Recent advances in the quality and affordability of geophysical
mapping technologies means a resurgence in quantitative
analysis of subaqueous environments is underway [1-4].
Application of these measurements is well suited to a range of
applications, including: sediment transport; and hydrodynamic
geological sequence
interpretation; and bedform classification. Analysis is split into
spectral and spatial approaches. The former gives orientation,
wavelength and height; the latter, height only. Discrete Fourier

modelling; habitat

mapping;

Transforms (DFT) [4] are used, with different windowing and Fgure 1: Schematic of measured bediorm

characteristics used for classification.

filtering techniques, to quantitatively and objectively measure Wwavelength (A), orientation from North

parallel to bedform crest (¢), height (H),

bedform height, orientation and wavelength. Spatial analysis - @) il vl ()
[3,4] recovers bedform heights through the identification of

crests and troughs.
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« Spectral analysis of the synthetic surface in Figure
2A allows measurement of wavelength (A),
orientation (¢) and height (H) from the position of the
peak spectral power (P) and its magnitude (S,) in
Figure 2B.

« Spatial analyses identify peaks and troughs from
raw spatial data (Figure 2A), or bandpass filtered
spectra, from which heights are calculated.

* Uncertainties can be calculated based on spectral
resolution and potential variability in the source data.

« Radon Transform (Figure 2C) projects the raw data
through 180° to identify crest orientation.

Figure 2: A. Synthetic seabed with A=20 m, $=150° (therefore 8=60°)
and H=4 m; B. Spectrum of A with maximum power at P. Crest
orientation (¢) measured as perpendicular to the line from the origin
through P.; C. Radon transform with overlaid standard deviation used
to identify crest parallel maximum energy.
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Figure 3: A. West Solent, UK bathymetry. L-L' orientated
based on the results of the DFT; B. Butterworth filtered DFT
spectrum. Ring shows picked wavenumber. Vector orientated
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DFT Weighted Mean

Pre-whitened DFT weighted mean

Manual

10.1 (+0.2, 0.2)
9.5 (+0.2, -0.2)
~10

profile from the surface generated with the inverse DFT of the
Butterworth filtered spectrum (B). Dotted line is the recovered
height from zero-crossing technique; D. Results of Radon
Transform of A.

A range of increasingly complex environments are tested, including a bed with regional
morphological depth variability of 10 m (Figure 4A), irregularly spaced bedforms (Figure 4B) and
finally a bed of cuspate bedforms (Figure 4C).
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Figure 4: A. Hastings Shingle Bank, UK in the eastern English Channel (British National Grid); B. East Solent, UK (UTM
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. D-F: Butterworth bandpass filtered spectra

for A-C. Ring centred on the origin is wavelength; vector orientated through picked weighted mean location of power peak,
giving 0. G-I: Profiles through surface generated from inverse DFT of Butterworth filtered spectrum for A-C, orientated
based on the results of the DFT (D-F). Dotted lines indicate the median height from the zero-crossing analysis.

Site Height (m) Orientation (°) Wavelength (m)
West Solent (Figure 3A) 0.6 151.1 (+1.0, -1.0) 10.1 (+0.2, -0.2)
Hastings Shingle Bank (Figure 4A) 04 139.9 (+3.0, -3.0) 18.6 (+0.9, -1.0)
Invincible Site (East Solent) (Figure 4B) 0.2 35.6 (+3.4, -3.3) 10.6 (+0.2, -0.2)
Burgzand Wreck Site (Figure 4C) 04 171.0 (+2.8, -2.8) 12.1 (+0.2, -0.2)

* The results of the analyses provide objective and quantitative measurements with defined

uncertainties.

* Input data quality determines the confidence and precision of these measurements.
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Thanks to Paolo Cipollini, Mark Vardy and Tim Henstock for their advice on the application of the Fourier Transform.

» Analysis of a large (70 km?2) bank with 300 m subsets in order to analyse bedforms with A < 30 m.
« \Wavelength, orientation and height analysis takes 3 minutes for the bathymetry of the entire bank.
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Figure 5: Swath bathymetry of Hastings Shingle Bank, UK. Gridded at 1 m, illuminated from the south-west.
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Figure 6: Results of the orientation, wavelength and height analyses at Hastings Shingle Bank for a 300 m
subset size. Subset frequency histograms show the distribution of heights and orientations across the entire
bank in 0.05 m and 5° bins. Hatched cells indicate no result due to incomplete bathymetry coverage.

* The orientation histogram shows three orientation groups. a) Bedforms present in the south-
east, west and north-west appear as peak at 60-70°. b) Noise from acquisition and processing is
identified as orientations of 85-95°. c¢) Dredging the bank centre and edge beam artefacts are the
peak at 150-160°. The artefacts and dredging are parallel and indistinguishable. It is imperative
that data are obtained and processed to the highest standards possible.

« Height measurements allow a broad three-region classification: north-south separation from the
south-west to the north-east segregates generally flat beds from those with bedforms. The third
region is the dredging region identified as the bed with the highest heights.

e A range of quantitative, automated bedform analysis techniques is tested on a series of small-
and large-scale bathymetric surfaces.

 Measurements of orientation, wavelength and height are successfully extracted across a range
of environments.

« Some commonly employed techniques prove ineffective at identifying parameters when real-
world surfaces are analysed.

 Objectivity is maintained through a number of universally applied assumptions.

e Seabed classification is enhanced through height and bedform orientation analyses.

A large number of results allow statistical analyses of potentially very large data sets.

« Application of the techniques are suitable for analysis of any spatially contiguous data (e.g.
LIDAR, Sidescan Sonar, Sector-scanning sonar efc.).



