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Abstract

During the 1980s, the North Sea plankton community underwent a well-documented ecosystem regime shift, includ-

ing both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of

warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between cli-

mate and higher trophic-level organisms, which can forage on large spatial and temporal scales. It is therefore impor-

tant to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics,

but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is

altered, higher trophic-level feeding patterns may be modified. A second motivation for investigating changes in syn-

chrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that syn-

chrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral

analysis to investigate whether synchrony changed between the periods 1959–1980 and 1989–2010. Twenty-three

plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in

SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance.

Changes in the synchrony of Calanus helgolandicus and Para-pseudocalanus spp appeared to be driven by changes in

SST synchrony. This study is one of few to document alterations of synchrony and climate-change impacts on syn-

chrony. We discuss why climate-change impacts on synchrony may well be more common and consequential than

previously recognized.
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Introduction

Population dynamics are influenced by climate fluctua-

tions, and there is ever-growing evidence that global

change-related alterations to climate fluctuations also

alter population dynamics. For instance, Saitoh et al.

(2006) described a shift in the dynamics of the grey-

sided vole (Clethrionomys rufocanus) during the 1970s,

corresponding to the timing of a regime shift in Pacific

climate (Hare & Mantua, 2000). Garc�ıa-Carreras et al.

found links between changes in the spectral colors of

climatic fluctuations and the spectral colors of popula-

tion fluctuations (Garc�ıa-Carreras & Reuman, 2011).

Garc�ıa-Carreras & Reuman (2013) and Lawson et al.

(2015) argued that changes in other statistical aspects of

environmental time series can be at least as important

for populations as changes in more commonly studied

mean environments.

In the North Sea, several studies have demonstrated

that a climate change-induced ecosystem regime shift

occurred in the 1980s. The ecosystem shifted from a

cooler to a warmer state (Beaugrand, 2004; Beaugrand

& Iba~nez, 2004), altering relationships between species

and large-scale climate variables such as the North

Atlantic Oscillation (NAO) and Northern Hemisphere

Temperature (NHT) (Reid et al., 2001; Beaugrand &

Reid, 2003; Beaugrand, 2004, 2012; Lindley et al., 2010),

and resulting in increases in phytoplankton biomass

and shifts in community composition (Beaugrand,

2003). In particular, a change in the dominant copepod

species occurred, from Calanus finmarchicus to C. hel-

golandicus (Planque & Fromentin, 1996). Increases in

decapod and echinoderm larvae and a decrease in

bivalve larvae also occurred (Kirby et al., 2008).

Changes similar to some of these have also been
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detected in the North Pacific (Venrick et al., 1987; Hays

et al., 2005). Reid et al. (2016) showed recently that the

1980s regime shift formed part of a major change in the

Earth’s biophysical systems triggered by the combined

effects of anthropogenic warming and a volcanic erup-

tion.

Although climate-induced changes in spatial patterns

and temporal dynamics such as those described above

are well documented, possible changes in aspects of

spatiotemporal dynamics such as metapopulation syn-

chrony have not been investigated in the North Sea and

are much less studied generally. Filling that gap is the

main goal of this study. Metapopulation synchrony is

defined as correlated fluctuations in the abundances of

geographically distant populations. Synchronized cli-

matic drivers of populations can induce synchrony in

the populations, a process called the Moran effect. This

is one of the main causes of synchrony (Moran, 1953;

Lande et al., 1999; Liebhold et al., 2004; Engen &

Saether, 2005). Hence, changes in climatic drivers may

cause changes in synchrony.

It is important to study synchrony and potential

changes in synchrony for several reasons. First, syn-

chrony has been observed across large geographic areas

and in diverse taxa including plankton (general exam-

ples: Moran, 1953; Hanski & Woiwod, 1993; Paradis

et al., 1998; Koenig, 1999; Lande et al., 1999; Liebhold

et al., 2004; Engen et al., 2005; Vasseur & Fox, 2007,

2009; plankton examples: Perry et al., 2004; Vasseur &

Gaedke, 2007; Batchelder et al., 2012; Ottesen et al.,

2013). Second, synchrony is ecologically important in

part because metapopulations exhibiting more syn-

chrony can have an increased risk of extinction (Heino

et al., 1997). Third, synchrony can also influence regio-

nal ecosystem functioning (Bjørnstad et al., 2002; Beau-

grand et al., 2003; Stenseth et al., 2004; Haynes et al.,

2013): asynchronous local population fluctuations

negate each other in the regional average population

and hence have limited influence on regional function-

ing measures, but synchronization can result in large-

scale outbreaks or shortages (Micheli et al., 1999; Earn

et al., 2000; Vasseur & Gaedke, 2007; Keitt, 2008; Ciesla,

2011).

Synchrony in plankton may be additionally impor-

tant to study because higher trophic levels in marine

systems aggregate energy, which ultimately comes

from plankton, over wide spatial and temporal scales.

Plankton populations influence the survival and breed-

ing success of higher predators of economic and conser-

vation importance (Davis et al., 1991; Menden-Deuer &

Gr€unbaum, 2006), including cod (Beaugrand et al.,

2003), haddock (Platt et al., 2003), tuna (Fiedler & Ber-

nard, 1987), marine mammals (Weise et al., 2006), pen-

guins (Boersma et al., 2009), and other seabirds

(Rindorf et al., 2000). Spatial patchiness, and therefore

synchrony in plankton, affects consumer–resource par-

ticle encounter rates, and can thereby also affect nutri-

ent cycling and carbon export to deep ocean layers

(Goldthwait et al., 2004; Ballantyne et al., 2011; Prairie

et al., 2012). Consequences of changes in synchrony for

these processes may be complex (Powell & Okubo,

1994; Gr€unbaum, 2002; Franks, 2005; Ballantyne et al.,

2011).

The potential for secular trends or regime shifts in

synchrony driven by changes in climatic drivers has

seldom been examined in any system. Ranta et al.

(1997ab, 1998) demonstrated complex periodic changes

in measures of synchrony for lynx populations and

other populations and using models, but this was

apparently due to details of dynamics rather than being

a secular trend in the nature or causes of synchrony.

Viboud et al. (2006) showed that strength of synchrony

in influenza epidemics varied through time, but the

pattern was not associated with climate. Cazelles et al.

(2005) showed associations between changing syn-

chrony in dengue epidemics and El Ni~no. Ojanen et al.

(2013) showed an apparent secular trend in synchrony

of populations of Glanville fritillary butterflies. Post &

Forchhammer (2004) showed changes in caribou syn-

chrony linked to changes in the NAO. Sheppard et al.

(2015) demonstrated that large-scale changes in the syn-

chrony of winter climatic variables, related to the NAO,

caused major changes in the synchrony of aphid phe-

nology across Britain. And Allstadt et al. (2015) showed

changes in gypsy moth synchrony related to changes in

climatic synchrony. These studies make plausible the

idea of Post & Forchhammer (2002) that changes in

population synchrony may be another important and

common consequence of climate change. However,

examples such as these showing changes in synchrony

are rare compared with the many studies of synchrony

that do not examine changes; more studies of changes

in synchrony are needed.

To analyze synchrony and changes in synchrony, we

use both standard correlation-based methods and spec-

tral methods. Techniques such as Mantel correlograms

(Oden & Sokal, 1986) and spline correlograms (Bjørn-

stad & Falck, 2001) are commonly employed to describe

the relationship between synchrony and distance

between sampling locations, and are based on correla-

tion coefficients between time series at all pairs of sam-

pling locations. We also apply cospectral methods.

Spectral methods decompose time series into their har-

monic components, indicating which frequencies are

contributing most to the variance of a signal or the

covariance between signals, and therefore allow the

decomposition of total synchrony according to the fre-

quencies, or timescales, at which it occurs. Synchrony
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on one timescale can occur independently of synchrony

on another timescale, and these differences can obscure

detection of synchrony by standard correlation-based

methods because the correlation methods compute total

synchrony on all timescales (Fig. 1; Keitt, 2008; Shep-

pard et al., 2015). In addition, long-timescale synchrony

may be more important than short-timescale syn-

chrony, as it is more likely to affect longer lived con-

sumers. Timescale-specific approaches to synchrony

exist (e.g., Grenfell et al., 2001; Viboud et al., 2006; Vas-

seur & Gaedke, 2007; Keitt, 2008; Sheppard et al., 2015),

but have rarely been applied. We believe that this

underuse has limited our ability to understand changes

in synchrony as well as their causes and consequences

(Sheppard et al., 2015).

To meet our overall research goal of investigating

potential changes in synchrony over the North Sea

regime shift, we will address the following specific

questions. (i) Has average synchrony of plankton

dynamics between locations in the North Sea changed

over the regime shift? (ii) Has the way in which syn-

chrony declines with geographic distance changed as a

result of the regime shift, and specifically have long-

range and short-range synchrony changed? (iii) Has the

frequency-specific structure of synchrony changed over

the regime shift, and specifically have high-frequency

and low-frequency synchrony been altered? As plank-

ton are the main basis of the marine food web and syn-

chrony is ecologically important, but changes in

synchrony are seldom studied, our study is important

both in its examination of an important system and as

an example of a more general phenomenon.

Materials and methods

Datasets

We used data from the Continuous Plankton Recorder (CPR)

database of the Sir Alister Hardy Foundation for Ocean

Science (SAHFOS), focusing on the region 52°N–60°N latitude

and 4°W–8°E longitude because data were most extensive in

that region during the periods before and after the regime

shift of the 1980s. The CPR database includes spatiotemporal

population data from the North Sea and North Atlantic that

now span more than 80 years for some taxa. A sampling
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Fig. 1 Idealized illustration of how synchrony can differ on different timescales. (a) Time series are synchronous on long timescales

and antisynchronous on short timescales. (b) Time series are antisynchronous on long timescales and synchronous on short timescales.

(c, d) Breakdown of the individual frequencies that sum to form the time series in a and b, respectively. Standard correlation coeffi-

cients between time series are 0 for both (a) and (b), misleadingly suggesting lack of synchrony. Note that corresponding normalized

cospectra (e, f; see Methods) reveal that positive synchrony at one frequency is masked by negative synchrony at the other. In practice,

exact cancellation is unlikely, but asynchrony at some frequencies may strongly conceal important synchrony at other frequencies.
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device is towed behind available ships at about 7 m depth.

Water is filtered through a moving band of silk with a mesh

size of approximately 270 lm (Batten et al., 2003). On return

to the laboratory, the silk is laid out on a bench for visual esti-

mation of chlorophyll as Phytoplankton Color (Raitsos et al.,

2013). The silk is then cut into sections representing samples

of 3 m3 of seawater over 10 nautical miles. Phytoplankton and

zooplankton taxa are then identified and counted, typically on

alternate samples. Minimal changes have been made to the

sampling device and analysis procedure over the study’s his-

tory, to ensure consistency (Batten et al., 2003). The resulting

database contains estimates of the abundance of >500 taxa of

plankton on a large number of 10 nautical mile transects (sam-

ples) taken at monthly intervals (typically) all over the North

Sea, over the period of the survey (Reid et al., 2003). For a

more detailed description of the survey, see Batten et al. (2003)

and Beaugrand et al. (2003).

We examined 22 phytoplankton and zooplankton taxa plus

the Phytoplankton Color Index (PCI). Taxa were selected

because they were common enough to yield data suitable for

the intended analyses, and because they were known to be

important in North Sea ecosystem dynamics or were relevant

to human concerns such as harmful algal blooms or fisheries.

Phytoplankton include both diatoms and dinoflagellates such

as the nuisance bloom-forming species of the genera Pseudo-

nitzschia and Ceratium. Zooplankton include the copepod

species C. finmarchicus and C. helgolandicus, important prey

species for exploited fish (Prokopchuk & Sentyabov, 2006;

Heath & Lough, 2007). The PCI is an estimate of the ‘greenness’

of a sample as one of four categories (0–3, recorded in the data-

base as 0,1,2, and 6.5) (Batten et al., 2003). PCI 2 has approxi-

mately twice the amount of color (assayed with dilution

factors) and PCI 3 has 6.5 times the color of PCI 1 (Colebrook &

Robinson, 1965). The PCI is known to correlate well with fluo-

rometer and satellite measures of chlorophyll (Batten et al.,

2003; Raitsos et al., 2013). A list of taxa is given in Table 1.

Sea Surface Temperature (SST) and wind speed data are

from the International Comprehensive Ocean-Atmosphere

Data Set (ICOADS) (Woodruff et al., 1987). SST and wind

speed data were obtained for the same area of the North Sea

as for plankton. SST and wind speed were used because of

their well-known effects on growth rates and bloom patterns,

wind effects occurring through the influence of wind-caused

thermocline mixing events on nutrient availability in the sur-

face ocean. Data on SST were also examined for a region that

stretched across the North Atlantic, 45°N–60°N and 60°W–
8°W, to examine long-distance environmental synchrony.

Change in synchrony using correlation

Data were aggregated into 1° by 1° grid cells and 83 annual

time series were produced. Annual data were split into two

time periods of equal length on either side of the 1980s, 1959–
1980 and 1989–2010 chosen for equal length and data avail-

ability. For each period, time series were linearly detrended.

For each biological or environmental variable and for each

period separately, correlations between all pairs of time series

with at least 10 overlapping values were calculated. A

maximum distance of 600 km was used between pairs of time

series in the North Sea, and a limit of 1700 km was used in the

North Atlantic region, because few pairs were available and

estimates of synchrony were poor at greater distances.

To obtain a visual picture of how synchrony depends on

distance between sampled locations, spline correlogram meth-

ods (Bjørnstad et al., 1999; Bjørnstad & Falck, 2001) were used

both before the regime shift and afterward. These methods

use a smoothing spline to produce a continuous estimate of

correlation as a function of distance, with confidence bands

determined by bootstrapping.

To establish whether changes in synchrony across the

regime shift were statistically significant, we examined, for

the North Sea data, average changes in overall synchrony in

the distance range 0–600 km (called the ‘regional’ distance

category), as well as average changes in synchrony in the dis-

tance categories 0–300 km (‘near’) and 300–600 km (‘far’). To

accomplish this, the correlation matrix of the 1959–1980 period

was subtracted, element by element, from the correlation

matrix of the 1989–2010 period. Entries of this difference

matrix still correspond to pairs of sampling locations, and

therefore each entry in the difference matrix has a correspond-

ing associated distance (the distance between the sampling

locations used for that entry). The mean of all entries in the

difference matrix for which this distance was in the category

0–600 km was computed, as well as the means of entries with

associated distances in the categories 0–300 km and 300–

600 km separately. We then shuffled time series data between

the former and latter periods 10 000 times, computing the

mean differences in synchrony between the two correlation

matrices for each randomization (for distance categories

0–600 km, 0–300 km, and 300–600 km separately; these quan-

tities were calculated exactly in the same way as for the

unshuffled data). We calculated the fraction of randomizations

for which changes in synchrony were less than changes com-

puted for the actual data. Each of the 10 000 shuffles was

applied in the same way to time series in all locations. So the

total correlation coefficient between a pair of time series in dif-

ferent locations calculated across all years (1959–1980 and

1989–2010 combined) would have been the same for all ran-

domizations, although any differences in correlation from the

1959–1980 period to the 1989–2010 period were destroyed.

This is consistent with the null hypothesis being tested that no

changes in synchrony occurred across the regime shift. Vari-

ables for which fewer than 2.5% of randomizations exhibited

changes in synchrony less than that of the real data putatively

showed a significant decrease in synchrony from before the

regime shift to after it. Conversely, variables for which more

than 97.5% of randomizations exhibited changes in synchrony

less than that of the real data showed a significant increase in

synchrony from before the regime shift to after it. Type I error

rate was controlled by further randomization methods.

Methodological details are online in Appendix S1.

Change in synchrony using spectral methods

For the North Sea region, spectral analysis used different time

series from the correlation analysis as there were years
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missing from several of the 1° by 1° grid cell time series. This

was not a problem for the correlation analysis, and using time

series from 1° by 1° cells allowed the best spatial coverage for

that analysis. However, spectral analysis using standard peri-

odogram methods requires complete time series, so instead

two CPR transect routes (called A and C in Richardson et al.,

2006) across the North Sea were used (Fig. 2). These are routes

traversed regularly by ships participating in the CPR survey,

so they were sampled intensively through the entirety of the

two periods 1959–1980 and 1989–2010. Plankton and environ-

mental data that fell within the two transects were aggregated

into 19 annual time series for the periods 1959–1980 and 1989–

2010, each time series representing a box 20 nautical miles by

1.5 degrees (longitude for A and latitude for C; Fig. 2 shows

the boxes). Four time series from transect C were discarded

due to missing data. A maximum distance of 600 km was

again used.

In contrast to the transect data used for spectral analysis of

North Sea data, but like the correlation analysis, spectral anal-

ysis of SST in the North Atlantic used 1° by 1° grid cells. Dis-

tances up to a maximum of 1700 km were used, because SST

data were sufficient when only those cells with complete time

series over both periods were included.

A normalized cospectrum was used to decompose synchrony

between time series according to the frequencies, or time-

scales, at which it occurs. The normalized cospectrum is the

frequency-specific decomposition of the Pearson correlation

coefficient commonly used to describe synchrony. It gives

Table 1 Randomization results indicating changes in synchrony from the period 1959–1980 to the period 1989–2010, for regional

average synchrony and for the 0–300 km (near) and 300–600 km (far) distance categories, and also for high (greater than 0.2 cy-

cles yr�1) and low (less than 0.2 cycles yr�1) frequencies (see Methods).

Species Regional Near Far Low High

Phytoplankton

Phytoplankton Color 0.114 0.159 0.088 0.192 0.288

Diatoms

Thalassiosira sp. 0.972 0.996*↑ 0.653 0.903 0.887

Proboscia alata 0.042 0.010*↓ 0.219 0.493 0.013*↓

Rhizosolenia styliformis 0.270 0.236 0.389 0.148 0.095

Pseudo-nitzschia delicatissima 0.912 0.716 0.970 0.741 0.847

Pseudo-nitzschia seriata 0.022*↓ 0.115 0.009*↓ 0.233 0.267

Dinoflagellates

Ceratium macroceros 0.591 0.346 0.853 0.878 0.480

Ceratium fusus 0.974 0.985*↑ 0.910 0.902 0.809

Ceratium furca 0.857 0.935 0.653 0.720 0.402

Ceratium tripos 0.521 0.100 0.891 0.138 0.704

Zooplankton

Copepods

Euphausiids 0.336 0.349 0.319 0.304 0.691

Acartia sp. 0.580 0.366 0.726 0.704 0.225

Calanus stages I-IV 0.035 0.039 0.153 0.352 0.606

Oithona sp. 0.949 0.961 0.866 0.686 0.785

Para-pseudocalanus spp. 0.564 0.548 0.565 0.002*↓ 0.594

Pseudocalanus sp. 0.316 0.326 0.385 0.266 0.528

Calanus helgolandicus 0.087 0.177 0.058 0.004*↓ 0.854

Calanus finmarchicus 0.021*↓ 0.029 0.034 0.098 0.970

Centropages typicus 0.006*↓ 0.000*↓ 0.171 0.172 0.428

Metridia lucens 0.364 0.807 0.019*↓ 0.082 0.340

Temora longicornis 0.627 0.574 0.627 0.816 0.237

Meroplankton

Decapod larvae 0.051 0.077 0.102 0.060 0.492

Echinoderm larvae 0.917 0.743 0.970 0.304 0.688

Environmental

SST 0.029 0.017*↓ 0.038 0.006*↓ 0.843

Wind 0.119 0.088 0.153 0.238 0.358

Probability of Type 1 error 0.035* 0.009* 0.135 0.027* 0.460

Values are fractions of 10 000 randomizations that showed a change in synchrony less than shown by the data, so values less than

0.025 indicate a decrease in synchrony during the regime shift and values greater than 0.975 indicate an increase. These values are

marked with a *, with arrows indicating the direction of change. The final row contains the results of controlling for type I error,

numbers indicating the probability of obtaining as many species or more showing significant changes by chance alone if there were

no changes in synchrony across the regime shift. Methodological details are online in Appendix S1.
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in-phase correlation between two time series as a function of

frequency and, like the correlation coefficient, takes values

between �1 and 1. So the input of the normalized cospectrum

technique is two time series, and the output is a plot with

x-axis showing frequency and y-axis showing in-phase syn-

chrony between the time series at that frequency. Figure 1

gives idealized examples. The integral of the normalized

cospectrum over all frequencies equals the correlation coeffi-

cient. The highest peaks in the normalized cospectrum corre-

spond to frequency components that are most important in

accounting for covariation in the time series. To obtain the

normalized cospectrum of two time series, one starts with

their cospectrum (a standard method, see Brillinger, 2001),

and normalizes in a simple way: by dividing by the geometric

mean of the variances of the time series. Because the integral

of the cospectrum of two time series is their covariance, this

normalization ensures that the integral of the normalized

cospectrum of the time series is their Pearson correlation

coefficient.

To obtain a visual picture of how synchrony depends on

frequency and how this changed during the regime shift, plots

of synchrony vs. frequency were produced. For each variable,

and for the 1959–1980 and 1989–2010 periods separately, time

series were linearly detrended prior to calculating the normal-

ized cospectrum. Mean normalized cospectra over all dis-

tances were then calculated for each variable and for the two

periods separately, with means over pairs of time series com-

puted on a frequency-by-frequency basis. Bootstrapping with

10 000 resamplings was again used to produce confidence

bands (Bjørnstad & Falck, 2001). Averages of mean normal-

ized cospectra over high frequencies (frequencies >0.2 cycles

per year) and low frequencies (≤0.2 cycles per year) were com-

puted, 0.2 corresponding to a 5-year cycle.

To establish whether observed changes from before the

regime shift to after it were significant, we examined differ-

ences in synchrony at low frequencies and high frequencies.

For each variable, the three-dimensional normalized cospec-

trum array from the 1959–1980 period (location by location by

frequency being the dimensions of the array) was subtracted

from the normalized cospectrum array for the 1989–2010 per-

iod. The mean of this difference, computed frequency by fre-

quency over all distances, was calculated. We then summed

the resulting average changes over high frequencies (>0.2
cycles per year) and low frequencies (≤0.2 cycles per year) sep-

arately. To test if results were significant, we again employed

randomization methods based on shuffling times between the

two periods. Methodological details are online in

Appendix S1. Analyses were performed using R 2.15.2.

Results

Using plots of correlation vs. distance, changes in syn-

chrony from the 1959–1980 period to the 1989–2010 per-

iod were visually apparent for several plankton taxa

(Fig. 3 for selected variables; Fig. S1 for the remaining

variables). Plots showed decreasing synchrony with

increasing distance, as expected, in all variables in both

periods. Although some taxa showed little change

between the two periods across all distances (e.g., Deca-

pod larvae, Fig. 3c), several taxa showed an increase in

synchrony from the earlier period to the later (e.g., Cer-

atium furca, Fig. 3a); and several others showed a

decrease (e.g., C. finmarchicus, Fig. 3b). Both environ-

mental variables showed a decrease in synchrony across

the regime shift (SST, Fig. 3d; wind speed, Fig. S1).

Changes in synchrony across the regime shift, as

measured using correlations, were often statistically

significant. Three taxa showed significant changes in

regional synchrony over the period of the regime shift

(Table 1, column ‘regional’); this was more taxa than

would have been expected by chance if there was no

change in synchrony (Table 1, column ‘regional’, last

row). Four plankton taxa and SST showed significant

changes in synchrony at short distances (0–300 km;

Table 1, column ‘near’), and a further two taxa showed

significant changes at long distances (300–600 km;

Table 1, column ‘far’). For the 0–300 km results, this

was more taxa than would have been expected by

chance if there were no change in synchrony (Table 1,

column ‘near’, last row). The ‘near’ and ‘far’ categories

showed consistent changes – there were no variables

with a significant increase in one category and a signifi-

cant decrease in the other. But considering both dis-

tance categories separately was important because

sometimes lack of strong change in one distance range

made strong change over the other distance range

undetectable when only change in regional synchrony

was considered (Table 1).
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Fig. 2 Map of the North Sea showing transects A and C and

boxes used for spectral analyses.
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Time series were linearly detrended prior to correla-

tion analysis to maintain consistency with spectral

methods. Long-term trends may obscure synchrony

from shorter term fluctuations (Buonaccorsi et al.,

2001), and the latter was the focus here, but detrending

may also remove low-frequency synchrony of interest.

Therefore, the first three columns of Table 1 were

reproduced without detrending (Table S2). Results

were the same in substance.

Spectral analysis revealed changes in the frequency

distribution of synchrony, and changes were at low

frequencies (Fig. 4 for selected variables; Fig. S2 for

the remaining variables). C. helgolandicus (Fig. 4a),

Para-pseudocalanus spp. (Fig. 4b), and SST (Fig. 4c) all

had substantial peaks in their mean normalized cospec-

tra at periods between 5 and 10 years before the regime

shift, but the peaks were absent after the shift. Table 1

shows that these changes were significant. The puta-

tively significant change seen in Proboscia alata at high

frequencies could be a type 1 error, as seen in the final

column of Table 1. The variables that showed signifi-

cant changes at low frequencies did not show signifi-

cant changes in aggregate across all frequencies (the

‘regional’ column in Table 1). This illustrates the

importance of separating frequency bands – lack of

change in one band can mask strong change in another

band if bands are considered in aggregate.

Changes in synchrony were not confined to any par-

ticular taxonomic group: species of diatoms, dinoflagel-

lates, and copepods all showed pronounced changes

(Table 1). Only meroplankton showed no significant

changes. Although phytoplankton species exhibited

both increases and decreases in synchrony, the copepod

species that showed a significant change all showed a

decline. Environmental variables also show declines.

Results suggest that changes in copepod synchrony
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may have been related to changes in environmental

synchrony (see Discussion).

Variations in synchrony, such as the direction of

change (increase vs. decrease), were not a statistical

artifact due solely to changes in abundance patterns.

For example, both C. finmarchicus and C. typicus

showed a decrease in synchrony across the study per-

iod, but the abundances of these species showed oppo-

site trends, with C. finmarchicus declining in the North

Sea across the regime shift and C. typicus increasing

(Fromentin & Planque, 1996; Beaugrand et al., 2002).

SST results led us to investigate if changes seen in the

North Sea extend across the North Atlantic. Figure 5a

shows that short-range synchrony of SST did decrease

over the period of the regime shift in the North Atlan-

tic, as in the North Sea. However, at longer distances

(longer than the distance across the North Sea), syn-

chrony in the North Atlantic increased across the

regime shift period. A similar result was found when

just the Eastern Atlantic, off the shelf edge, was exam-

ined. The decline in low-frequency (5- to 10-year per-

iod) SST synchrony seen across the North Sea was not

seen in the North Atlantic – instead there was an

increase in low-frequency synchrony (Fig. 5b).

In the North Atlantic, SSTs showed a decline in syn-

chrony over the regime shift at distances of less than

600 km and an increase at distances beyond 600 km;

this reversal could not have been an artifact of coastal

effects. The maximum distance considered in the North

Atlantic was 1700 km, approximately half the East–
West distance of the study area and not far enough to

span the Atlantic. Thus, coastal points from opposite

sides of the Atlantic were not compared.

Discussion

Nine of the 23 taxa and one of the two environmental

variables we examined showed changes in synchrony

over the regime shift, either in a distance category or in

a frequency band or both. These results indicate that

the climate change-driven North Sea regime shift of the

1980s, which was well documented in earlier work that

only examined purely spatial or purely temporal

aspects of plankton population dynamics (Reid et al.,

2001; Beaugrand, 2004; Alheit et al., 2005; Lindley et al.,

2010), also affected spatiotemporal population patterns.

Synchrony always decreased for copepod species,

regardless of the distance category or frequency band

considered. In contrast, some phytoplankton species in

some distance categories or frequency bands increased

in synchrony and others decreased. SST, but not wind

speed, showed changes in synchrony across the regime

shift. Some observed SST changes represent a phe-

nomenon that is more widespread than even the North

Sea: synchrony at distances of <600 km also decreased

across the North Atlantic.

Two taxa, C. helgolandicus (a major prey item for

exploited fish species) and Para-pseudocalanus spp., as

well as SST, saw similar decreases in synchrony at

about an 8-year period over the regime shift (Fig. 4).

This suggests the possibility that changes in SST syn-

chrony may have driven changes in synchrony in these

taxa. This hypothesis is consistent with prior research

in four respects. First, temperature modulates plankton

variability in a wide range of ways (Beaugrand, 2009).

Second, the NAO is known to affect plankton abun-

dances (Fromentin & Planque, 1996; Piontkovski et al.,

2006; Beaugrand, 2012). It is also one of the major driv-

ing forces of aspects of climatic variability in the North

Sea and North Atlantic, including SST, and therefore

may be involved in the observed changes in both popu-

lations and SST synchrony. Changes in population syn-

chrony have twice previously been attributed directly

to changes in the synchrony of temperature-related

environmental drivers, which were in turn shown to be

due to changes in the NAO (Post & Forchhammer,

2004; Sheppard et al., 2015). Third, previous studies

have noted significant changes in both NAO and NHT
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anomalies over the period of the regime shift (Beau-

grand, 2003; Beaugrand & Reid, 2003). Finally, syn-

chrony of environmental drivers such as temperature is

known to be a main cause of population synchrony

(this is the Moran effect; Liebhold et al., 2004). We

recently proved a wavelet version of the classic Moran

theorem (Sheppard et al., 2015) that shows Moran

effects can be frequency specific. Thus, a hypothesized

mechanism for some of the frequency-specific patterns

of synchrony we observed in the plankton, and changes

therein, is frequency-specific Moran effects and changes

in SST synchrony. This cannot be the only mechanism

operating for all taxa considered because plankton syn-

chrony does not always mirror SST synchrony exactly.

Other environmental influences and dispersal may be

important, but determining their relative importance

and the means by which they combine is a difficult

problem best saved for future work.

Changes through time in population synchrony have

been detected previously in a few species (Ranta et al.,

1995, 1997b, 1998; Koenig, 2001; Post & Forchhammer,

2004; Ojanen et al., 2013; Allstadt et al., 2015; Sheppard

et al., 2015), but these studies are a small minority of all

the studies of synchrony, and changes in synchrony and

their causes are still poorly understood. Our results pro-

vide a valuable new example, and help suggest that, in

fact, changes in synchrony might occur more frequently

than is commonly recognized. We suggest above that

the changes in synchrony we observed in C. helgolandi-

cus, Para-pseudocalanus spp., and SST may relate to

changes in the NAO and therefore may also relate to

changes in synchrony in terrestrial systems, which have

been attributed to the NAO (Post & Forchhammer, 2004;

Sheppard et al., 2015). The NAO affects climate and

many species across a wide area (Ottersen et al., 2001;

Stenseth et al., 2002; Post & Forchhammer, 2004). Moran

effects are probably widespread (Lande et al., 1999; Pel-

tonen et al., 2002; Liebhold et al., 2004; Engen et al.,

2005), especially for winter climatic drivers in temperate

regions (Grenfell et al., 1998; Ottersen et al., 2001; Post &

Forchhammer, 2002, 2004; Stenseth et al., 2004), and syn-

chrony itself is ubiquitous (Liebhold et al., 2004). There-

fore, it is reasonable to hypothesize that changes in the

NAO, and possibly also in other large climatic modes,

may commonly cause changes, present but yet to be

noticed, in the synchrony of many species.

The impacts of changes in population synchrony

may also be more important than commonly recog-

nized. They may have strong effects on higher trophic

levels of ecosystems, and exploitative industries. In

many hierarchical dynamical systems, synchrony

between multiple signals is more important than the

individual signals themselves. For instance, a neuron

may fire when its input neurons fire simultaneously;

and the electrical grid crashes only when demands of

multiple users become synchronized, producing total-

usage spikes. Only synchronous components of signals

matter in the average signal that affects the next hierar-

chical level because nonsynchronous components can-

cel out in the aggregated signal that affects the next

level. Complex ecosystems may be example systems of

this type. In caricature, ecosystems include multiple

trophic levels, with environmental and population-

dynamical signals from lower levels often being spa-

tially aggregated to affect higher levels and human con-

cerns such as fisheries and agriculture. For instance,

drought only affects an herbivore if rain is simultane-

ously scarce over much of its foraging area; predator

populations are only harmed if prey are simultaneously

scarce over a predator’s whole foraging area; and

human fish exploitation may only be reduced if fish

populations decline synchronously over all fishing loca-

tions. Due to this kind of spatial averaging, synchrony

of a species could be of primary importance to trophic

levels above the species. Therefore, changes in syn-

chrony brought about through climate change, for

instance the changes in the North Sea that we have doc-

umented, may have substantial effects on higher

trophic levels and exploiting industries.

Changes in the synchrony of plankton may be an

important example of the effects described above. Fur-

thermore, different consumers of plankton may show

different responses to changes in plankton synchrony

depending on the spatial and temporal scales of indi-

vidual foraging. Strong synchrony that occurs over a

spatial extent that exceeds the migratory ability of an

individual consumer, and that occurs on a timescale

(period) that exceeds the required feeding frequency

for survival or reproduction, will affect consumer pop-

ulation dynamics. This is because consumers in some

areas and during some periods will lack prey and will

be unable to wait out the period of scarcity or migrate

to a location of prey abundance. In contrast, synchrony

that occurs at high frequencies relative to consumer life

history or that occurs over spatial extents smaller than

migration distances is unlikely to affect consumers.

Consumer species with different life spans and/or

migratory propensities may therefore be affected differ-

ently by changes in plankton synchrony. For instance, if

annual time series of plankton abundance are synchro-

nized across the spawning grounds of a fish species,

and synchrony occurs on timescales longer than the life

span of the fish, then plankton could be unavailable to

larvae for many years and the population may not per-

sist. If plankton synchrony instead occurs on timescales

less than the life span of the fish, recruitment may fail

for some years, but adult fish will be able to live

through the period of adversity to reproduce during
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the next period of plankton abundance. Although fish

recruitment is a complex process influenced by many

factors, it is believed that recruitment success is largely

determined during the larval stage (Horwood et al.,

2000; Brander et al., 2001). Food availability (zooplank-

ton) plays an important role in the growth and survival

of larval fish (Beaugrand et al., 2003; Fiksen & Jørgen-

sen, 2011).

These ideas relate to concepts explored in the litera-

ture on patchiness of plankton distributions (Kol-

mogorov, 1941, 1991; Platt, 1972, 1975; Steele, 1978;

Therriault et al., 1978; Mackas, 1984; Weber et al., 1986;

Powell & Okubo, 1994; Strutton et al., 1997; Frank et al.,

2005; Ballantyne et al., 2011; Prairie et al., 2012),

although different language is used there; the work of

Gr€unbaum (2002) from that literature may facilitate

future efforts to further illuminate possible conse-

quences of changes in plankton for higher trophic

levels. The spatial scale of synchrony should be similar

to the characteristic size of plankton patches in snap-

shots of plankton spatial distributions described in the

patchiness literature. Dominant timescales of syn-

chrony should relate to patch durations. The work of

Gr€unbaum (2002) identifies a so-called ‘Frost number’,

which quantifies the ability of consumers to track (and

thus exploit) the distribution of a patchy resource as it

changes in time. The Frost number is Fr = c2Ts/L2.
Here c2s characterizes the effective speed of foraging

behavior. When the distance scale, L, of resource patch-

iness is high (corresponding to large, widely separated

patches, and to long-distance synchrony in our picture),

the Frost number is low. Consumers must disperse over

longer distances to track the resource, and thus the

effective resource availability is lower. When the time-

scale, T, of changes in resource density is long (corre-

sponding to long-lasting patches and long periods

between patches, and to low-frequency synchrony in

our picture), the Frost number is high, giving con-

sumers more time to track and exploit resources.

Using the Frost number, Gr€unbaum (2002) considers

a proof-of-concept dynamical model that can help cap-

ture the importance of the accessibility of resources

because of their patchiness. The nature of resource

patches has been shown to relate to resource–consumer

encounter rates (Denman & Abbot, 1994; Prairie et al.,

2012) and to the population sizes of zooplankton con-

sumers (Davis et al., 1991; Menden-Deuer &

Gr€unbaum, 2006). According to Prairie et al. (2012),

‘Spatial heterogeneity in plankton distributions can

affect grazing rates and trophic dynamics on much

broader scales than those of the patches themselves.’

The model of Gr€unbaum (2002) is a first effort to quan-

titatively understand the effects of observations such as

these on consumer dynamics.

Synchrony of zooplankton taxa consistently

decreased over the period of the regime shift whenever

a significant change was observed, and these changes

occurred at low frequencies but not high frequencies

(Table 1). We hypothesize possible effects of such

changes, all else being equal, using the Frost number. If

decreases in low-frequency synchrony with no con-

comitant change in high-frequency synchrony corre-

spond to a shorter average duration of resource patches

(decreased T in the Frost number formula), then the

Frost number decreases, corresponding to decreased

resource availability for some consumers. We caution,

however, that the Gr€unbaum model envisions con-

sumer individuals moving to track resources. In our

analysis, both time and distance scales are very large.

Large organisms such as adult fish may be able to track

an available resource on these scales, but consumer

zooplankton and larval fish are probably reliant on

ocean currents for movement on large scales. Long

timescales of resource fluctuation may result in periods

of resource scarcity, which exceed the ability of small

organisms to survive such physically mediated ‘forag-

ing’ and the Frost number and modeling choices of

Gr€unbaum may not apply. We consider that further

development of the Gr€unbaum model and other related

models to help understand the trophic consequences of

changes in synchrony for consumers of different life

histories is an important avenue of future research.

Changes in synchrony that we observed were often

specific to a distance range or a frequency band. These

results suggest that synchrony and changes in syn-

chrony may also differ by frequency band (Keitt, 2008;

Sheppard et al., 2015), a possibility supported by our

frequency-specific Moran theorem (Sheppard et al.,

2015). Future work should therefore continue to take a

frequency-specific perspective, as we did in this study.
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