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Summary 

1. There are tens of thousands of species of phytoplankton found throughout the tree of life. 

Despite this diversity, phytoplankton are often aggregated into a few functional groups 

according to metabolic traits or biogeochemical role. We investigate the extent to 

which phytoplankton species dynamics are neutral within functional groups. 

2. Seasonal dynamics in many regions of the ocean are known to affect phytoplankton at 

the functional group level leading to largely predictable patterns of seasonal 
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succession. It is much more difficult to make general statements about the dynamics of 

individual species.  

3. We use a 7 year time-series at station L4 in the Western English Channel with 57 diatom 

and 17 dinoflagellate species enumerated weekly to test if the abundance of diatom 

and dinoflagellate species vary randomly within their functional group envelope or if 

each species is driven uniquely by external factors.  

4. We show that the total biomass of the diatom and dinoflagellate functional groups is well 

predicted by irradiance and temperature and quantify trait values governing the 

growth rate of both functional groups. The biomass dynamics of the functional groups 

are not neutral and each has their own distinct responses to environmental forcing. 

Compared to dinoflagellates, diatoms have faster growth rates, and grow faster under 

lower irradiance, cooler temperatures, and higher nutrient conditions.  

5. The biomass of most species vary randomly within their functional group biomass 

envelope, most of the time. As a consequence, modelers will find it difficult to predict 

the biomass of most individual species. Our analysis supports the approach of using a 

single set of traits for a functional group and suggests that it should be possible to 

determine these traits from natural communities. 

 

Keywords 

demographic stochasticity, diatoms, dinoflagellates, English Channel, neutral model, 

functional types, time series, traits  

 

Introduction 

Functional groups are collections of species that share morphological, physiological, and 

biochemical traits or other defining characteristics (Iglesias-Rodríguez et al. 2002; Pena 

2003; Le Quéré et al. 2005). Species within a functional group perform similar ecosystem 

services (e.g., fixing nitrogen) or require similar inorganic and organic resources. Grouping 

similar species into functional groups simplifies analyses and aids in conceptual and 

quantitative model building. Phytoplankton communities are enormously diverse and the 

functional group concept allows the aggregation of thousands of species into only a handful 

of functional groups. Typically these groups are defined based on a combination of higher 
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phylogenetic grouping and biogeochemical function (e.g., silicifying diatoms, mixotrophic 

dinoflagellates, nitrogen fixing and non-nitrogen fixing cyanobacteria, and calcifying 

coccolithophorids) or cell size (Irwin et al. 2006; Hood et al. 2006; Finkel et al. 2010). The 

physiological traits of these functional groups used in models are usually based on a few 

model organisms studied in the lab (Moore et al. 2002; Litchman & Klausmeier 2008; 

Barton et al. 2013b). 

 The success of the functional group concept suggests that the species within 

functional groups may behave similarly enough to be described by a single set of functional 

traits. A functional trait is defined as a feature of an organism that can be measured and 

that influences one or more essential functional processes such as reproduction and 

growth (Weithoff 2003). Functional traits determine an organism’s effects on ecosystem 

processes and its response to environmental forcing, and reflect adaptations to the abiotic 

and biotic environments as well as tradeoffs among different functions within an organism. 

It is not known how to identify functional traits for an entire functional group, whether a 

small number of species can provide trait values representative of the group, or how to 

identify potentially representative species.  

If species within a functional group are very similar, the abundance or biomass 

dynamics of each species within a functional group may be neutral relative to the overall 

dynamics of the group. The idea of ecological neutrality or functional equivalence is that 

the abundance or biomass of each species at one sampling time, relative to the total 

community abundance or biomass at that time, is only determined by the species’ relative 

abundance or biomass at the previous sampling time. The species’ taxonomic identity and 

environmental conditions provide no information on the relative contribution of individual 

species to total abundance or biomass (Volkov et al. 2003; Hubbell 2005, 2006; Shipley, 

Vile & Garnier 2006). In a neutral community, all species are identical on a per capita basis 

in their demographic properties (birth rate, death rate and immigration rate) and 

have equal competitive abilities. Consequently, the demographic events underpinning 

fluctuations in relative species abundance (birth, death, migration) are drawn randomly 

from any one species in proportion to its abundance, causing relative species’ abundances 

to “drift” upward or downward as a random walk called ecological drift (Hubbell 2001). In 

other words, a neutral community is one where changes in relative species abundances are 
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essentially due to demographic stochasticity (or demographic noise) irrespective of 

species’ identities or ecological drift. Species neutrality within a functional group is a 

restricted sense of this idea: the proportion of a species' biomass relative to its functional 

group's biomass is a random walk not influenced by taxonomic identity or environmental 

conditions. 

Time-series data of phytoplankton biomass and environmental conditions permit a 

test of the functional group concept in natural phytoplankton communities. Using time-

series data we test if species’ biomass dynamics are neutral within functional groups. To 

carry out this analysis, we first develop a Bayesian model of functional group biomass 

dynamics and extract values of functional traits for two ecologically dominant and diverse 

phytoplankton functional groups. We assess if these functional traits can adequately 

predict changes in the biomass of each functional group with changing environmental 

conditions. We then test for neutrality of species within each functional group by 

quantifying the extent to which the biomass dynamics of each species within a functional 

group is consistent with ecological drift. If many species within a functional group are 

highly non-neutral then a single set of traits for that functional group is likely inadequate to 

describe its biomass dynamics and it may be necessary to subdivide the functional group.  

 

Materials and Methods 

Time-series data.  

We analyzed select time-series data from Station L4 (50° 15.00′N, 4° 13.02′W) that 

forms part of the Western Channel Observatory (WCO) in the Western English Channel 

(www.westernchannelobservatory.org.uk). Station L4 is in a coastal, temperate 

environment with strong seasonal cycles and has one of the longest phytoplankton time-

series. We used weekly observations of the abundance (cells L–1) of 57 diatom and 17 

dinoflagellate species, genera, or morphological classes (Supplementary Table S1, 

Southward et al. 2004; Harris 2010; Widdicombe et al. 2010). This relatively high sampling 

frequency is essential for our time-series modeling. We focused on diatoms and 

dinoflagellates because they are ecologically important, diverse groups with high quality 

and high resolution taxonomic data. We chose not to analyse the phytoflagellates because 

they were not identified to the species level and their identification was primarily made 

http://www.westernchannelobservatory.org.uk/
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based on size. Similarly, coccolithophorids were not analyzed because they were 

dominated by a single species, Emiliania huxleyi (Widdicombe et al. 2010). We omitted 

some infrequently observed diatom and dinoflagellate species to ensure that all species had 

at least 20 observations and were observed in more than 10% of the sampling weeks. For 

simplicity we refer to each taxonomic unit identified during sampling as a species. Samples 

were taken at 10 m depth. Species were identified using light microscopy at 200x or 400x 

and counted from a 200 mL sample following Utermöhl (1958). Full methods are described 

for phytoplankton counting in Widdicombe et al. (2010) and for temperature and nutrients 

in Smyth et al. (2010). Microscopy was used to obtain an estimate of cell volume for each 

species (Kovala & Larrance 1966). The total biomass (g C m–3) of diatoms and 

dinoflagellates is computed as the product of abundance (cells m–3) and a fixed carbon 

quota for each species (g C cell–1) derived from cell volume and an allometric relationship 

(Menden-Deuer & Lessard 2000). Carbon quota varies over a cell’s life cycle and with 

environmental conditions, but this variation is expected to be much smaller than the 

variation in abundance, so even though we lack time-resolved variation in carbon quota, 

we expect that the majority of the variation in phytoplankton biomass is captured by these 

data. Environmental data consist of in situ surface water temperature (°C), surface nitrate 

concentration (µmol L–1) and irradiance measured continuously at the nearby field station 

(mol m–2 d–1). The time series extends over many years with phytoplankton counts 

beginning in 1992 at station L4. To maximize the period of weekly data and minimize the 

large gaps in the time series for these observations (phytoplankton counts and 

environmental data) we restrict our attention to 349 consecutive weeks spanning April 14, 

2003 to December 21, 2009. Linear interpolation was used to establish a regular 7-day grid 

for all data, commonly to adjust observations that are 5-9 days apart and infrequently to fill 

in missing data from an unsampled week. Interpolating missing values means we will miss 

some natural variability in the data, but we expect this will have little impact on the results 

since only about 10% or less of observations were missing. 

Model overview. 

We developed models of the biomass for each functional group as a function of 

environmental conditions and of the biomass of individual species within their functional 

group (diatom or dinoflagellate) biomass envelope assuming species are neutral within 
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their functional groups. We included an extra layer between these models, which are based 

on true biomasses, and the observed biomasses to allow for measurement error and fill 

gaps in the time-series of the biomass of individual species. Since the biomass of each 

functional group is empirically log normally distributed (Supplementary Fig. S1) we 

modeled the log biomass for each group. The true log biomass for each week in the time 

series was modeled as the true log biomass in the previous week, plus the intrinsic growth 

rate, linear effects due to temperature, irradiance, and nitrate concentration, and losses due 

to density-dependent grazing. At a species level, ecological drift is modeled by assuming 

that  the proportion of the functional group biomass attributed to each species is on 

average the same proportion realized in the previous week. Demographic stochasticity is 

present in both models; in the neutral species model it is a crucial part of the dynamics 

while in the functional group model demographic stochasticity is frequently insignificant 

compared to the forcing provided by environmental conditions. A list of symbols used in 

the models is provided in Table 1. 

 

Functional group biomass model. 

We account for sampling error by modeling the observed log biomass of each 

functional group yt (time t, 1£ t £T ) conditionally on the true log biomass gt. We assumed 

that ty is a realization of a normal distribution with mean tg  through the sampling or 

observation model  

 
),N(~,| 2

1
2
1  ttt ggy ,       (1) 

where 2
1  is an unknown functional-group-level sampling variance to be estimated from 

the data. The normality assumption on the functional group log-biomasses is theoretically 

justified by the central limit theorem given that we are dealing with species-rich 

assemblages with many rare species and only a few abundant ones. We validated the log-

normality assumption on the functional group biomasses both graphically (Supplementary 

Fig. S1) and statistically through the 2-sample Kolmogorov-Smirnov goodness-of-fit test 

(Supplementary Table S1). 
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 Let }3,,{ tttt NOPARTempE   denote the set of environmental conditions at time t 

where tTemp , tPAR , and NO3t indicate, respectively, the temperature, irradiance, and 

nitrate concentration at time t, standardized to have mean zero and variance one. We 

modeled the actual log biomass, tg , of each functional group at times Tt ,...,3,2  

conditionally on its biomass at the previous sampling time t-1 and environmental 

conditions tE  using a normal distribution with time-dependent mean µt as 

 
),(~,| 2

1 gtttt NEgg  ,       (2) 

where mt = gt-1 + r+d gt-1 +b1Tempt +b2 PARt +b3NO3t ,  0r  is the intrinsic growth rate 

(week–1), 1  , 2  and b3  are respectively, dimensionless estimates of the temperature,  

irradiance, and nitrate concentration effects on the functional group log biomass,   is the 

density-dependence parameter, and 2
g  is the functional-group-level process variance. We 

use a linear model for µt rather than more complex non-linear functions of temperature, 

irradiance, and nitrate concentrations, since the amount of variation in the environmental 

data is relatively small and the resulting linear model explained the vast majority of 

variation in functional group log biomass.  From Eq. (2) and the properties of the log-

normal distribution, it follows that, conditionally on gt-1, tTemp , tPAR , NO3t  and δ, the 

functional group biomass at time t, gt, is log-normally distributed with mean 

)2/exp( 2
gt    and variance )2exp()1exp( 22

gtg   .  

 

Neutral model for the biomass of each species within each functional group  

In parallel with the observation model for functional group biomass we model the 

observed log biomass of species i , tix ,  (times Tt ,...,2,1 ) given its true log-biomass, tis , , as 

a realization of a normal distribution centered at tis , through the observation model  

 
),(~| 2

2,,, tititi sNsx ,       (3) 

where 2
2  is the species-level sampling variance to be evaluated from the data. A key 

advantage of the Bayesian approach is the ease with which we accommodate missing 

values since Bayesian inference makes no distinction between missing data and 
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parameters. In a Bayesian framework, all unobserved quantities are assigned priors and 

estimated from the data. In OpenBUGS one simply needs to extend the model specification 

with priors on the missing observations which are then automatically imputed with 

samples from their posterior predictive distributions (Thomas et al. 2006; Gelman et al. 

2013) 

 Under the neutrality assumption of the biomass of species i  drifting randomly 

within its functional group biomass envelope, the expected biomass Mi,t of species i  at time 

t, conditional on the biomass of the functional group, tG  , is   

         (4) 

where γi,t = Si,t / Gt  is the proportion of the functional group biomass at time t (t = 1, ..., T) 

due to species i , Si,t = exp(si,t) is the true biomass of species i  at time t, and Gt is the true 

functional group biomass at time t, with gt = log(Gt). Under this model the true biomass of 

species i  is solely determined by demographic stochasticity (random drift).  Hence, 

conditionally on tG  and 1, ti , we assume the underlying log-biomass of the ith species at 

time t is drawn from a normal distribution with mean )log( ,, titi Mm   and variance 

1,
2
,

2
, /  tititi Sv , 

 
)I(),(~,| ,

2
,,1,, ttititititti gsmNGs   .     (5) 

Note that the variance 2
,ti  of the focal species’ log-biomass at time t is defined as the 

species’ demographic variance, 2
,tiv , scaled inversely with the species’ biomass at the 

previous sampling time used as a proxy for population size, resulting in a higher variability 

of low biomasses and vice-versa.     

 

Specification of priors  

We complete the model specification with explicit statements of fairly uninformative priors 

on the model parameters and the initial functional group and species biomasses. We placed 

on the functional-group-level intrinsic growth rate, r , a normal distribution centred at 

zero with variance 10, truncated at zero to exclude negative values i.e., )0I()10,0N(~ rr , 

where the function I(.)  denotes the indicator function which takes the value 1 when its 
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argument is true and the value zero otherwise. We assigned centred normal priors with 

variance 100 on 1 , 2   and  independently, and a standard normal prior on the 

density-dependence parameter  . We imposed )1,1Gamma(Inverse  priors independently 

on each of the variance parameters 2
g , 2

1 , and 2
2 , and an )ω,Gamma(ωInverse i,2i,1  on 

2
,ti , where i,1ω  and i,2ω  are species-specific demographic parameters. We assigned 

),Beta( 21   priors on ti,  independently for Tt ,...,2,1 , and independent )1Exp(  

distributions on the hyper-parameters 1 , 2 , i,1ω  and i,2ω . Finally, we assumed for initial 

functional group and species log-biomasses 1g  and 1,is  non-informative normal priors 

centred at zero with variance 1000, i.e., )1000,0(~1 Ng  and si,1 ~ N(0, 1000) I(s1 < g1). The 

corresponding sampling models are ),(~ 2
111 gNy  and xi,1 ~ N(si,1, 2

2 ) I(xi,1 < y1) from 

which )exp( 11,1, gsii   and )exp( 11,1, yxp ii   follow. 

 We use Markov chain Monte Carlo (MCMC) (Gilks, Richardson & Spiegelhalter 1996) 

to simulate, through OpenBUGS (Thomas et al. 2006), the joint posterior distribution of the 

model parameters. The OpenBUGS code is provided in the Supplementary Material. We ran 

20,000 iterations of three parallel Markov chains starting from dispersed initial values, and 

discarded the first 5,000 samples from each Markov chain as burn-in, thinning the 

remainder to monitor each 25th sample. We assessed the convergence of the MCMC 

through visual inspection of traceplots and autocorrelation functions (Supplementary Figs. 

S2 and S3). The chains reached the target distribution after roughly 1500 iterations. All 

chains mixed well by jumping freely over the parameter space. 

 

Neutrality index 

We evaluated the extent to which individual species biomasses drift randomly within their 

respective functional groups’ biomass envelopes by comparing, for each species i, the 

relative biomass ti,tti G/S ,   predicted by the neutral model at time t )2( Tt   with the 

observed counterpart ttiti YXp /,,  . For a species with neutral biomass dynamics, the 

predicted relative biomass should be evenly spread around the distribution of the observed 
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relative biomass, so one should be bigger than the other roughly half the time, which we 

express by testing if )(Pr ,, titi p  is close to 0.5. This probability can be straightforwardly 

evaluated within OpenBUGS defining  ti,  = step(γi,t – pi,t) where step(u) is 1 if 0u  and 0 

otherwise. The posterior mean ]|E[ˆ ,, datatiti    provides an estimate of the required 

probability )Pr( ,, titi p  that takes parameter uncertainty into account. We regard the 

biomass dynamics of species i from time )1( t  to t  as consistent with random drift 

when 75.0ˆ25.0 ,  ti . We define a neutrality index i  as the proportion of ti,̂  between 

0.25 and 0.75 counting only times Ωi when species i was observed and not using imputed 

values of pi,t ,  

     (6) 

where #Ωi indicates the size of the set Ωi, and use this index to assess the importance of 

random drift as a driver of individual species’ biomass dynamics. We consider 75.0i  

and 25.0i  as supporting respectively the prevalence of random drift and that of non-

neutral forces in driving the biomass dynamics of species i, whereas 75.025.0  i  

suggests an interplay of neutral and non-neutral forces in shaping the focal species biomass 

patterns.  

 

Results 

Data overview.  

The biomass of diatoms and dinoflagellates at station L4 in the Western English 

Channel show a strong seasonal cycle, with a great deal of variability superimposed on the 

annual cycles (Fig. 1). The aggregated biomass (g C m–3) of 57 diatom species and 17 

dinoflagellate species varied by a factor of ~1000 and ~10,000 on an annual basis, 

respectively. The richness of the diatom and dinoflagellate communities is highly variable 

from week to week with a median richness of 16 and 4 species, respectively. The times of 

rapid biomass accumulation and maximum biomass density are slightly different between 

the two functional groups, with diatoms blooming earlier in the season. These strong 
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seasonal dynamics indicate that it should be possible to predict much of the variation in 

functional group biomass from environmental conditions. 

 There are very strong seasonal oscillations in sea surface temperature (°C), 

irradiance (mol photons m–2 d–1), and nitrate concentrations (µmol L–1) (Fig. 1). These 

three variables strongly affect phytoplankton growth rates, but they are not even 

approximately independent, so it may not be appropriate to use all three variables in a 

statistical model. A principal component analysis of these three variables showed that the 

first two principal components account for 93% of the variation in the three variables. The 

largest pairwise correlation was between nitrate concentration and irradiance (r = –0.74). 

The rapid variability and uptake of nitrogen sources means that point estimates of nitrate 

concentration may not always be a good measure of the nitrate resources available to 

phytoplankton. After exploring models with all three predictors and omitting either nitrate 

concentration or irradiance, we decided to omit nitrate concentration (Eq. 2, set 3 = 0) 

from our final model of functional group biomass. Omitting nitrate concentration makes 

the interpretation of the coefficients for temperature and irradiance more straighforward. 

 

Functional group biomass.  

Our models of functional group biomass using temperature and irradiance 

explained 96% and 98% of the temporal variation in the diatom and dinoflagellate log-

biomasses, respectively, with model predictions close to the observed data (Supplementary 

Fig. S4). The residuals from the model of functional group log-biomass, yt - gt, are clustered 

around zero with no apparent trend and no serial correlation (Supplementary Fig. S5), 

showing that our model assumptions about the functional group biomass dynamics are 

sensible and that the seasonal cycles in the functional group biomass data are largely 

explained by fluctuations in temperature and irradiance.  

 We obtained a posterior mean for four functional group trait parameters in each 

functional group model: intrinsic growth rate (r, week–1), the effect of temperature on 

growth ( 1 , dimensionless), the effect of irradiance on growth rate ( 2 , dimensionless), 

and a coefficient measuring the effect of increased biomass density on growth ( , 

dimensionless). The growth parameters in the functional group model (Eq. 2) are well 
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estimated with narrow posterior distributions and differ between diatoms and 

dinoflagellates (Fig. 2). Our neutrality model (see below) yielded replicate estimates of 

each functional group trait parameter (Fig. 2, symbols and 95% credible intervals). 

 The intrinsic growth rate of diatoms is much higher than the intrinsic growth rate 

for dinoflagellates (Fig. 2). The net growth rate includes linear loss terms such as 

respiration but is unaffected by quadratic loss terms such as density-dependent grazing or 

viral attack which is described by the density-dependent parameter . Both functional 

groups exhibit an increase in their growth rates under elevated temperatures and 

irradiance but the sensitivity to changes in temperature and irradiance is much greater for 

dinoflagellate biomass than for diatom biomass. Both functional groups experience strong 

density dependent limitation on their growth rates as expected from the annual cycle of 

biomass blooms (Fig. 1). The magnitude of this effect is larger for diatoms, but only differs 

by about 25% between functional groups which is a smaller relative difference than 

between any of the other parameters. 

 

Testing the neutrality of species within functional groups.  

Our neutrality index  (Eq. 6) measures the proportion of time the week-to-week 

change in the biomass of a species, relative to the total biomass of its functional group, is 

well predicted by random drift or neutral model (Fig. 3). Five dinoflagellate and three 

diatom species are clearly neutral within their functional group biomass envelopes (species 

with  ≥ 0.75 in Fig. 3). None of the species are clearly driven by non-neutral processes ( ≤ 

0.25). The majority of species in both functional groups have a neutrality index between 0.4 

and 0.7 indicating that most species exhibit a mixture of neutral and non-neutral dynamics 

in line with the neutrality-niche continuum hypothesis (Gravel et al. 2009, Mutshinda & 

O’Hara 2011). However, the distribution of this index is skewed to the right for both 

functional groups implying that most species fall on the neutrality side of the continuum. 

The cell size and median abundance of these neutral species do not stand out from the rest 

of the community, but there is an overall trend for species that are observed less frequently 

to have a larger neutrality index.   
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 Our model linking a species' observed biomass to its true biomass (Eq. 3) allowed us 

to impute observations of a species when its abundance was below the detection threshold 

of the sampling protocol, but these data were not used in the computation of the neutrality 

index of a species as they were not independent of the neutrality hypothesis. Since most 

species were not observed in the weeks their abundance was low, we do not have a good 

estimate of the neutrality of species at those times. Thus a more nuanced interpretation of 

our result is that most species are neutral within functional groups most of the time during 

the times of the year they are most abundant. There is no significant correlation between a 

species' neutrality index and its cell size, carbon quota or time-averaged log biomass.  

 

Discussion 

 The phytoplankton community at station L4 in the Western English Channel is 

highly dynamic with a strong seasonal oscillation in biomass and community structure 

(Southward et al. 2004).  Our analysis clearly establishes that the biomass dynamics of 

diatoms and dinoflagellates are well characterized by functional-group level traits.  These 

two functional groups respond distinctly to changes in environmental conditions over time 

due to differences in four eco-physiological traits: intrinsic growth rate (r), temperature 

( 1 ) and irradiance ( 2 ) effects on growth rate, and a density dependent term ( ) (Fig. 2).   

Diatoms have relatively large intrinsic growth rates compared to the dinoflagellates, which 

is consistent with many previous studies (Furnas 1991; Raven, Finkel & Irwin 2005; Irwin, 

Nelles & Finkel 2012).  The intrinsic growth rates represent the net density-independent 

growth rate of the total biomass of each functional group at the average environmental 

conditions (temperature and irradiance) and as a result are much smaller than maximum 

growth rates of individual species in culture conditions.  Dinoflagellates were relatively 

more responsive to warming compared with diatoms. This is consistent with earlier results 

at this site (Widdicombe et al. 2010), across the North Atlantic (Irwin et al. 2012), and at a 

tropical Caribbean site (Mutshinda, Finkel & Irwin 2013a; Mutshinda et al. 2013b). This 

supports the hypotheses of phytoplankton communities restructuring and increasing 

dominance of dinoflagellates in a warming world (Leterme et al. 2005; Finkel et al. 2010). 

Both functional groups at station L4 are strongly affected by density dependent loss rates, 
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which are likely a combination of grazing pressure, aggregation, sinking, and viral attack, 

but the pressure on diatoms is about 25% stronger than that on dinoflagellates, consistent 

with their higher growth rates and similar maximum biomass densities for the two groups.  

Since temperature and irradiance are correlated with nitrate concentration and in some 

cases water column stability, sensitivity to temperature and irradiance may reflect 

functional group responses to these and other correlated variables.  In aggregate these 

traits indicate that diatoms will have higher net biomass accumulation under lower 

irradiances and lower temperatures and higher nitrate concentrations compared to the 

dinoflagellates that will tend to have higher increases in biomass in warmer more stratified 

waters with higher irradiance and lower nitrate concentrations, consistent with previous 

lab and field work (Smayda & Reynolds 2003; Smayda & Trainer 2010; Irwin et al 2012; 

Barton et al. 2013a; Xie et al. 2015; Brun et al. 2015). 

 Consistent with previous work (Litchman et al. 2007), these results clearly show 

that phytoplankton communities are structured by traits at the functional group level.  

Despite the success of predicting phytoplankton blooms at the functional group level and 

knowledge of traits at the species level (Irwin et al. 2012; Edwards et al. 2013), it has been 

very difficult to consistently predict the occurrence of particular species of interest, e.g., the 

prediction of toxic species blooms (Zingone & Oksfeldt Enevoldsen 2000; Hallegraeff 

2010).  We hypothesized that the individual species within these functional groups are 

varying neutrally relative to the biomass envelope of their respective functional group.  Our 

analysis shows that at Station L4, the vast majority of diatom and dinoflagellates species 

are driven more by neutral dynamics, relative to their total functional group biomass, than 

by non-neutral factors (Fig. 3).  This result provides a resolution to the apparent paradox of 

the predictability of functional groups and non-predictability of species: stochastic 

variation dominates the dynamics at the species level within functional groups. 

 The biomass of diatom and dinoflagellates species relative to the total biomass of 

their functional groups are affected by a combination of niche-selecting and neutral 

processes, with the net effect that most species behave neutrally within their functional 

groups 50 to 75% of the time. Phytoplankton species richness at Station L4 is also 

determined by a combination of niche and neutral processes (Vergnon, Dulvy & Freckleton 

2009). Species will be niche selected within their functional groups when they have unique 
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traits that affect their biomass dynamics under transient conditions not included in our 

model, such as susceptibility to viral attack and grazing or the formation of resting stages. 

The dominance of neutral processes within functional groups is consistent with the 

observation that many North Atlantic diatom and dinoflagellate species have wide niches 

relative to environmental variation (Irwin et al. 2012). Wide niches and niche overlap 

among species weakens the effect of niche selection and means that demographic 

stochasticity is a very important source of biomass variation at the species level. The 

dominance of neutral processes on the biomass dynamics of phytoplankton species means 

that it will be challenging to predict the biomass of individual species relative to functional 

group biomass.  

Niche processes control the biomass dynamics of phytoplankton functional groups.  

By contrast, within their functional groups, phytoplankton species are more often than not 

ecologically equivalent.  As a consequence aggregation of species into functional groups is a 

sensible approach for modeling how phytoplankton communities respond to 

environmental forcing. Aggregating species together within functional groups averages out 

species-level demographic stochasticity. When considering how to identify trait values to 

define the different phytoplankton functional groups we must take into account that there 

is some niche differentiation some of the time among species within functional groups. As a 

result it is risky to use traits from a single species to represent a functional group. In 

addition, traits determined from lab studies may not adequately describe a functional 

group in the field due to acclimation to multiple environmental conditions and biotic 

interactions among species. Rather than use the average of trait values from a few species 

studied in the lab to represent a functional group, or a broad range of trait values from 

many species to represent each functional group (Follows et al 2007), potentially the best 

approach will be to find trait values representative of functional groups as a whole using 

field data as we have done here or using more complex mechanistic models. 
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Figure captions 

 

Figure 1.  

Key environmental conditions affecting phytoplankton growth rate at Station L4 and 

biomass of phytoplankton functional groups. (a) temperature (°C), (b) irradiance (mol m–2 

d–1), (c) nitrate concentration (µmol L–1), (d) aggregated biomass of enumerated diatom 

and (e) dinoflagellate species at station L4 in the Western English Channel, reported 

weekly for 349 weeks starting on April 1, 2003 through December 21, 2009. Biomass (log10 
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g C m–3) was computed by summing over all species the product of abundance (cells m–3) 

and cell carbon inferred from an allometric size-scaling relationship between cell carbon 

and cell volume, from Menden-Deuer & Lessard (2000). 

 

Figure 2. 

Parameters from the growth models for both functional groups. For each parameter the 

mean (filled circle) and 95% credible intervals (bars) of the parameter estimates are 

shown for each of the 57 (diatoms) or 17 (dinoflagellates) models estimated for each 

species. 

 

Figure 3.  

Neutrality index for each species, grouped by functional groups (dinoflagellates on top, 

diatoms at the bottom) and ordered by the value of the neutrality index within groups. A 

value larger than 0.75 is strong evidence for neutrality, values below 0.25 (none reported) 

would be strong evidence against neutrality, and the remainder of the results support a 

temporal mixture of neutral and non-neutral dynamics. Vertical lines highlight the cutoffs 

of 0.25 and 0.75 (dotted) and the division between neutral and non-neutral at 0.5 (solid). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Table 1. 

List of symbols. 

 

Symbol Interpretation 

t Time (weeks) 

i Species index 

yt, gt Observed, true log biomass of a functional group 

Yt, Gt Observed, true biomass of a functional group 

xi,t, si,t, mi,t Observed, true, expected log biomass of species i in week t 

Xi,t, Si,t, Mi,t Observed, true, expected biomass of species i in week t 

σ12, σg2 Functional-group level sampling, process variance 

σ22, σi,t2, vi,t2 Species level sampling, process, demographic variance 

Tempt, PARt, NO3t Temperature, irradiance, and nitrate concentration in week t 

μt Modeled mean log biomass 

r Intrinsic growth rate (week–1) 

δ Density dependent loss coefficient 

β1, β2, β3 Effect of temperature, irradiance, nitrate concentration on growth 

rate 

pi,t, γi,t  Observed, expected proportion of functional group biomass due to 

species i 

Ωi Set of weeks that species i was observed 

ϕi Neutrality index for species i 
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