought to limit the rate of drainage [Fricker et al., 2007]. The system may therefore be more analogous
to the sequential filling and draining of subglacial lakes observed in Antarctica [Fricker et al., 2016]. At the
terminus of Helheim the ice is shallower and much more heavily crevassed than in Antarctica; therefore, where
pressures greater than overburden occur, rather than raising the surface of the ice, this theory suggests that
the water can penetrate to the surface and pool in crevasses.

Modeling studies have indicated that pressures above overburden can be sustained for between 4 days
and 4 weeks and typically occur between late June and early July on the west coast of Greenland
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[Banwell et al., 2013; Dow et al., 2015]. Such pressures have been observed previously on the GrIS [Cowton
et al., 2013; Meierbachtol et al., 2013] but rarely for periods of more than a few days. We suggest that the early
season lake drainage transfers a large volume of meltwater to the bed at a rate sufficient to overcome the
capacity of the existing subglacial system, thus forcing the propagation of a high-pressure front down glacier
as the system capacity increases. The observations and timescales are consist with the sustained high pres-
sures observed by Banwell et al. [2013] in their modeling results. While Banwell et al. [2013] use a channel-only
model, the theorized response is also comparable to the hybrid channel and sheet model of Hewitt [2013],
who also observe the subglacial system being overwhelmed at the beginning of the melt season. We do not
have sufficient information to attempt to infer the morphology of the subglacial system present here; how-
ever, the models of Banwell et al. [2013] and Hewitt [2013] both suggest that the drainage of the lake L may
trigger a change in the subglacial system which propagates down glacier.

Previous work on jökulhlaups has identified basal water flooding the surface; however, in Landsat imagery
from 2015, the water visible in crevasses at Helheim has spectral characteristics more similar to isolated
supraglacial lakes than to the turbid water seen in plumes and marginal water bodies. This suggests that while
high basal water pressures may control water levels, the water visible on the surface is more likely surface melt
which is prevented from draining through the crevasses by high basal water pressure. However, we note that
Andersen et al. [2011] did observe turbid water upwelling into an open relict-moulin structure just behind the
calving front at Helheim, clearly showing that pressures sufficient for basal water to reach the surface can and
do occur. The LEFM modeling work indicates a way by which a hydraulic connection between the surface and
the bed could be created in the necessary areas during the early melt season. Alternatively, basal water pres-
sures may be sufficient to fill or open existing fractures, as appears to have happened in the 1996 Grimsvötn
jökulhlaup [Jóhannesson, 2009].

Further support for this hypothesis is provided by the hydraulic potential and flow routing results. Figure 6
shows that water-filled crevasses appear in points of convergence and depressions in the hydraulic potential
surface, particularly at higher values of k, which would be expected following a lake drainage. We acknowl-
edge that the hydraulic potential at the bed is strongly influenced by surface slope, and it is therefore
difficult to distinguish which is causing the water to collect in these areas. However, as we have highlighted
previously, the surface of Helheim is heavily crevassed and we see no evidence for significant flow over the
surface of the glacier which would cause water to collect in these areas. The positions of the water areas are
therefore consistent with where water might be expected to collect if it were forced by conditions at the bed.

Figure 6 also shows dramatic variations in flow routing within the catchment when the basal water pres-
sure is at different fractions of overburden, consistent with the work of Lindbäck et al. [2015]. As values of the
overburden fraction k vary spatially and temporally within the catchment, the differences identified in both
the order of filling and maximum extent of water areas can be explained by spatial and temporal variations
of k. The flow switching in the catchment which connects all areas in a downstream order occurs within a few
kilometers of the lake, within the region where uplift has been observed following previous lake drainages
[Das et al., 2008; Doyle et al., 2013; Tedesco et al., 2013]. It is therefore quite probable that basal effective pres-
sures reach the necessary values in this region for water to cross the catchment and connect to other areas of
surface water downstream. In future, it may be possible to identify the flow routing regime and overburden
pressures from more detailed study of these water areas, which could be used to complement other tech-
niques such as boreholes and dye tracing. However, for the present we simply take this as evidence to explain
the variability in timing of the filling and draining of the water-filled crevasses.

5. Conclusion

We have observed an unusual pattern of growth and drainage of a lake and water-filled crevasses near the
terminus of Helheim Glacier, southeast Greenland, which is consistent over an 8 year period. A combination
of remote sensing observations and modeling has been used to demonstrate that hydrofracture is unlikely
to explain the observed behavior. We therefore present a new hypothesis for a transient high-pressure wave
propagating down glacier following the lake drainage. We suggest that water pressures in the subglacial
system can control surface water levels through a hydraulic connection to the bed caused by early season
hydrofracture or preexisting fractures in the ice. We have supported our hypothesis with evidence from
hydraulic potential maps of Helheim catchment, which explain the observed positions of water-filled
crevasses, and estimates of flow routing, which explain the interannual variation in the order of filling and
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draining of these water areas. This is an interesting and intriguing phenomenon, which certainly warrants
further investigation.

The system has similarities to pressure waves observed during surges and following jökulhlaup floods, and
also to the sequential order of filling and draining observed in Antarctic subglacial lakes. However, none of
these behaviors have previously been identified on the GrIS. Therefore, if true, this may have major impli-
cations for our understanding of the subglacial hydrology of tidewater glaciers, especially in relation to the
impacts of near-terminus lake drainage events.

We expect that investigation of other tidewater glaciers may provide evidence of similar processes elsewhere.
Further field investigations will improve our understanding of the observed behavior and provide valuable
insight into the subglacial hydrology and dynamics of tidewater glaciers.
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