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Abstract: Kelp forests dominate temperate and polar rocky coastlines and represent critical 

marine habitats because they support elevated rates of primary and secondary production and 

high biodiversity. A major threat to the stability of these ecosystems is the proliferation of non-

native species, such as the Japanese kelp Undaria pinnatifida (‘Wakame’), which has recently 

colonised natural habitats in the UK. We quantified the abundance and biomass of U. 

pinnatifida on a natural rocky reef habitat over 10 months to make comparisons with three 

native canopy-forming brown algae (Laminaria ochroleuca, Saccharina latissima, and 

Saccorhiza polyschides). We also examined the biogenic habitat structure provided by, and 

epibiotic assemblages associated with, U. pinnatifida in comparison to native macroalgae. 

Surveys conducted within the Plymouth Sound Special Area of Conservation indicated that U. 

pinnatifida is now a dominant and conspicuous member of kelp-dominated communities on 

natural substrata. Crucially, U. pinnatifida supported a structurally dissimilar and less diverse 

epibiotic assemblage than the native perennial kelp species. However, U. pinnatifida-

associated assemblages were similar to those associated with Saccorhiza polyschides, which 

has a similar life history and growth strategy. Our results suggest that a shift towards U. 

pinnatifida dominated reefs could result in impoverished epibiotic assemblages and lower local 

biodiversity, although this could be offset, to some extent, by the climate-driven proliferation 

of L. ochroleuca at the poleward range edge, which provides complex biogenic habitat and 

harbours relatively high biodiversity. Clearly, greater understanding of the long-term dynamics 

and competitive interactions between these habitat-forming species is needed to accurately 

predict future biodiversity patterns.  

 

Keywords: non-native species, epifauna, biodiversity, benthic ecology, temperate reefs, 

macroalgae 
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Introduction  

Habitat-forming species (HFS) can be considered ‘ecological engineers’ (sensu Jones et al., 

1994), as they directly and indirectly alter environmental conditions for other organisms 

(Thomsen et al., 2010; Angelini et al., 2011). Within benthic marine ecosystems, HFS play a 

key role in determining the structure of proximal communities by influencing biological and 

physiological factors and providing key resources (e.g. Wernberg et al., 2005; Messmer et al., 

2011; Smale et al., 2011).  These HFS, which include large macroalgae, seagrasses and reef-

building corals, can harbour diverse assemblages in an otherwise homogenous wider 

environment, and can also initiate ‘habitat cascades’ by providing biogenic structure for 

additional secondary habitat providers (e.g. epiphytes, see Thomsen et al., 2010). The 

identities, distributions and local abundances of marine HFS are, however, changing in 

response to rapid environmental change and human activities (e.g. Smale and Wernberg, 2013; 

Vergés et al., 2014). As HFS alter the immediate physical environment and mediate biological 

interactions, shifts in their identity, abundance or distribution are likely to affect entire 

communities and therefore warrant detailed investigation.    

 

Kelps and other large brown macroalgae dominate shallow rocky reefs along much of the 

world’s temperate and polar coastline (Steneck et al., 2002; Smale et al., 2013). Kelp forests 

exhibit high levels of primary productivity (Mann, 1973; Krumhansl and Scheibling, 2012), 

form an important component of inshore food webs (Leclerc et al., 2013), and provide habitat 

for a wide range of associated flora and fauna (Anderson et al., 2005; Smale et al., 2013). The 

ecological structure and functioning of kelp forest ecosystems is, however, being impacted by 

a range of environmental change stressors, including oceanic warming (Wernberg et al., 2011; 

Vergés et al., 2014), extreme climatic events (Byrnes et al., 2011; Wernberg et al., 2013), 

reduced water quality (Gorgula and Connell, 2004; Moy and Christie, 2012), altered trophic 

interactions (Tegner and Dayton, 2000; Ling et al., 2009) and the spread of non-native species 

(Saunders and Metaxas, 2008). Such stressors can cause shifts in the distributions and/or 

relative abundances of HFS within kelp forests (Smale and Wernberg, 2013; Smale et al., 

2015), which can have knock-on effects for the wider community (Ling, 2008; Wernberg et 

al., 2013). As such, documenting changes in the distribution and abundance of HFS and 

examining their role in structuring communities is a crucial step towards understanding and 

predicting the effects of rapid environmental change.     
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Undaria pinnatifida (Harvey) Suringar 1873 (also known as Wakame or Japanese Kelp), which 

originates in the temperate northwest Pacific, is widely regarded as one of the most invasive 

marine species on Earth (listed in the ‘100 of the World’s Worst Invasive Alien Species’, 

Invasive Species Specialist Group, IUCN 2013), having established populations in the 

northeast Atlantic (Castric-Fey et al., 1993; Fletcher and Manfredi, 1995), northern 

Mediterranean (Cecere et al., 2000), southwest Atlantic (Casas and Piriz, 1996), southern 

Pacific (Hay and Luckens, 1987) and the eastern Pacific (Silva et al., 2002). U. pinnatifida was 

first recorded in UK waters in the Hamble estuary in 1994 (Fletcher and Manfredi, 1995) and 

has since spread along the south coast of England (Heiser et al., 2014). More recently U. 

pinnatifida has been recorded in Wales (Wood et al., 2015) and Northern Ireland (Minchin and 

Nunn, 2014), indicative of a northward extension through Europe. U. pinnatifida was first 

recorded within the Plymouth Sound Special Area of Conservation (SAC) in 2003 and has 

since been recorded at multiple sites and on natural and artificial substrata, from the low 

intertidal zone to depths of ~5m (below chart datum) (Heiser et al. 2014, Smale pers obs).   

The mechanism of the initial arrival of U. pinnatifida into Europe is thought to be aquaculture, 

as it was associated with Pacific oysters (Crassostrea gigas), but has since been spread through 

intentional cultivation and, more recently, shipping traffic (Minchin and Nunn, 2014).  U. 

pinnatifida populations have predominantly established within artificial habitats, such as 

marinas, but in some cases U. pinnatifida has subsequently colonised nearby natural rocky reef 

habitat (Heiser et al., 2014) where it may then function as a HFS and interact with native HFS. 

Native and non-native kelps may support a high diversity of epibiota, including epiphytic algae 

and a myriad of invertebrate taxa.  It may be however, that U. pinnatifida supports an 

impoverished or distinct epibiont assemblage, due to differences in, for example, life-history 

between it and the native kelps (i.e. U. pinnatifida is an annual species whilst the native kelps 

are longer-lived perennial species), as well as differences in biogenic habitat structure (i.e. 

morphology of the stipe and lamina) and growth strategies (Smale et al., 2013). 

There are very few marine regions around the world that have not been affected by non-native 

invasions (Molnar et al., 2008), but whether non-native species are ‘drivers’ or ‘passengers’ of 

environmental change, and to what degree they cause biodiversity loss, has been hotly debated 

(Gurevitch and Padilla, 2004; MacDougall and Turkington, 2005). Nevertheless, certain 

species have clear ecological or socioeconomic impacts when established outside of their 

native range (Simberloff, 2011). For example, the cost of non-native invasive species (both 

marine and terrestrial) has been estimated at £1.7 billion per year in the UK alone (Williams et 
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al., 2010). Despite this, the ecological role and impact of non-native species in coastal marine 

ecosystems are relatively understudied (Thomsen et al., 2014), which poses a major challenge 

for management and conservation efforts. For example, U. pinnatifida has been listed in the 

top ten ‘worst’ invasive species in Europe (Vilà et al., 2009), yet the number of environmental 

impact studies conducted on this marine species is considerably lower compared with its 

terrestrial counterparts (McLaughlan et al., 2014). Research into the effects of U. pinnatifida 

invasions on recipient macroalgae-dominated systems has shown varying impacts on local 

biodiversity. Studies have shown both an increase (Irigoyen et al., 2011) and a decrease (Curiel 

et al., 1998; Casas et al., 2004) in local diversity as a result of U. pinnatifida introductions, as 

well as subtle and inconsistent effects on native species and associated assemblages (Raffo et 

al., 2009; South et al., 2015).  It is likely that U. pinnatifida impacts are context-dependent, but 

it does have the potential to affect the performance and/or abundance of native kelp species 

within Plymouth Sound because it is an opportunistic fast-growing species that occupies a 

substantial area of seabed by early summer (Heiser et al., 2014), and can shade co-existing 

native species (Smale, pers obs.). Previous studies on U. pinnatifida have focused on its 

impacts at the plot or habitat scale and there have been very few direct comparisons between 

U. pinnatifida and native kelps with regards to how they function as biogenic habitat providers.  

The specific aims of this study were: (1) to document temporal variability in kelp species’ 

abundance/biomass within a mixed kelp canopy invaded by U. pinnatifida within the Plymouth 

Sound SAC, and, (2) to compare the structure of epibiont assemblages associated with U. 

pinnatifida with those associated with three co-occurring native kelp HFS: Saccharina 

latissima (native, perennial), Laminaria ochroleuca (native, perennial) and Saccorhiza 

polyschides (native, pseudo-annual; taxonomically not a ‘true’ kelp as it within the Order 

Tilopteridales but performs similar ecological function and is an important canopy-former and 

is referred to as a ‘kelp’ hereafter). Ultimately, we tested the hypothesis that U. pinnatifida 

harbours a distinct and less diverse sessile epifaunal assemblage compared with native kelps 

and that proliferation of U. pinnatifida could result in lower local biodiversity.   

Materials and methods  

Study site  

Firestone Bay (50° 21' 39"N, 4° 9' 36"W), situated within the Plymouth Sound Special Area of 

Conservation (SAC), was selected for study because (i) the widespread occurrence of U. 

pinnatifida on natural substrata has recently been confirmed (Heiser et al., 2014) and (ii) the 
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site also supports extensive mixed stands of native kelps and is representative of other subtidal 

reefs within Plymouth Sound (Smale pers obs). Firestone Bay comprises a range of habitat 

types, including soft sediments supporting seagrass patches and bedrock and cobbles 

supporting benthic communities dominated by sessile invertebrates (below ~5 m depth) and 

macroalgae (above ~5 m depth). The site experiences strong tidal flows (in excess of 1 m s-1 

during spring tides, Fitzpatrick, 1990) and is influenced by fluvial input (e.g. sediment, organic 

matter) from the adjacent Tamar River system. It is well protected from wind or wave-derived 

water motion and the embayment has a gently-sloping shallow profile before deepening 

towards the main channel of the Tamar estuary (>40 m depth). The low intertidal zone is 

dominated by the fucoid Himanthalia elongata and the kelp L. digitata, whereas the extreme 

low water and shallow subtidal zone is characterized by mixed macroalgal stand comprising 

the kelps L. ochroleuca, S. latissima, S. polyschides and U. pinnatifida.  

Field surveys, sample collection and processing  

Surveys were completed with standard scientific diving techniques at ~2 m depth (below chart 

datum) within Firestone Bay.  Five replicate 10 x 1 m belt transects were haphazardly placed, 

at least 10 m apart, with each transect orientated parallel to the shore along a constant depth. 

Sampling was stratified to target bedrock and cobble beds (i.e. patches of soft sediment were 

not sampled).  Each kelp sporophyte within the belt transect was identified to species in situ.  

In 2014, five subtidal transects were conducted at each sampling event in April, May, June, 

August and December to examine temporal variability from spring through to winter. In 

addition to the surveys, sporophytes were collected from the subtidal to quantify the biomass 

and morphology of each kelp species.  At the study site, 20 individual mature-stage sporophytes 

of the species L. ochroleuca, S. latissima, S. polyschides and U. pinnatifida were collected in 

April, June and August (with the exception of L. ochroleuca in June, when 16 individuals of 

this species were collected). Adult sporophytes were randomly selected, removed below the 

holdfast and carefully placed in mesh bags.  The sporophytes were then transported to the 

laboratory, in cool seawater, whereupon the following morphological measurements were 

obtained: total length, stipe length, wet weight, internal holdfast volume (after removing any 

attached stones and epibiota) and the combined surface area of lamina and stipe surfaces. 

Internal holdfast volume (i.e. ‘living space’) was estimated by covering the holdfast structure 

in plastic wrap and then measuring its volume through displacement of freshwater. The volume 

of the holdfast structure itself was obtained (without plastic wrap) and the difference between 

the 2 measurements represented the internal holdfast volume. High resolution images were 
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obtained for each sporophyte and subsequently analysed (using ‘Image J 64’ software) to 

quantify surface area. The wet weight of all epiphytic algae attached to the sporophytes, which 

increases available living space and represents an important habitat and food source for 

associated epifauna, was also obtained.   

Following initial processing, holdfast structures were removed by cutting the base of the stipe 

and immediately frozen (-18℃). Holdfasts were subsequently thawed and carefully dissected, 

and all sessile epibionts were removed, identified to the highest taxonomic resolution possible 

(mostly species with the notable exception of sponges) and weighed (damp weight). In April, 

20 mature holdfasts of L. ochroleuca, S. latissima and U. pinnatifida were examined (S. 

polyschides was not present at this time).  In June and August, 20 holdfasts were examined for 

each kelp species, with the exception of L. ochroleuca in June when only 16 holdfasts were 

sampled. In addition, epifaunal assemblages attached to the stipe and lamina were also 

quantified in August, when the abundance of sessile fauna is generally high (Smale, pers obs).  

The spatial coverage of epifauna on the stipe and lamina was quantified by identifying all fauna 

and estimating their spatial coverage using a semi-quantitative SACFOR scale (using percent 

cover categories as defined by Connor et al., 2004).  Epifaunal species were removed from the 

stipe and lamina and stored in 70% IMS for subsequent taxonomic confirmation. In total, 20 

mature sporophytes of each kelp species were examined. 

Statistical analysis 

Variability in biogenic habitat structure (i.e. morphology and epiphytic load) between the kelp 

species were statistically examined with univariate permutational analysis of variance with 

‘kelp’ and ‘month’ as fixed factors (permutations were based on Euclidean distances between 

untransformed data, performed under a reduced model using 4999 permutations). Where a 

significant interaction term was recorded pairwise tests between kelps were conducted within 

each level of month. Significance was accepted at P<0.01, in order to reduce the likelihood of 

a Type I error arising from multiple testing of morphological response variables. Variability in 

epibiont assemblage structure between host kelp species and sampling month was examined 

using multivariate permutational analysis of variance (PERMANOVA; Anderson, 2001), using 

the model described above with permutations based on a Bray-Curtis similarity matrix 

constructed from square-root transformed areal coverage/biomass data. As some sporophytes 

were devoid of epibionts, a dummy variable was added to every sample before construction of 

the similarity matrix (Clarke and Warwick, 2001). Where significant differences between host 
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kelp species were detected (at P<0.05) SIMPER analysis was conducted to determine which 

taxa contributed most to the observed differences. Univariate assemblage-level metrics (i.e. 

total areal cover, total biomass, taxon richness as expressed by the number of distinct taxa) 

were examined with univariate permutational analysis of variance (as per kelp morphology 

described above). All statistical procedures were conducted using PRIMER (v.6) software with 

the PERMANOVA add-on (Clarke and Warwick, 2001; Anderson et al., 2008). Patterns were 

visualised with standard bar plots (± standard error) and PCO plots (for multivariate 

assemblage structure data).  

Results 

Temporal variability in kelp canopy composition 

Subtidal kelp canopies at Firestone Bay were dominated by the native perennial S. latissima, 

which was the most abundant species in each sampling month and reached a maximum density 

of 9.2 inds.m-2 ± 0.4 in June (Fig. 1). The other native perennial species, L. ochroleuca, was 

recorded throughout the year but was comparably low in abundance, peaking at 1.6 inds.m-2 ± 

0.3 in August. As expected, the (pseudo)-annual species, showed strong seasonal variability in 

their actual and relative abundances, with the native annual S. polyschides being absent in April 

and reaching a peak of 3.7 inds.m-2 ± 0.9 in June and the non-native U. pinnatifida increasing 

in abundance from April to June (peaking at 5.0 inds.m-2 ± 0.7) and then decreasing rapidly in 

August and not recorded in December (Fig. 1). From April to June, U. pinnatifida was the 

second most abundant species (in terms of actual and relative abundance) at Firestone Bay (Fig. 

1). With regards to standing stock, biomass values for S. latissima were markedly greater than 

the other species in April and June but comparable to S. polyschides in August (Fig. 1). U. 

pinnatifida was the second most important contributor to kelp biomass in June (Fig. 1).       

Biogenic habitat structure provided by kelp species  

The biogenic habitat structure provided by the longer-lived perennial species, L. ochroleuca 

and S. latissima, was largely consistent throughout the sampling period (Fig. 2). In contrast, 

the physical structure of S. polyschides and U. pinnatifida varied considerably through time, in 

accordance with their life histories (Fig. 2). For all the metrics examined, univariate 

permutational ANOVAs indicated a significant HFS x Month interaction term, suggesting that 

differences in structure between kelp species was not consistent through time (Table 1). The 

total length of sporophytes varied between kelp species, as length measurements for S. 
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latissima were significantly greater than the other kelp species in April and June, but not in 

August when S. polyschides had attained a comparable size (Fig. 2, Table 1). U. pinnatifida 

was significantly smaller than the other kelp species in April and August, but was comparable 

with L. ochroleuca and S. polyschides in June (Fig. 2, Table 1).  The perennial species (L. 

ochroleuca and S. latissima) exhibited significantly greater stipe lengths than the (pseudo) 

annual species (S. polyschides and U. pinnatifida) in spring, but by late summer the stipes of 

U. pinnatifida were comparable in length to the perennial species and S. polyschides stipes 

were twice as long (Fig. 2, Table 1). 

Total weight and surface area showed similar patterns; in April S. latissima exhibited a 

significantly higher biomass and surface area than L. ochroleuca, which was significantly 

greater than U. pinnatifida (Fig. 2, Table 1). By June, values for S. polyschides, S. latissima 

and L. ochroleuca were comparable and greater than U. pinnatifida and by August S. 

polyschides had attained a significantly greater biomass and surface area than the other kelps, 

with U. pinnatifida significantly lower in biomass and area than L. ochroleuca and S. latissima 

(Fig. 2, Table 1).  

Holdfasts supported the most diverse epibiotic assemblages (see below) and exhibited 

considerable variability in structure between species and through time. Images of 

representative samples clearly indicated differences in size and complexity between the 4 

species (Fig 3). The volume of the internal living space within holdfasts was highly variable 

between kelp species and sampling months (Fig. 2, Table 1). In April, L. ochroleuca holdfasts 

had the greatest living space, with U. pinnatifida holdfasts being significantly lower in volume. 

By June, the average volume of U. pinnatifida and S. polyschides holdfast was equivalent to L. 

ochroleuca and greater than S. latissima, and by August the large bulbous holdfasts of S. 

polyschides were far more voluminous than the other kelps (Fig. 2, Table 1). Finally, the 

biomass of epiphytic algae attached to the kelp sporophytes, which provides tertiary habitat for 

a wide range of fauna, varied considerably between species and months (Fig. 2, Table 1). The 

highest biomass values were recorded in August, during which time S. latissima and S. 

polyschides supported significantly greater epiphyte biomass than L. ochroleuca and U. 

pinnatifida (Fig. 2, Table 1). 

Structure and diversity of epibiont assemblages on stipe and lamina surfaces 

In total, 7 taxa of sessile fauna representing 4 phyla (Annelida, Bryozoa, Chordata and 

Cnidaria) were recorded attached to the surfaces of the stipe/lamina habitat in the August 
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sampling event (Table S1). The most common species were the Bryozoans Tubulipora spp. 

and Celleporella hyalina. A total absence of fauna was recorded for one L. ochroleuca sample, 

one S. latissima, one U. pinnatifida and two S. polyschides samples. Taxon richness of the 

stipe/lamina epifaunal assemblages was fairly low (Fig. 4), with a maximum of 5 taxa recorded 

on a single sporophyte (S. latissima).  Univariate permuational ANOVA detected a significant 

difference between kelp species (pseudo-F3,75 = 8.14, P = 0.001) with S. latissima having 

greater richness values than the other kelp species (Fig. 4). The total cover of epifaunal 

assemblages also varied between kelp species, with epifauna on S. latissima covering an area 

~4 and ~2 times greater than epifauna on U. pinnatifida and L. ochroleuca, respectively (Fig. 

4). Univariate permuational ANOVA detected a significant difference between kelp species 

(pseudo-F3,75 = 8.21, P = 0.001) with S. latissima and S. polyschides having greater total cover 

values than  L. ochroleuca, which in turn supported a more spatially extenisve assemblage than 

U. pinnatifida (Fig. 4).  

Differences in multivariate assemblage structure of stipe/lamina epifauna between kelp species 

were vizualised with a PCO plot, which indicated clear separation in epibiont assemblage 

structure between U. pinnatifida and the 2 perennial species, L. ochroleuca and S. latissima 

(Fig. 5). A single-factor PERMANOVA using ‘kelp’ as a fixed factor indicated a significant 

difference in epifaunal assemblage structure (pseudo-F3,75 = 11.78, P = 0.001).  Pair-wise 

comparisons showed that the epifaunal assemblages of all kelp species were significantly 

different from each other.  A SIMPER analysis was conducted on the stipe and lamina 

assemblages to determine the relative contribution of each epifaunal species to the observed 

differences (Table S2). The bryozoan Membranipora membranacea was consistently a major 

contributor to the observed differences between assemblages associated with U. pinnatifida 

and the other kelps, being far more abundant on native species (Table S2). The bryozoan 

Celleporella hyalina was also an important discriminatory species between assemblages 

associated with U. pinnatifida and those associated with L. ochroleuca and S. polyschides, 

again being more abundant on the native species.   

Structure and diversity of epibiont assemblages on and within holdfasts 

In total, 35 sessile taxa representing 6 phyla (Annelida, Arthropoda, Bryozoa, Chordata, 

Mollusca, Porifera, Rhodophyta) were recorded within or attached to holdfast structures 

throughout the study period (Table S3). The most diverse phylum was the Bryozoa, represented 

by 16 species, and the most dominant (by weight) phylum was the Porifera (46% of total 

biomass recorded). In total, 55% of U. pinnatifida and 45% of S. polyschides holdfasts were 
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entirely devoid of epibionts, compared to just 5% of L. ochroleuca and 15% of S. latissima 

holdfasts.  With regards to taxon richness, a significant kelp x month interaction term was 

detected (Table 2), indicating that differences in richness between the kelp species were not 

consistent through time. In April and June, L. ochroleuca holdfast assemblages were 

significantly richer than those associated with S. latissima, which in turn were richer than those 

associated with S. polyschides and U. pinnatifida (Fig. 6). This pattern was less pronounced in 

August, as assemblages within S. latissima were comparable in richness to those associated 

with L. ochroleuca, while both species harboured greater richness than S. polyschides and U. 

pinnatifida (Fig. 6). The total biomass of epibionts was significantly greater for assemblages 

associated with L. ochroleuca than the other kelps in both April and June (Table 2, Fig. 6). In 

August, however, the biomass of S. latissima holdfast assemblages increased considerably and 

was statistically comparable to the L. ochroleuca assemblages (Table 2, Fig. 6). At this time, 

the biomass of assemblages associated with U. pinnatifida was significantly lower than the 

other kelp species (Table 2, Fig. 6). 

With regards to multivariate assemblage structure, a two-way PERMANOVA detected 

significant variability between host kelp species, months and the kelp x month interaction term 

(Table 2). Pairwise tests within each month showed that assemblages were dissimilar between 

each kelp species sampled in April (Table 2). The corresponding PCO plot (Fig. 7) depicted 

clear separation between assemblages associated with U. pinnatifida and the 2 native perennial 

species. In June, assemblages associated with L. ochroleuca were structurally distinct from the 

other kelps, whereas assemblages associated with U. Pinnatifida were statistically similar to 

those inhabiting both S. latissima and S. polyschides (Table 2, Fig. 7). In August, pairwise tests 

showed that assemblages harboured by the perennials L. ochroleuca and S. latissima were 

similar to each other but distinct from those associated with S. polyschides and U. pinnatifida, 

which in turn were comparable in structure (Table 2, Fig. 7).  

A SIMPER analysis was conducted to determine which taxa were the major contributors to the 

observed dissimilarity in assemblage structure between host kelp species (Table S4). 

Differences between assemblages hosted by U. pinnatifida and those associated with L. 

ochroleuca were principally driven by the bivalves Anomia ephippium and Hiatella arctica 

and the polychaete Spirobranchus spp., all of which were markedly more abundant on L. 

ochroleuca (Table S4). Similarly, dissimilarity between U. pinnatifida and S. latissima was 

driven by greater abundances of the red alga Corallina officinalis, the bivalve Anomia 

ephippium and the bryozoan Celleporella hyalina within S. latissima holdfasts (Table S4). The 
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red alga Corallina officinalis, the bryozoans Celleporella hyalina and Tubulipora spp. and the 

bivalve Anomia ephippium were consistently important discriminatory taxa between the kelp 

species (Table S4).  

A tally of the total number of taxa recorded on each kelp species in the sampling period (i.e. 

all stipe/lamina and holdfast assemblages combined) showed that L. ochroleuca supported both 

the greatest total richness and number of taxa unique to that host species (Table 3). S. 

polyschides and U. pinnatifida supported less than half the number of taxa and did not harbor 

any unique epibionts (Table 3).  

Discussion 

U. pinnatifida was first recorded in Plymouth Sound in 2003 and has since become a prominent 

and widespread component of the marine flora (Heiser et al., 2014). At our study site, which is 

representative of other sites within the Plymouth Sound SAC, U. pinnatifida was the second 

most abundant canopy-forming macroalga throughout the spring and early summer survey 

period. During periods of maximum abundance and size (i.e. June), U. pinnatifida was also the 

second most important contributor to total macroalgal biomass. As such, U. pinnatifida has 

become an integral component of the shallow subtidal ecosystem, with regards to ecological 

functions such as biogenic habitat provision and primary production, at least from early spring 

until mid-summer. Although some U. pinnatifida sporophytes have been observed recruiting 

in the autumn and persisting through the winter, as is the case in Brittany, France (Castric-Fey 

et al., 1999) this cohort would appear to be spatially restricted and/or very scarce given that 

sporophytes were not recorded during the December surveys at either Firestone Bay or 

additional sites within Plymouth Sound (Smale, unpublished data). Given that U. pinnatifida 

is thought to be competitively inferior to native kelps in the northeast Atlantic (Floc'h et al., 

1996; Farrell and Fletcher, 2006), it has seemingly dispersed from artificial habitats and 

colonized subtidal rocky reefs in Plymouth Sound relatively quickly (i.e. ~12 years). 

Colonization of natural habitats may have been facilitated by disturbance to native canopies, 

through storm events or anthropogenic stressors for example, as has been shown elsewhere 

(Valentine and Johnson, 2003; Schiel and Thompson, 2012)   

It is not yet known whether the presence of U. pinnatifida in the UK has detrimental effects on 

native flora and fauna, through increased competition for resources for example, as has been 

suggested in other temperate regions invaded by U. pinnatifida (Curiel et al., 1998; Casas et 

al., 2004). Alternatively, U. pinnatifida may have negligible effects on native macroalgae as it 
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may occupy a different niche than native canopy formers, with minimal spatial or temporal 

overlap in demand for resources. Indeed, minimal, inconsistent or even positive effects of U. 

pinnatifida have been recorded in other invaded regions (Valentine and Johnson, 2005; 

Irigoyen et al., 2011; South et al., 2015). What is clear from our study is that, at the scale of 

sporophyte, U. pinnatifida harbours structurally distinct, less abundant and less diverse 

epibiotic assemblages than the longer-lived native kelps, L. ochroleuca and S. latissima.  

Determining the mechanisms underpinning the observed differences in epibiotic assemblages 

between U. pinnatifida and the native perennial kelps requires manipulative experimentation, 

but it is likely that (at least) 3 factors are involved. Firstly, time. Mature U. pinnatifida 

sporophytes were recorded in low densities in early spring before rapidly increasing in 

abundance and size by early summer and subsequently senescing by late summer.  As such, 

the biogenic habitat offered by the thalli was only available for colonization by epibionts for a 

few months. In contrast, the holdfast and stipe of the perennial kelp L. ochroleuca may persist 

for >10 years in favourable conditions (Smale et al., 2013) and individuals >5 years have been 

recorded within Plymouth Sound (Smale, unpublished data), while the lifespan of S. latissima 

is typically 2-4 years (Smale et al., 2013). Therefore, the biogenic habitat provided by these 

species is more stable through time (even though the frond is eroded and replaced through the 

year) and the period during which it is available for colonization is considerably greater, 

enhancing the likelihood of recruitment of epibionts. This mechanism is further supported by 

the fact that assemblages associated with U. pinnatifida and S. polyschides were similar, and 

were both lower in richness and structurally distinct from those associated with L. ochroleuca 

and S. latissima. S. polyschides is a pseudo-annual species - it was not recorded at the study 

site in April - and the period of time that the sporophyte was available for colonization by 

epibionts was therefore restricted. A recent study compared non-native U. pinnatifida with 

annual populations of the native giant kelp Macrocystis pyrifera, and showed that holdfast 

assemblages were similar, most likely because holdfasts were available for colonization for 

similar periods of time (Raffo et al., 2009).    

Secondly, the physical structure of the sporophyte.  The surface area of the thallus available 

for colonization by epibionts offered by L. ochroleuca and S. latissima was greater and more 

temporally consistent compared with U. pinnatifida, which may have promoted a richer, more 

spatially extensive epibiotic assemblage. Similarly, the internal living space within L. 

ochroleuca and S. latissima holdfasts was greater than that of U. pinnatifida (with the single 

exception of S. latissima versus U. pinnatifida in June). Habitat volume has been shown to be 
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an important factor in determining the richness and abundance of holdfast assemblages 

(Anderson et al., 2005; Blight and Thompson, 2008) and it is likely that the greater internal 

living space within the perennial kelps’ holdfasts allowed for development of a more speciose 

and abundant assemblage.  Moreover, the structure of L. ochroleuca holdfasts was notably 

more complex than the other kelp species, with the arrangement of haptera forming an intricate 

3-dimensional matrix. Increased holdfast complexity has been shown to correspond with 

increased assemblage diversity (Hauser et al., 2006), and it is likely that the micro and macro-

structure of  L. ochroleuca influenced epibiont assemblage structure.  

Thirdly, variation between kelps in the physicochemical composition of the thallus and 

production of antifoulants may partly explain variation in epibiotc assemblages. Macroalgae 

may employ a range of chemical and non-chemical strategies to reduce fouling by epifauna 

and epiflora (Da Gama et al., 2002; Hellio et al., 2002) and, as such, some species are inherently 

more prone to fouling than others.  For example, a comparison of epibionts attached to farmed 

U. pinnatifida and S. latissima sporophytes showed that S. latissima generally exhibits higher 

levels of biofouling (Peteiro and Freire, 2013). L. ochroleuca is also known to produce 

antifoulants, and the surfaces of the stipe and lamina are generally less fouled by epibionts than 

other kelps including L. hyperborea (Smale et al., 2015), L. digitata (Blight and Thompson, 

2008) and S. latissima (this study). Even so, epiphytic loading and the richness and cover of 

epibionts on the stipe and lamina habitat of L. ochroleuca were still comparable to or greater 

than that of U. pinnatifida. 

There were two important caveats involved with our study that should be noted. Firstly, we did 

not examine the abundance and richness of mobile invertebrates within holdfast structures. 

Mobile invertebrate assemblages associated with kelps can be highly diverse and abundant and 

represent an important component of the kelp forest biota (Anderson et al., 2005; Tuya et al., 

2011) that warrant further research. Secondly, our quantification of biodiversity patterns was 

performed at the scale of individual sporophyte and additional work is needed at larger spatial 

scales, specifically that of the kelp-dominated habitat. For example, it could be that U. 

pinnatifida alters the physical environment and influences the structure of understorey 

assemblages in different ways to the other kelps, and that a more diverse macroalgae canopy 

results in a more diverse associated understorey assemblage, as has been shown in other kelp-

dominated systems (Smale, 2010). Again, further work on how U. pinnatifida influences 

associated species’ abundance and distribution patterns is required. It is clear from research on 

other non-native macroalgae that the establishment of populations outside of the native range 
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can enhance local biodiversity, if the non-native species occupies a previously unfilled niche, 

enhances biogenic habitat complexity and does not adversely impact native HFS (Buschbaum 

et al., 2006; Thomsen et al., 2009).            

This study was the first to examine differences in abundances, provision of biogenic habitat, 

and structure of epibiotic assemblages between U. pinnatifida and co-occurring species of kelp 

in the UK. Understanding the ecological role of U. pinnatifida is of particular importance, given 

that it is rapidly extending its range along coastlines in the northeast Atlantic (Minchin and 

Nunn, 2014), southwest Atlantic (Dellatorre et al., 2014), northeast Pacific (Zabin et al., 2009) 

and southwest Pacific (James et al., 2014). Our study shows that U. pinnatifida supports 

depauperate epibiotic assemblages in Plymouth Sound, when compared with the assemblages 

associated with native perennial species. U. pinnatifida harboured approximately half as many 

taxa as L. ochroleuca and S. latissima at markedly lower abundances. However, assemblage 

structure, richness and abundance of U. pinnatifida assemblages were comparable to those 

associated with the native kelp, S. polyschides, which has a similar life history. It has been 

suggested that both U. pinnatifida and S. polyschides, which are both fast-growing 

opportunistic species, will increase in relative abundance in response to increased physical 

disturbance (i.e. from storms and human activities) and continued ocean warming 

(Birchenough and Bremmer, 2010; Smale et al., 2013). In contrast, the abundances of cool-

water perennial kelp species, including S. latissima  and L. digitata (not examined in this study) 

will decrease in response to global change stressors, as has been observed  elsewhere in the 

northeast Atlantic (Moy and Christie, 2012; Raybaud et al., 2013; Smale et al., 2013). The shift 

from long-lived perennial species to short-lived annual species represents a shift in habitat 

structure from temporally-stable to ‘boom and bust’ and is likely to have major implications 

for primary production and biogenic habitat provision. However, the situation is complicated 

by the proliferation of the ‘warm’ water kelp L. ochroleuca at its poleward range edge in 

southwest UK (Smale et al., 2015). On wave-exposed open coastlines L. ochroleuca may 

support less diverse and abundant assemblages than its cool-water competitor L. hyperborea 

(Smale et al., 2015; Teagle unpublished data) but in more sheltered locations L. ochroleuca 

seemingly provides relatively stable and complex biogenic habitat that supports comparatively 

diverse and abundant epibiont assemblages. As such, elevated abundances of L. ochroleuca 

may positively influence local biodiversity within some habitats. Clearly, improved 

understanding of the long-term dynamics and competitive interactions between these habitat-

forming species is needed to accurately predict future biodiversity patterns. 
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TABLES 

 

Table 1. Results of 2-way univariate permutational ANOVAs to examine variability in biogenic habitat between kelp species and sampling month (both fixed factors). Tests 

used 4999 permuations under a reduced model, and were based on Euclidean distances between untransformed data. The degrees of freedom associated with each factor are 

shown in parentheses, F ratios are ‘pseudo-F’ values generated by permutation and significant P values (accepted at P <0.01) are shown in bold.  Where the interaction term 

was significant, pairwise tests within each level of ‘month’ were conducted to test for differences between kelps, which were Laminaria ochroleuca (LO), Saccharina 

latissima (SL), Saccorhiza polyschides (SP, not present in April) and Undaria pinnatifida (UP).  

 

  Kelp (3)   Month (2)  Kelp x Month (5) Residual (205)  Pairwise tests within interaction term 

Variable MS F     P MS F     P MS F     P MS  April  June  August 

 

 

Total length 8.3x106 90.27 0.0002 2.1 x105 2.23 0.110 4.6 x105 5.02 0.0004 9.2 x104  SL>LO>UP SL>LO=SP=UP SL=SP>LO>UP 

Stipe length 440850 45.09 0.0002 108690 11.11 0.0002 41991 4.29 0.0002 9778  LO=SL>UP SP>LO=SL=UP SP>LO=SL=UP  

Total weight 1.4 x106 15.45 0.0002 5.7 x105 6.00 0.0018 8.7 x105 9.10 0.0002 95791  SL>LO>UP LO=SL=SP>UP SP>LO=SL>UP  

Surface area 2.8 x108 24.02 0.001 7.5 x107  6.35 0.001 7.4 x107 6.28 0.001 1.17 x107 SL>LO>UP LO=SL=SP>UP SP>LO=SP>UP  

Holdfast space 89578 34.25 0.0002 11729 4.48 0.009 31475 12.03 0.0002 2615  LO>SL>UP LO=SP=UP>SL SP>LO=SL>UP 

Epiphyte weight 373.8 6.28 0.001 364.6 6.13 0.0024 354.8 5.96 0.0002 59.5  LO>SL=UP LO=SL=SP=UP SP=SL>LO=UP  
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Table 2. Results of 2-way univariate permutational ANOVA and PERMANOVA to examine variability in holdfast assemblage structure between kelp species and sampling 

month (both fixed factors). Tests used 4999 permuations under a reduced model, and were based on either Euclidean distances between untransformed data (for taxon 

richness and total biomass) or on Bray-Curtis similarities between square-root transformed data (for assemblage structure). The degrees of freedom associated with each 

factor are shown in parentheses, F ratios are ‘pseudo-F’ values generated by permutation and significant P values (accepted at P <0.05) are shown in bold.  Where the 

interaction term was significant, pairwise tests within each level of ‘month’ were conducted to test for differences between kelps, which were Laminaria ochroleuca (LO), 

Saccharina latissima (SL), Saccorhiza polyschides (SP, not present in April) and Undaria pinnatifida (UP).  

 

   Kelp (3)    Month (2)   Kelp x Month (5)  Residual (205)   

Variable  MS F    P  MS F    P  MS F    P  MS   

________________________________________________________________________________________________________________________ 

 

Taxon richness  462.06 79.23 0.001  16.25 2.78 0.059  29.91 5.13 0.001  5.83   

Total biomass  5.06 7.06 0.001  0.14 0.19 0.841  2.25 3.14 0.003  0.72 

Assemblage structure 45213 16.72 0.001  39740 14.69 0.001  12719 4.70 0.001  2705     

    
____________________________________________________________________________________________________ 

 

Pairwise tests within interaction term April  June     August 

Taxon richness   LO>SL>UP  LO>SL>SP=UP   LO=SL>SP=UP 

Total biomass   LO>SL>UP   LO>SL=SP=UP   SL=LO, SL>SP>UP, LO=SP>UP 

Assemblage structure  LO≠SL≠UP  LO≠SL&SP&UP, SL≠SP, UP=SL&SP LO=SL≠SP=UP 
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Table 3. Total number of epibiotic taxa recorded on each species of kelp (holdfast, stipe 

and lamina combined) and the total number of epibiotic taxa unique to that kelp. 

 

 L. ochroleuca S. latissima S. polyschides U. pinnatifida 

Total taxa 37 30 12 16 

 8 1 0 0 
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Figure Legends 

 

Figure 1. The actual (A) and relative (B) abundances and standing stock (wet weight 

biomass; C) of habitat-forming macroalgae at Firestone Bay, Plymouth Sound. Kelp species 

were Laminaria ochroleuca (LO), Saccharina latissima (SL), Saccorhiza polyschides (SP) 

and Undaria pinnatifida (UP). Values are means of 5 replicate 10 x 1 m transects (± SE) per 

sampling event. Note different bar shading scheme and number of sampling events for 

biomass values compared with abundance data.  

 

Figure 2. Biogenic habitat structure provided by canopy-forming macroalgae at Firestone 

Bay, Plymouth Sound. During each sampling event, the following metrics were obtained: 

total length (A), stipe length (B), wet weight (C), surface area (D), internal holdfast volume 

(E) and wet weight of attached epiphytes (F). Values are means of 20 sporophytes (± SE) 

collected in each month (with the exception of L. ochroleuca in June when n = 16). Kelp 

species were Laminaria ochroleuca (LO), Saccharina latissima (SL), Saccorhiza polyschides 

(SP) and Undaria pinnatifida (UP).  

 

Figure 3. Representative examples of the holdfast micro-habitat provided by the native 

species (A) Laminaria ochroleuca, (B) Saccharina latissima and (C) Saccorhiza polyschides 

and the non-native kelp (D) Undaria pinnatifida. Samples collected in late summer/autumn.  

 

Figure 4. Mean taxon richness (A) and total cover (B) of epifauna attached to the surface of 

the stipe and lamina of habitat forming kelp species at Firestone Bay, Plymouth Sound. 

Values are means of 20 mature sporophytes (± SE) collected in August. Kelp species were 

Laminaria ochroleuca (LO), Saccharina latissima (SL), Saccorhiza polyschides (SP) and 

Undaria pinnatifida (UP). Lower case letters indicate significantly different groups, as 

determined by univariate permutational ANOVA.  

 

Figure 5. Principal coordinates ordination (PCO) plot showing variability in the structure of 

epibiotic assemblages attached to the stipe/lamina surfaces of kelps at Firestone Bay, 

Plymouth Sound. The relatedness of samples was examined using a Bray-Curtis similarity 

matrix generated from square-root transformed biomass data. Centroids circled with a dotted 

line were devoid of epibionts. Kelp species were Laminaria ochroleuca (LO), Saccharina 

latissima (SL), Saccorhiza polyschides (SP) and Undaria pinnatifida (UP).  

 

Figure 6.  Mean taxon richness (A) and total biomass (B) of epibionts associated with kelp 

holdfasts at Firestone Bay, Plymouth Sound. Values are means of 20 mature sporophytes (± 

SE) collected in each sampling month (with the exception of L. ochroleuca in June when n = 

16). Kelp species were Laminaria ochroleuca (LO), Saccharina latissima (SL), Saccorhiza 

polyschides (SP) and Undaria pinnatifida (UP). Lower case letters indicate significant 

differences between kelp species within each sampling month, as determined by 

permutational ANOVA.  

 

Figure 7. Principal coordinates analysis (PCO) plots showing variability in the structure of 

epibiotic assemblages associated with kelp holdfasts at Firestone Bay, Plymouth Sound. The 

relatedness of samples was examined using a Bray-Curtis similarity matrix generated from 

square-root transformed biomass data. Centroids circled with a dotted line were devoid of 

epibionts. Combined data for all sampling events are presented (A), as well as separate plots 

for assemblages sampled in April (B), June (C) and August (D). Kelp species were 
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Laminaria ochroleuca (LO), Saccharina latissima (SL), Saccorhiza polyschides (SP) and 

Undaria pinnatifida (UP).  
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