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Abstract. Ocean biogeochemistry (OBGC) models span

a wide variety of complexities, including highly sim-

plified nutrient-restoring schemes, nutrient–phytoplankton–

zooplankton–detritus (NPZD) models that crudely represent

the marine biota, models that represent a broader trophic

structure by grouping organisms as plankton functional types

(PFTs) based on their biogeochemical role (dynamic green

ocean models) and ecosystem models that group organisms

by ecological function and trait. OBGC models are now

integral components of Earth system models (ESMs), but

they compete for computing resources with higher resolu-

tion dynamical setups and with other components such as at-

mospheric chemistry and terrestrial vegetation schemes. As

such, the choice of OBGC in ESMs needs to balance model

complexity and realism alongside relative computing cost.

Here we present an intercomparison of six OBGC models

that were candidates for implementation within the next UK

Earth system model (UKESM1). The models cover a large

range of biological complexity (from 7 to 57 tracers) but all

include representations of at least the nitrogen, carbon, alka-

linity and oxygen cycles. Each OBGC model was coupled

to the ocean general circulation model Nucleus for European

Modelling of the Ocean (NEMO) and results from physically

identical hindcast simulations were compared. Model skill

was evaluated for biogeochemical metrics of global-scale

bulk properties using conventional statistical techniques. The

computing cost of each model was also measured in stan-

dardised tests run at two resource levels. No model is shown

to consistently outperform all other models across all met-

rics. Nonetheless, the simpler models are broadly closer to

observations across a number of fields and thus offer a high-

efficiency option for ESMs that prioritise high-resolution cli-

mate dynamics. However, simpler models provide limited in-

sight into more complex marine biogeochemical processes

and ecosystem pathways, and a parallel approach of low-

resolution climate dynamics and high-complexity biogeo-

chemistry is desirable in order to provide additional insights

into biogeochemistry–climate interactions.

1 Introduction

Ocean biogeochemistry is a key part of the Earth system:

it regulates the cycles of major biogeochemical elements

and controls the associated feedback processes between the

land, ocean and atmosphere. As a result, changes in ocean

biogeochemistry can have important implications for cli-

mate (Reid et al., 2009). Marine ecosystems are indirectly

affected by anthropogenic environmental change (Jackson

et al., 2001), particularly through climate-induced changes
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Table 1. Biogeochemical cycles represented in each candidate model.

HadOCC Diat-HadOCC MEDUSA-2 PlankTOM6 PlankTOM10 ERSEM

N
√ √ √ √ √ √

P
√ √

Si
√ √ √ √ √

Fe
√ √ √ √ √

C
√ √ √ √ √ √

Alkalinity
√ √ √ √ √ √

O2
√ √ √ √ √ √

in physical properties and CO2-induced ocean acidification.

Understanding and quantifying the response of ocean bio-

geochemistry to global changes and their feedbacks with the

Earth system is essential to improve our capacity to maintain

ecosystem services this century and beyond.

With the recent publication of the Intergovernmental Panel

on Climate Change (IPCC) fifth assessment report (AR5),

global efforts are already underway to develop the next gen-

eration of Earth system models (ESMs) to support climate

policy development and any further IPCC assessment report.

Ocean biogeochemistry (OBGC) models coupled to ESMs

can help address a series of overarching scientific questions

such as: how will the ocean contribute to atmospheric trace

gas composition (e.g. CO2, CH4, N2O, DMS) in a changing

climate? Are there tipping points in marine biogeochemistry

(e.g. oceanic anoxic events, methane hydrate release) that

could be triggered by a changing climate? Are there interac-

tions between ESM processes and society’s management of

resources (e.g. fisheries, land use, agriculture) in the marine

environment? Furthermore, as ESMs are increasingly being

evaluated based on their capacity to understand past variabil-

ity (Braconnot et al., 2012), further questions might include:

what controlled variations in atmospheric trace gas concen-

trations and isotopic composition over the geological past?

For an anticipated sixth IPCC assessment report it is

generally agreed that these global-scale questions, with

direct implications for climate policies, will again be

the main focus of ocean biogeochemical models within

ESMs. In addition, the ESM model archive is increasingly

being used for activities within the Inter-Sectoral Impact

Model Intercomparison Project (http://www.pik-potsdam.

de/research/climate-impacts-and-vulnerabilities/research/

rd2-cross-cutting-activities/isi-mip/scientific-publications)

to address socio-economically directed questions such as:

How will climate change affect ocean primary production

(e.g. Bopp et al., 2013), fisheries (Barange et al., 2014;

Cheung et al., 2012) and harmful algal and jellyfish blooms

(e.g. Codon et al., 2013, Gilbert et al., 2014)? What is

the potential for geoengineering schemes such as ocean

fertilisation (Buesseler and Boyd, 2003) and alkalinity

addition (Kheshgi, 1995; Harvey, 2008) to affect the climate

system, and how do they affect the rest of the Earth system?

Within the UK, the Integrated Global Biogeochemical

Modelling Network (iMarNet) project aims to advance the

development of ocean biogeochemical models through col-

laboration between existing modelling groups at Plymouth

Marine Laboratory (PML), National Oceanography Centre

(NOC), University of East Anglia (UEA) and the Met Of-

fice Hadley Centre (UKMO). As part of iMarNet we con-

ducted an intercomparison of six current UK models to help

inform the selection of a baseline OBGC model for the next

UK Earth system model (UKESM1). This intercomparison

focused on the ability of the model to reproduce global-

scale bulk properties – such as nutrient and carbon distribu-

tions – that broadly characterise the activity of marine biota

(and thus the carbon cycle) in the ocean. To limit the role

of errors originating from modelled physics, all of the ex-

amined model simulations were performed within the same

physical ocean general circulation model (GCM), under the

same external forcing and following the same experimen-

tal protocol. As all of the models examined have been pre-

viously published, our analysis does not include an assess-

ment of their underlying biological fidelity (i.e. the extent

to which structures, parameterisations and parameter sets

of candidate models are a priori realistic). However, while

primarily focused on model skill, the intercomparison also

considers the computational cost of the models in relation

to the realism that they offer. Previous authors have per-

formed biogeochemical model intercomparisons with paral-

lels to this study (e.g. Friedrichs et al., 2007; Kriest et al.,

2010; Steinacher et al., 2010; Popova et al., 2012). These

have differed from this study and each other in a num-

ber of ways. For instance, this study is 3-D rather than 1-

D (cf. Friedrichs et al., 2007), global rather than regional

(cf. Popova et al., 2012), uses identical rather than diverse

physics (cf. Steinacher et al., 2010) and spans a more func-

tionally diverse range of biogeochemical models (cf. Kriest

et al., 2010). The latter two factors, in particular, distinguish

this study, permitting us to both formally separate the im-

pact of physics from that of biogeochemical dynamics and

to do so across a broad range of model complexity from

nutrient–phytoplankton–zooplankton–detritus (NPZD) mod-

els to state-of-the-art plankton functional types (PFTs) mod-

els with considerable ecological sophistication. This study is
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Table 2. Composition of the marine ecosystems represented in each candidate model along with the total number of biogeochemical tracers

(including those detailed in Table 1).

HadOCC Diat-HadOCC MEDUSA-2 PlankTOM6 PlankTOM10 ERSEM

Generic phytoplankton
√ √ √ √

Diatoms
√ √ √ √ √

Large phytoplankton
√

Picophytoplankton
√ √ √

Coccolithophores
√ √ √

N2 fixers
√

Flagellates
√

Phaeocystis
√

Generic zooplankton
√ √

Microzooplankton
√ √ √ √

Mesozooplankton
√ √ √ √

Macrozooplankton
√

Heterotrophic nanoflagellates
√

Picoheterotrophs
√ √ √

Tracers 7 13 15 25 39 57

still constrained by the use of a single ocean circulation and

by a bespoke gradation of model complexity (PlankTOM6

and PlankTOM10 partially inform this). Nonetheless, this

study represents an intercomparison along separate lines to

those previously conducted.

2 Method

2.1 Experimental design

All participating models made use of a common version

(v3.2) of the Nucleus for European Modelling of the Ocean

(NEMO) physical ocean general circulation model (Madec,

2008) coupled to the Los Alamos sea–ice model (CICE)

(Hunke and Lipscomb, 2008). This physical framework is

configured at approximately 1◦× 1◦ horizontal resolution

(ORCA100; 292× 362 grid points), with a focusing of res-

olution around the equator to improve the representation of

equatorial upwelling. Vertical space is divided into 75 fixed

levels, which increase in thickness with depth from approxi-

mately 1 m at the surface to more than 200 m at 6000 m. Par-

tial level thicknesses are used in the specification of seafloor

topography to improve the representation of deep water cir-

culation. Vertical mixing is parameterized using the turbulent

kinetic energy scheme of Gaspar et al. (1990), with modifica-

tions made by Madec (2008). To ensure that the simulations

were performed by the different modelling groups using an

identical physical run, a flexible configuration management

(FCM) branch of this version of NEMO was created, and all

biogeochemical models were implemented in parallel within

this branch and run separately.

Simulations were initialised at the year 1890 from an ex-

tant physics-only spin-up (ocean and sea–ice) to minimise

undesirable transient behaviour in ocean circulation. In terms

of ocean biogeochemistry, all model runs made use of a com-

mon data set of three-dimensional fields for the initialisation

of major tracers. Nutrients (nitrogen, silicon and phospho-

rus) and dissolved oxygen in this data set were drawn from

the World Ocean Atlas 2009 (Garcia et al., 2010a, b), while

dissolved inorganic carbon (DIC) and alkalinity were drawn

from the Global Ocean Data Analysis Project (GLODAP)

(Key et al., 2004). GLODAP does not include a DIC field

that is directly valid for 1890, so a temporally interpolated

field was produced based on GLODAP’s “pre-industrial” (i.e.

∼ 1800) and “1990s” fields of DIC. As there is currently

no comprehensive spatial data set of the micronutrient iron,

participating models were permitted to make use of differ-

ent initial distributions of iron (typically those routinely used

by the models in other settings). All other biogeochemical

fields (e.g. plankton, particulate or dissolved organic mate-

rial) were initialised to arbitrarily small initial conditions.

After initialisation at the year 1890, the models were run

for 60 years (1890–1949 inclusive) under the so-called “nor-

mal year” of version 2 forcing for common ocean–ice refer-

ence experiments (CORE2-NYF; Large and Yeager, 2009).

Subsequently, the models were run under transient interan-

nual forcing from the same data set (CORE2-IAF) for a fur-

ther 58 years (1950–2007 inclusive). CORE2 provides obser-

vationally derived geographical fields of downwelling radia-

tion (separate long and short wave), precipitation (separate

rain and snow) and surface atmospheric properties (tempera-

ture, specific humidity and winds) and is used in conjunction

with bulk formulae to calculate net heat, freshwater and mo-

mentum exchange between the atmosphere and the ocean.

For all models, some degree of tuning occurred prior to

this study, albeit in different physical frameworks (to varying

degrees) to those used here. Tuning during this study was

limited or absent between models, but some models, such
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Figure 1. Observational (Takahashi et al., 2009; top left) and modelled annual average surface ocean pCO2 (µatm) for the year 2000. Mean

field values: observations 357.7; HadOCC 368.8; Diat-HadOCC 369.2; MEDUSA 368.5; PlankTOM6 349.8; PlankTOM10 349.5; ERSEM

343.0.

Figure 2. Observational (World Ocean Atlas, 2009; top left) and modelled annual average surface ocean dissolved inorganic nitrogen

(mmol m−3) for the period 2000–2004. Mean field values: observations 5.24; HadOCC 7.88; Diat-HadOCC 6.33; MEDUSA 10.18; Plank-

TOM6 9.45; PlankTOM10 7.25; ERSEM 4.58.

Biogeosciences, 11, 7291–7304, 2014 www.biogeosciences.net/11/7291/2014/
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Figure 3. Observational (SeaWiFS; top left) and modelled annual average surface ocean chlorophyll (mg m−3) for the period 2000–2004. To

avoid biasing the plots, observational data and model output are only shown for regions in which all months were represented at least once

across all of the sampled years. Mean field values: observations 0.215; HadOCC 0.347; Diat-HadOCC 1.170; MEDUSA 0.346; PlankTOM6

0.312; PlankTOM10 0.160; ERSEM 0.501.

as HadOCC and MEDUSA, may have benefited from being

previously tuned within the NEMO framework (although in

a different version and grid configuration).

Figure S7 in the Supplement shows an intercomparison of

the common NEMO physics with observations (temperature,

Locarnini et al., 2010; salinity, Antonov et al., 2010; mixed

layer depth, Monterey and Levitus, 1997) for several key

physical fields. In terms of SST, NEMO represents observed

patterns well despite simulating a warmer Gulf Stream and

noticeably cooler temperatures in the vicinity of the Labrador

Sea. In conjunction with fresher salinities in the north At-

lantic (results not shown), these differences result in shal-

lower depths of the mixed layer and pycnocline in this region.

In contrast, in the Southern Ocean both mixed layer depths

and the modelled pycnocline are markedly deeper than in ob-

servations. This latter regional bias has biogeochemical con-

sequences across all of the models examined here (see later).

2.2 Candidate model structures

The models evaluated within this study vary significantly in

biological complexity. The key features of the participating

models are summarised below.

2.2.1 HadOCC (Palmer and Totterdell, 2001)

The Hadley Centre ocean carbon cycle model (HadOCC)

model is a simple NPZD representation that uses N nutri-

ent as its base currency but with coupled flows of C, alka-

linity and O2. The model was the ocean biogeochemistry

component of the UK Met Office’s HadCM3 climate model

and was used for the first-ever fully coupled carbon–climate

study (Cox et al., 2000).

2.2.2 Diat-HadOCC (Halloran et al., 2010)

The Diat-HadOCC model is a development of the HadOCC

model that includes two phytoplankton classes (diatoms

and “other phytoplankton”) and representations of the Si

and Fe cycles, as well as a dimethyl sulphide (DMS) sub-

model. The model is the ocean biogeochemistry component

of HadGEM2-ES (Collins et al., 2011), the UK Met Office’s

Earth system model used to run simulations for CMIP5 and

the Intergovernmental Panel on Climate Change (IPCC) fifth

assessment report (AR5).

2.2.3 MEDUSA-2 (Yool et al., 2011, 2013)

The model of Ecosystem Dynamics, nutrient Utili-

sation, Sequestration and Acidification (MEDUSA) is

www.biogeosciences.net/11/7291/2014/ Biogeosciences, 11, 7291–7304, 2014
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an “intermediate complexity” plankton ecosystem model

designed to incorporate sufficient complexity to ad-

dress key feedbacks between anthropogenically driven

changes (climate, acidification) and oceanic biogeochem-

istry. MEDUSA-2 resolves a size-structured ecosystem

of small (nanophytoplankton and microzooplankton) and

large (microphytoplankton and mesozooplankton) compo-

nents that explicitly includes the biogeochemical cycles of

N, Si and Fe nutrients as well as the cycles of C, alkalinity

and O2. As such, MEDUSA-2 is broadly similar in structure

to Diat-HadOCC but includes several more recent parame-

terisations.

2.2.4 PlankTOM6 and PlankTOM10 (Le Quéré et al.,

2005)

PlankTOM is a dynamic green ocean model that represents

lower-trophic level marine ecosystems based on PFTs. A hi-

erarchy of PlankTOM models exists that vary in the number

of PFTs resolved. Two members drawn from this stable were

used in this study. PlankTOM6 includes six PFTs – diatoms,

coccolithophores, mixed phytoplankton, bacteria, protozoo-

plankton and mesozooplankton – while PlankTOM10 in-

cludes an additional four PFTs – nitrogen fixers, Phaeocys-

tis, picophytoplankton and macrozooplankton (Le Quéré et

al. 2005; Buitenhuis et al., 2013). The models include the

marine cycles of C, N, O2, P, Si, a simplified Fe cycle and

three types of detrital organic pools, including their ballast-

ing properties and estimates of the air–sea fluxes of CO2, O2,

DMS and N2O. PlankTOM6 and PlankTOM10 were devel-

oped by an international community of ecologists and mod-

ellers to quantify the interactions between climate and marine

biogeochemistry, particularly those mediated through CO2.

They make use of extensive synthesis of data for the param-

eterisation of growth rates of PFTs (e.g. Buitenhuis et al.,

2006, 2010) and for the model evaluation (Buitenhuis et al.,

2013).

2.2.5 ERSEM (Baretta et al., 1995; Blackford et al.,

2004)

European regional seas ecosystem model (ERSEM) is a

generic lower-trophic level model designed to represent the

biogeochemical cycling of C and nutrients as an emergent

property of ecosystem interaction. The ecosystem is subdi-

vided into three functional types – producers (phytoplank-

ton), decomposers (bacteria) and consumers (zooplankton)

– and then further subdivided by trait – size and silica up-

take – to create a food web. Physiological (ingestion, respira-

tion, excretion and egestion) and population (growth, migra-

tion and mortality) processes are included in the descriptions

of functional group dynamics. Four phytoplankton (picophy-

toplankton, nanophytoplankton, diatoms and non-siliceous

macrophytoplankton), three zooplankton (microzooplank-

ton, heterotrophic nanoflagellates and mesozooplankton) and

one bacterium are represented, along with the cycling of C,

N, P, Si and O2 through pelagic (Blackford et al., 2004)

and benthic (Blackford, 1997) ecosystems. ERSEM, used for

shelf sea water quality monitoring and climate impact assess-

ment, has been coupled to fisheries models (e.g. Barange et

al., 2014) and is run operationally by the UK Met Office (e.g.

Siddorn et al., 2007).

The intercomparison process required limited changes

to model organisation and code, and models retained dis-

parate parameterisations for several overlapping processes,

including ocean carbonate chemistry and air–sea exchange

(HadOCC, Diat-HadOCC – Dickson and Goyet, 1994;

Nightingale et al., 2000; MEDUSA – Blackford and Gilbert,

2007; PlankTOM-6, PlankTOM-10 – Edmond and Gieskes,

1970, Broecker et al., 1982, Wanninkhof, 1992; ERSEM

– Artoli et al., 2012). In the case of calcium carbonate

(CaCO3) production, the models utilised a range of different

parameterisations. HadOCC and Diat-HadOCC use a sim-

ple empirical relationship that ties CaCO3 production to pri-

mary production. MEDUSA relates CaCO3 production to

export production with a PIC :POC ratio (particulate inor-

ganic carbon : particulate organic carbon ratio) dependent on

calcite saturation state. In PlankTOM-6 and PlankTOM-10,

coccolithophore algae are explicitly modelled with a fixed

PIC :POC ratio. ERSEM relates CaCO3 production to export

production driven by nanophytoplankton losses with a vari-

able PIC :POC ratio dependent on temperature, nutrient lim-

itation and calcite saturation state. Meanwhile, CaCO3 dis-

solution was a simple exponential function of depth in the

HadOCC models, with the other models modifying similar

vertical dissolution with reference to the ambient saturation

state of CaCO3.

The representation of biogeochemical cycles and biota in

each model is summarised in Tables 1 and 2 respectively.

2.3 Model evaluation

Assessment against observational data sets was made for a

set of bulk ocean biogeochemical properties that were com-

mon across all models: pCO2, alkalinity, DIC, dissolved in-

organic nitrogen (DIN), chlorophyll and primary production.

In all cases, model results were regridded to the same geo-

graphical grid (World Ocean Atlas) and guided by literature

on appropriate skill metrics (e.g. Doney et al., 2009; Stow et

al., 2009). Model skill was assessed through statistical tech-

niques such as global surface field standard deviation and

spatial pattern correlation coefficients. In the biogeochemical

regions of the north Atlantic, equatorial Pacific and Southern

Ocean, depth profiles of model outputs were also assessed

against observations within the top 1000 m of the water col-

umn.

Observational fields used within the model intercom-

parison are comprised of World Ocean Atlas 2009 DIN

(Garcia et al., 2010a), chlorophyll (O’Reilly et al., 1998)

and pCO2 (Takahashi et al., 2009). Because of its

Biogeosciences, 11, 7291–7304, 2014 www.biogeosciences.net/11/7291/2014/
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Figure 4. Frequency distributions of best to worst performances for

each model in terms of correlation coefficients and normalised stan-

dard deviations of annual surface fields and depth integrated pri-

mary productivity.

biogeochemicalimportance and the diversity in published es-

timates, observational primary production is an average of

three empirical models – Behrenfeld and Falkowski (1997),

Carr et al. (2006) and Westberry et al. (2008) – which are

all estimates derived from satellite ocean colour and SST.

The observational fields of chlorophyll and primary produc-

tion used here represent averages over the 2000–2004 time

period. This same period is used throughout the following

analysis as a standard interval except in the case of DIC and

alkalinity, which are analysed over the mean 1990–1999 pe-

riod corresponding to the GLODAP data product.

These fields were selected for several reasons. Firstly, they

are ocean or biogeochemical bulk properties for which there

are global-scale observations. Secondly, these fields broadly

represent foundational aspects of marine biogeochemical cy-

cles. For instance, nutrients play a critical role in regu-

lating the distribution and occurrence of marine plankton,

while phytoplankton photosynthesis represents the vast ma-

jority of the primary energy source to marine ecosystems.

Thirdly, the measurement of these fields is relatively well

defined with long-established standard methodologies. Prop-

erties that are directly related to biological entities, for in-

stance biomass abundances, can be less precisely defined,

difficult to match up with modelled quantities or even ab-

sent from some models examined here. That said, the obser-

vational field of global-scale primary production used here

has a relatively high uncertainty because it is drawn from

three methodologies that exhibit a large range (cf. Yool et al.,

2013). Finally, the examined properties are those which, if

modelled poorly, legitimately cast doubt over the wider util-

ity of a biogeochemical model in an Earth systems context.

Model results always depart from observations, but system-

atic disagreement with these basic observations is strongly

suggestive of problems with process representation within a

model. The model comparison focuses on the mean and sea-

sonal cycle. It does not include evaluation of variability over

interannual or longer timescales, in part because of limited

data availability.

3 Results

3.1 Model skill assessment

3.1.1 Surface fields

Figures 1–3 (and Figs. S1–S3 in the Supplement) show an-

nual average fields from each of the models for a series

of ocean properties together with comparable observational

fields. The figures also include a panel that shows the corre-

sponding model–observation Taylor diagram (Taylor, 2001).

These illustrate both the correlation between (azimuthal po-

sition) and relative variability of (radial axis) of model and

observations, such that models more congruent with obser-

vations generally appear closer to the reference marker on

the x axis of the diagram. As Taylor diagrams do not account

for mean field biases (Joliff et al., 2009), these are provided

separately in figure legends.

Figure 1 shows annual average surface pCO2 fields for

both models and observations, with correlation coefficients

ranging from r = 0.01 to r = 0.68 (Takahashi et al., 2009).

In general, the simpler models (HadOCC, Diat-HadOCC

and MEDUSA-2) better capture the global spatial pattern

of pCO2 (r = 0.54 to r = 0.68), but they overestimate the

standard deviation in global surface pCO2 up to a factor

of 2. This overestimation of the variance in global surface

pCO2 is a result of high-modelled pCO2 values in the equa-

torial Pacific and in particular the eastern equatorial Pacific.

In contrast, the more complex models (PlankTOM6, Plank-

TOM10 and ERSEM) perform considerably worse in terms

of capturing global spatial patterns of surface ocean pCO2.

In particular, all three models underestimate the observed

high pCO2 values along the equatorial Pacific ocean as well

as the high coastal pCO2 values in that region, opposite to

the bias found in simpler models. However, the PlankTOM

models overall show comparable standard deviations in mean

global surface pCO2 to those seen in observations.

www.biogeosciences.net/11/7291/2014/ Biogeosciences, 11, 7291–7304, 2014
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Table 3. Model–observation correlation coefficients (R) and standard deviations normalised by the standard deviation of observations (σ)

for all examined annual surface fields and depth-integrated primary productivity.

Model pCO2 DIN Chl. Alkalinity DIC Primary

production

R σ R σ R σ R σ R σ R σ

HadOCC 0.68 1.92 0.88 1.20 0.30 0.68 0.91 1.19 0.93 1.18 0.19 0.92

Diat-HadOCC 0.54 1.77 0.90 1.20 0.15 2.65 0.91 1.19 0.93 1.13 0.13 1.51

MEDUSA-2 0.64 1.56 0.85 1.21 0.36 0.40 0.88 1.14 0.92 1.17 0.64 1.10

PlankTOM6 0.34 1.03 0.79 1.20 0.32 1.08 0.70 0.88 0.75 0.96 0.47 0.61

PlankTOM10 0.29 0.94 0.88 1.19 0.50 0.43 0.58 1.16 0.65 1.08 0.53 0.74

ERSEM 0.01 2.04 0.94 0.95 0.04 0.91 0.84 1.18 0.86 1.07 −0.08 1.12

Range 0.67 1.09 0.15 0.26 0.46 2.25 0.33 0.31 0.28 0.23 0.72 0.90

The negative pCO2 biases in the equatorial Pacific exhib-

ited by the PlankTOM6, PlankTOM10 and ERSEM mod-

els may be explained, at least in part, by the positive biases

that these models show for surface alkalinity in this region

(Fig. S3). The models with positive pCO2 biases in the equa-

torial Pacific (HadOCC, Diat-HadOCC and MEDUSA-2) do

not have negative surface alkalinity biases in this region, but

values are much closer to observations (Fig. S3). The root of

these alkalinity biases lies in variation in PIC production by

the models in this region as discussed in greater detail below.

Figure 2 illustrates model performance of annual aver-

age surface dissolved inorganic nitrogen (DIN) concentra-

tions. Here, all models capture global patterns relatively well,

with correlation coefficients > 0.8, in part because of the ini-

tialisation from observations in 1890. The model with the

highest spatial pattern correlation coefficient is ERSEM, al-

though it slightly underestimates the global variability of

DIN. The other models have lower spatial pattern correlation

coefficients and generally overestimate the global variabil-

ity of DIN. PlankTOM6 performs below other models, while

PlankTOM10 has a similar performance to the simpler mod-

els. In general, aside from ERSEM and PlankTOM10, most

models show elevated Pacific DIN, and the simpler models,

MEDUSA-2 in particular, exhibit high equatorial anomalies.

Finally, while ERSEM shows good agreement throughout

most of the world ocean, both the north Atlantic and north

Pacific show anomalously low annual average DIN concen-

trations.

Surface DIN concentrations are influenced by both the ef-

ficiency of primary production and the efficiency of reminer-

alization, both of which differ between models. Although we

do not explore the differences in remineralization, the mod-

els which show positive DIN biases in the equatorial Pa-

cific (HadOCC, Diat-HadOCC and MEDUSA-2) are gener-

ally shown to also have positive integrated primary produc-

tion biases in this region (Fig. S1). To a lesser extent, the

reverse is true of the models with negative DIN biases in the

equatorial Pacific (PlankTOM10 and ERSEM).

Figure 3 shows low correlation (r < 0.5) for annual surface

chlorophyll concentrations for all models. The models with

the highest correlation coefficients are PlankTOM10 (0.49)

followed by MEDUSA-2 (0.36). All other models have cor-

relation coefficients < 0.2. Anomalously high chlorophyll

values in the equatorial Pacific and especially the Southern

Ocean significantly elevate the spatial variability of Diat-

HadOCC above that of observations (and all other models).

More generally, with the exception of PlankTOM10, all of

the models show some degree of excess chlorophyll in the

Southern Ocean, with Diat-HadOCC exhibiting very high

concentrations in this relatively unproductive region.

In addition to the ocean properties shown in Figs. 1–

3, complementary figures for alkalinity, DIC and primary

production can be found in the supplementary material

(Figs. S1–S3). In each case, global annual average fields are

shown together with the corresponding Taylor diagram.

Table 3 shows the correlation coefficients and standard de-

viations normalised relative to observations of the models for

all six of the ocean properties (five surface fields plus depth-

integrated primary production). The range of correlation co-

efficients over all of the models is shown for each field. As

already suggested above, model performance varies both be-

tween fields and between models. All models perform con-

sistently and relatively well for DIN and DIC in part because

of the “memory” of initial distributions. Model performance

varies more widely for pCO2 and primary production and

varies most widely for chlorophyll, although it is consistently

poor across all models.

Figure 4 summarises the data in Table 3 by showing the

distribution of performance rankings (both correlation coef-

ficients and normalised standard deviations) across the se-

lected fields for each model, i.e. the number of first, second,

etc. rankings for each model. No model is shown to consis-

tently outperform all other models across all metrics. Indeed,

all models perform best in at least one metric, and similarly

all models perform worst in at least one metric. There is lit-

tle discernable relationship between model complexity and

model performance. Indeed, Table 3 shows that for four out
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Figure 5. Monthly Taylor plots for pCO2, dissolved inorganic nitrogen (DIN), chlorophyll and primary production for all models relative to

observations. Annual averages are shown in black. Note that negative correlation coefficients are not shown in the Taylor plot.

of six fields the best performing model in terms of correlation

coefficients is a simpler model (i.e. HadOCC, Diat-HadOCC

or MEDUSA-2) and for five out of six fields the best per-

forming model in terms of normalised standard deviations is

a more complex model (i.e. PlankTOM6, PlankTOM10 or

ERSEM).

These findings in annual average model performance are

found to be consistent when examined at monthly timescales

(Fig. 5).

3.1.2 Depth profiles

While the majority of biological activity in the ocean is con-

centrated in its surface layers, biogeochemical fields in the

deep ocean have a complex structure created through the in-

teraction of ocean physics with biologically mediated pro-

cesses such as export and remineralization. As such, model

performance cannot be solely assessed from surface fields

of ocean BGC properties. To examine this, Figs. 6 and 7

show the annual average depth profiles of DIC and alkalin-

ity for three important regions: the north Atlantic (Atlantic

0–60◦ N), Southern Ocean (≥ 60◦ S) and equatorial Pacific

(Pacific Ocean 15◦ S–15◦ N).

In Fig. 6, all models are shown to capture the DIC pro-

file in the equatorial Pacific, though HadOCC, Diat-HadOCC

and MEDUSA-2 are somewhat closer to observations than

ERSEM and the PlankTOM models. A similar situation

is seen in the north Atlantic where the depth profiles of

MEDUSA-2, HadOCC and Diat-HadOCC are closest to ob-

servations, although surface agreement is greater than that at

depth. All models are shown to perform relatively poorly in

the Southern Ocean, with much weaker gradients with depth

than observations. HadOCC, Diat-HadOCC and ERSEM

show gradients that are marginally closer to those observed,

but all of the models consistently fail to reproduce the ob-

served > 100 mmol m−3 surface–1000 m increase. As Fig. S7

in the Supplement shows, this common problem of vertical

homogeneity between the models is driven by systematic bi-

ases in vertical mixing in this region as well as known errors

in ocean circulation (e.g. Yool et al., 2013).

The annual average depth profiles of alkalinity are shown

in Fig. 7. In the north Atlantic, HadOCC and Diat-HadOCC

are closer to observations while ERSEM and, particularly,

MEDUSA-2 are further away from observations (but in

opposite directions). Again, and for the same reasons as

outlined above, no model performs well at capturing the

depth profile observed in the Southern Ocean. In the equa-

torial Pacific, all of the models have similar alkalinity

at depth but diverge from observations towards the sur-

face. The near-surface depth profiles in HadOCC, Diat-

HadOCC and MEDUSA-2 are closest to observations in

that region. Alkalinity shows very little variability with
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Figure 6. Observed (black; GLODAP) and modelled profiles of dis-

solved inorganic carbon (mmol C m−3) in the north Atlantic (0 to

60◦ N), Southern Ocean (90 to 60◦ S) and equatorial Pacific (15◦ S

to 15◦ N). Vertical scaling is logarithmic (log10).

depth in the PlankTOM6, PlankTOM10 and ERSEM mod-

els and is higher than observations in near-surface waters

(> 100 meq m−3). This excess alkalinity may explain the

broadly lower pCO2 values visible in this region in Fig. 1.

The source of this bias in surface alkalinity is, at least in part,

due to disparity in modelled CaCO3 production in this re-

gion. As Figs. S8–S10 in the Supplement show, PlankTOM6,

PlankTOM10 and ERSEM export negligible particulate in-

organic carbon (PIC; Fig. S9) relative to particulate organic

carbon (POC; Fig. S8) in this region. This results in low rain

ratios (Fig. S10) and the divergence of DIC and alkalinity

performance of these models in this region. The lack of PIC

export in these models runs contrary to observations (e.g.

Dunne et al., 2007) but reflects the current difficulty in mod-

elling CaCO3 production – which HadOCC, Diat-HadOCC

and MEDUSA-2 circumvent by simplistic empirical param-

eterisations.

The depth profiles of DIN and O2 are given in the Supple-

ment (Figs. S4–5).

3.2 Computational benchmarking

Computational timing tests (CPU time) were carried out rel-

ative to the ocean component of the HadGEM3 (Hewitt et

al., 2011) model (ORCA1.0L75), on standard configurations

of 128 and 256 processors on an IBM Power7 machine. As

would be intuitively expected, the cost of candidate ocean

biogeochemical models is found to be higher for models with

more tracers regardless of the number of processors used.

While there are deviations in both directions between the

models, there is a broadly linear relationship between num-

ber of model tracers and compute cost (Fig. S6 in the Sup-

plement), reflecting the significant cost of applying advection

and mixing terms to each tracer.

Figure 7. Observed (black; GLODAP) and modelled profiles of

alkalinity (meq m−3) in the north Atlantic (0 to 60◦ N), Southern

Ocean (90 to 60◦ S) and equatorial Pacific (15◦ S to 15◦ N). Verti-

cal scaling is logarithmic (log10).

Using ERSEM (the computationally most expensive

model) increases computational cost approximately 6-fold

relative to HadOCC when 128 processors are used. This rel-

ative increase in computational cost is reduced to approxi-

mately 4.5-fold when 256 processors are used. PlankTOM10

has the greatest relative reduction (36.6 %) in computational

cost when run on 256 processors as opposed to 128, although

this model would still increase the total cost of the ocean

component by a factor of 5 relative to a physics-only ocean,

compared to a factor of 1.5 for HadOCC (Table 4).

4 Discussion

Our model comparison suggests that for global annual av-

erage surface fields, global monthly average surface fields

and annual average depth profiles in three oceanographic re-

gions, there is little evidence that increasing the complexity

of OBGC models leads to improvements in the representa-

tion of large-scale ocean patterns of bulk properties. In some

cases, the comparison suggests that simpler OBGC are closer

to observations than intermediate or complex models for the

standard assessment metrics used here.

The biologically simpler models HadOCC, Diat-HadOCC

and MEDUSA-2 are shown to have generally higher global

spatial pattern correlation coefficients of pCO2, DIC and

alkalinity at both annual and monthly temporal resolution

(Figs. 1, 5 and Table 3). The more complex models Plank-

TOM6, PlankTOM10 and, in the case of DIC, ERSEM

have annual and monthly standard deviations that are gen-

erally closer to observations than the simplest two models

(HadOCC and Diat-HadOCC). As such, we find no robust

relationship between model complexity and model skill at

capturing global-scale distributions of surface pCO2, DIC
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Table 4. Computational cost of each candidate model when coupled

to the ocean component of HadGEM3, relative to a physics-only

simulation with the same ocean model (ORCA1.0L75). A cost of 2

indicates that adding the biogeochemistry model doubles total sim-

ulation cost. Timings are shown for simulations carried out on 128

and 256 processors of an IBM Power7 machine.

Model Cost Cost

(128 processors) (256 processors)

HadOCC 1.75 1.48

Diat-HadOCC 2.36 1.88

MEDUSA-2 2.73 2.10

PlankTOM6 5.11 3.52

PlankTOM10 7.74 4.90

ERSEM 10.36 6.87

and alkalinity. The biologically simpler models are shown

to generally best capture the depth profiles of DIC and alka-

linity in the north Atlantic and equatorial Pacific (Figs. 6–7),

possibly because their biological export production can more

easily be tuned to maintain the observed vertical gradients.

There are, however, ocean biogeochemical fields where

models of greater biological complexity tend to equate to im-

proved model skill. The annual and monthly global correla-

tion coefficients of the PlankTOM models are shown to be

closest to observations for chlorophyll and primary produc-

tion fields (Fig. 3 and Table 4). These PlankTOM models do

not consistently produce the annual chlorophyll and primary

production field standard deviations closest to observations

(Table 4); however, at monthly resolution their field standard

deviations are the most consistent across models (Fig. 5).

The comparison of depth profiles shows that despite all

models being initialised from the same observational fields,

there is quite a lot of divergence even at depths of less than

1000 m. In some cases, such as alkalinity in the Southern

Ocean (Fig. 7), all models have a similar systematic bias

compared to observations. This is suggestive of the influence

of errors within the physical ocean model. That is, the ocean

biogeochemistry may be influenced to a greater extent by the

physical ocean model and hence there is a common response

across models. For other fields such as DIN in the South-

ern Ocean and equatorial Pacific (Fig. S5), models have both

positive and negative biases compared to observations, sug-

gestive of a greater relative role of the OBGC model than the

physical model.

It is clear that more biologically complex models are re-

quired to more completely assess the impacts of environ-

mental change on marine ecosystems. By representing pro-

cesses that are not present in simpler models, the more com-

plex models are also able to represent additional factors such

as climatically active gases (e.g. DMS, N2O). Assessment

of such representations, however, fell outside the scope of

this paper. Models of intermediate complexity (e.g. Diat-

HadOCC and MEDUSA-2) are shown in this intercompari-

son to reproduce large-scale ocean biogeochemistry features

relatively well, yet minimise computational cost and have

sufficient biological complexity to allow important ESM

questions to be explored, including those that require an ex-

plicit iron cycle (e.g. ocean iron fertilisation).

It should be noted that models implemented within the

NEMO physical ocean framework prior to this intercompar-

ison project had an advantage over those new to this frame-

work. This is a somewhat unavoidable consequence of what

is also one of this intercomparison study’s main strengths,

namely that the models were adapted to use the same

ocean physics framework. Specifically, the HadOCC and

MEDUSA-2 model developers were familiar with NEMO

v3.2 and had some previous opportunity to tune models.

Linked to this is the question of how dependent the results

were on parameter values. Although model developers were

afforded a limited opportunity to tune parameters, given fur-

ther time to tune one would expect improved performance,

especially for those models that had not been previously im-

plemented within NEMO v3.2.

The rationale for the chosen fields of intercomparison was,

as stated previously, that they are common across all mod-

els and are key facets of global marine biogeochemistry. It

could, however, be argued that these bulk fields were insuf-

ficient to adequately assess all models and in particular the

most complex models. Further analysis beyond the scope of

this paper will be necessary to evaluate mechanistically the

implications of the different biological components in each

model.

Finally, although computational cost is discussed as a

pragmatic driver of OBGC model selection, it should be

noted that computer power is continuously increasing and the

intercomparison results presented here may differ for an al-

ternative spatial resolution ocean grid requiring greater com-

putational resources. In addition, ongoing efforts to transport

passive ocean tracers on degraded spatial scales (e.g. Levy

et al., 2012) have the potential to result in computational

savings that would realistically permit the implementation of

higher complexity OBGC models within ESMs.

5 Conclusions

The six ocean biogeochemical models analysed within this

intercomparison cover a large range of ecosystem complex-

ity (from 7 tracers in HadOCC to 57 in ERSEM), and there-

fore result in a range of approximately five in computational

costs (from increasing the cost of the physical ocean model

by a factor of 2 to a factor of 10). Results suggest little evi-

dence that higher biological complexity implies better model

performance in reproducing observed global-scale bulk prop-

erties of ocean biogeochemistry.

As no model is found to have the highest skill across all

metrics and all are most or least skilful for at least one metric,

our results suggest that it is in the interest of the international
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climate modelling community to maintain a diverse suite of

ocean biogeochemical models.

One priority for the next generation of Earth system mod-

els (CMIP6) is to enhance model resolution in the hope that

it will resolve some of the existing biases in climate mod-

els. This puts pressure on the computing time available for

representing biological complexity. Our results suggest that

intermediate complexity models (such as MEDUSA-2 and

Diat-HadOCC) offer a good compromise between the repre-

sentation of biological complexity (through their inclusion

of an iron cycle) and computer time given their relatively

good performance in reproducing bulk properties. However,

intermediate complexity models are limited in the detail to

which they can address climate feedbacks, and it may be that

more complex models can in future provide additional in-

sight based on ongoing measurements and data syntheses.

The quest for increasing resolution in ESMs is unlikely

to end soon, as the resolution needed to resolve eddies in

the ocean (1/8◦ or less) needs to be achieved before im-

portant improvements in representing climate dynamics are

achieved. Most ESMs being developed for the next CMIP

phase will have a grid of 1/2 to 1/4◦. Even with increasing

computational power and schemes for accelerating transport

of passive tracers (Levy et al., 2012) available, other prior-

ities (e.g. ensemble simulations for risk assessments) may

still make it difficult to prioritise the representation of bio-

geochemical complexity in ESMs. In order to achieve scien-

tific progress on important questions of the interactions be-

tween marine biogeochemistry and climate, it is important

that lower resolution ESMs that prioritise biogeochemical

complexity are maintained and used in CMIP exercises in

parallel- to higher-resolution models.

The Supplement related to this article is available online

at doi:10.5194/bg-11-7291-2014-supplement.
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