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Abstract

We present here vertical fluxes of methanol, acetaldehyde, and acetone measured di-
rectly with eddy covariance (EC) during March to July 2012 near the southwest coast of
the UK. The performance of the proton-transfer reaction mass spectrometer (PTR-MS)
for flux measurement is characterized, with additional considerations given to the ho-5

mogeneity and stationarity assumptions required by EC. Concentrations and fluxes of
these compounds vary significantly with time of day and wind direction. Higher values
of acetaldehyde and acetone are usually observed in the daytime and from the direc-
tion of a forested park, most likely due to light-driven emissions from terrestrial plants.
Methanol concentration and flux do not demonstrate clear diel variability, suggesting10

sources in addition to plants. We estimate air–sea exchange and photochemical rates
of these compounds, which are compared to measured vertical fluxes. For acetalde-
hyde, the mean (1σ) concentration of 0.13 (0.02) ppb at night may be maintained by
oceanic emission, while photochemical destruction outpaces production during the day.
Air-sea exchange and photochemistry are probably net sinks of methanol and acetone15

in this region. Their nighttime concentrations of 0.46 (0.20) and 0.39 (0.08) ppb appear
to be affected more by terrestrial emissions and long distance transport, respectively.

1 Introduction

Oxygenated Volatile Organic Compounds (OVOCs), such as methanol, acetone, and
acetaldehyde, exist ubiquitously in the troposphere and are important for atmospheric20

chemistry and climate. Methanol is the most abundant oxygenated organic gas in the
atmosphere and a source of carbon monoxide (Duncan et al., 2007) and formalde-
hyde (Millet et al., 2006). Plant growth is a large source of methanol (Guenther et al.,
2000), accounting for 30∼80 % of total emissions to the atmosphere in global models
(Singh et al., 2000; Heikes et al., 2002; Jacob et al., 2005; Millet et al., 2008). Other25

sources include plant decay (Warneke et al., 1999), industrial emissions (as solvents,
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fuel additive, antifreeze, etc, Langford et al., 2009), and atmospheric reactions. The
predominant sink for methanol in the atmosphere is the reaction with the hydroxyl rad-
ical (OH), with a lifetime of ∼10 days (Atkinson, 2000). Methanol is also removed from
the planetary boundary layer (PBL) via deposition to land (Karl et al., 2004) and to the
ocean surface (Heikes et al., 2002; Williams et al., 2004; Carpenter et al., 2004).5

Acetaldehyde is important for the formation of ozone (O3), HOx radical (Singh et al.,
1995), and peroxyacetyl nitrate (Roberts, 1990), the latter a stable reservoir of nitro-
gen oxides. While terrestrial plants are well known to emit acetaldehyde (Hurst et al.,
1994; Guenther et al., 2000; Jardine et al., 2008), a recent mesocosm measurement
in a Norwegian fjord suggests that the ocean could be a source as well (Sinha et al.,10

2007). In the updated global budget by Millet et al. (2010), hydrocarbon oxidation in
the atmosphere represents the predominant source of acetaldehyde (60 %), more than
three times higher than a previous estimate (Singh et al., 2004); other sources include
emissions from the ocean (27 %) and terrestrial biosphere (11 %), as well as minor an-
thropogenic contributions. Acetaldehyde is quickly removed from air via reactions with15

OH, the nitrate radical, and direct photolysis, with respective lifetimes of ∼9 h, 6 and
17 days (Atkinson, 2000).

A significant source of OH radical in the dry, upper troposphere, acetone is also
a precursor to peroxyacetyl nitrate (Singh et al., 1995). Terrestrial emissions from
plants (Warneke et al., 1999; Guenther et al., 2000) and atmospheric oxidations provide20

similar contributions to the global acetone budget (Fischer et al., 2012), while anthro-
pogenic emission appears to be a minor source (Langford et al., 2009). Global budgets
of acetone disagree on the role of the ocean. Jacob et al. (2002) suggested the ocean
to be a net source of acetone, whereas Singh et al. (2004) modeled a net loss of ace-
tone to the surface ocean, consistent with direct flux measurements from Marandino25

et al. (2005) over the North Pacific. Other observations over the ocean (Taddei et al.,
2009) and in the mesocosm (Sinha et al., 2007) indicated the air–sea flux of acetone
to be small and variable in sign. Reaction with OH and photolysis remove acetone
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from the atmosphere at similar rates, resulting in a photochemical lifetime of 39 days
(Fischer et al., 2012).

With developments in mass spectrometry over the last two decades, OVOC concen-
trations have been measured in a variety of environments (though few by the coast).
The numerous sources and sinks pose considerable challenges to the characterization5

and modeling of OVOC cycling based on concentrations alone. Knowing the vertical
transport allows emission and deposition to be distinguished from chemical transfor-
mation, which represents a significant step forward, particularly for understanding the
role of the ocean. Moreover, when multiple OVOCs are measured simultaneously, com-
monality and difference in the sources and sinks may be inferred.10

Eddy covariance (EC) is the most direct technique for measuring vertical trans-
port in the atmosphere. Vertical flux (F ) is derived by correlating fluctuations in the
species of interest (x) with concurrent vertical wind velocity (w) and averaging over
time (F = w ′x′). When measured within the surface layer of the atmosphere (<∼ 10 %
of the PBL), the EC flux can be equated to surface flux under stationary and horizon-15

tally homogeneous conditions. Statistical measures of x in time and space, stationarity
and homogeneity refer to temporal constancy during the averaging period and spa-
tial constancy within the flux footprint, respectively. For methanol, acetaldehyde, and
acetone, the stationarity criterion (i.e. steady state) should be satisfied from the per-
spective that their chemical lifetimes of several hours to days are much longer than the20

flux averaging period of typically an hour.
To capture the full continuum of atmospheric turbulence, a fast sensor (typically

f ≥ 10 Hz) is required. With a theoretical response time of < 1 s, the proton-transfer-
reaction mass spectrometer (PTR-MS) has been utilized to measure OVOC fluxes in
terrestrial environments with EC (e.g. Karl et al., 2001). To accommodate the lower25

sampling frequency of the PTR-MS when multiple compounds are simultaneously mon-
itored, disjunct (e.g. Rinne et al., 2001; Warneke et al., 2002) and virtual disjunct (e.g.
Karl et al., 2002; Spirig et al., 2005) EC variants based discrete concentration mea-
surements have also been used, albeit with greater flux loss at high frequencies.
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Compared to terrestrial emissions, air–sea fluxes of OVOCs tend to be lower in mag-
nitude, thus challenging the instrumental sensitivity and noise. In this paper, we first
discuss the optimization of the PTR-MS for EC flux measurements of methanol, ac-
etaldehyde, and acetone, with detailed analysis of sampling error, detection limit, and
high frequency flux loss. Additional attention is given to the interpretation of flux mea-5

surements with regard to the homogeneity and stationarity requirements. Lastly, we
compare measured vertical fluxes to expected air–sea exchange and photochemical
rates.

2 Measurement site and environmental conditions

The city of Plymouth (population of ∼250 000) is situated on the southwestern coast10

of the UK. Warmed by the North Atlantic Current, the region has a temperate oceanic
climate and is predominantly exposed to southwesterly winds. As shown in Fig. 1,
Plymouth Marine Laboratory (PML, 50◦21.57′ N, 4◦ 08.52′ W) is located on the northern
side of the Plymouth Sound, which opens to the Atlantic Ocean to the south and is fed
by the River Plym from the NE and Tamar from the NW (both estuarine). The Mount15

Edgcombe Park, abundant with broadleaf trees and grasses, is situated ∼2 km SW of
PML and across the Tamar. Residential buildings, a ferry port, and a naval dockyard
are located NW of PML, while the City Centre is to the NE.

Measurements of OVOC concentrations and winds were made from the rooftop of
the PML building, which is 200∼300 m from the water edge (depending on direction).20

A parking area fenced by broadleaf trees and garden bushes occupies the ∼80 m
region immediately south of PML, with a tall hotel across the parking area severely
obstructing winds from the SSE. The view is much clearer from south to west, with
moderately dense, two to three-storey residential buildings covering most of the land
that slopes down to the water edge. The rooftop of the PML building is about 45 m25

a.s.l. and 15 m above local ground. Taking 10 m to be the height of the roughness
elements (e.g. houses, trees), the roughness sublayer height can be approximated
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as three times the height of the roughness elements, or 30 m (World Meteorological
Organization, 2006). Thus the PML rooftop should be above the roughness sublayer
and within the surface layer, where standard boundary layer theory applies.

For descriptions of the regional environment, we utilize continuous observations from
the PML rooftop, Rame Head, and L4 buoy, all parts of the Western Channel Obser-5

vatory. Meteorological parameters were measured every 5 min from a station secured
on a ∼2 m mast near the SW corner of the PML rooftop, including horizontal wind
speed and direction (Mierji Meteo solid state wind sensor, MMW-005), temperature
and humidity (Hygroclip S3 sensor), precipitation (Omni Instruments 6′′ tipping bucket
rain gauge, RG200), solar irradiance (Li-Cor pyranometer, LI-200SZ), and photosyn-10

thetically active radiation (Chelsea Instruments half-hemisphere PAR sensor). Meteo-
rological data were also recorded every 5 min from Rame Head, a headland several
km SW of PML (50◦ 19.03′ N, 4◦ 13.19′ W). Just outside of the Plymouth Sound, the
autonomous L4 buoy (50◦ 15.0′ N, 4◦ 13.0′ W) is equipped with sensors that measure
surface ocean parameters hourly, including chlorophyll a from fluorescence (WetLabs15

WQM), nitrate (Satlantic ISUS), sea surface temperature, salinity, etc.
We report here OVOC fluxes measured during selected periods between March and

July 2012. Due to unusually rainy weather, high winds, and larger riverine inputs of
nutrients, the “spring” bloom of phytoplankton was almost continuous during these
months, with a mean chlorophyll a concentration of ∼1.7 mgm−3. Sea surface tem-20

perature steadily warmed from approximately 10 to 15 ◦C, while salinity dropped from
35.2 to 35.0 psu. Under typical southwesterly conditions, the flux footprint (the area
contributing to the measured turbulent fluxes) extends to ∼1 km upwind of PML, cov-
ering both land and coastal waters.

3 Instrumentation and basic data processing25

A high sensitivity PTR-MS (Ionicon Analytik) was used to measure the concentrations
of selected OVOCs. The gas inlet and a 3-d sonic anemometer (Applied Technologies,
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In. “K” style probe) were installed near the SE corner of the rooftop of the PML building.
To avoid rain droplets, the gas inlet was constructed with two funnels held together on
the broadsides, sandwiching a coarse mesh. Stabilized by an aluminum rod on the
exterior, the inlet pointed downwards and was located ∼40 cm below and 30 cm in
front of the sonic center (of the w component). A ∼25 m of Perfluoroalkoxy (Teflon5

PFA) tubing (1/4 in. ID) connected the inlet to the PTR-MS in a laboratory two floors
below. Turbulent airflow in the manifold (Reynolds number of ∼5000) was maintained
at ∼ 25 standard liter per minute (SLPM) by a vacuum pump and monitored by a digital
thermal mass flow meter (Bronkhorst EL-FLOW series). OVOC concentration, wind,
and flow data were recorded on the same computer.10

We used an internal gas standard to account for instrumental drift in the PTR-MS.
Triply deuterated (d3) methanol diluted in nitrogen (1.01 ppm, Scientific and Technical
Gases Ltd) was continuously injected to the manifold at about ∼2 m ahead of a sub-
sampling “tee” for the PTR-MS via a short piece of 1/16 in. ID Fluorinated ethylene
propylene (Teflon FEP) tubing. The standard flow was controlled precisely at 0.10015

SLPM by a digital mass flow controller (Bronkhorst EL-FLOW series), yielding a diluted
d3 methanol concentration of ∼4 ppb. At the “tee”, another short piece of 1/16 in. ID
FEP tubing was connected to a 3-way polytetrafluoroethylene (Teflon PTFE) solenoid
valve (Takasago Electric, Inc.), which directed air either directly to the PTR-MS or ad-
ditionally through a catalytic converter. The PTR-MS sub-sampled from the manifold20

at ∼60 mLmin−1 via ∼1.5 m of 1/32 in. Polyether ether ketone (PEEK) tubing, which
was heated to 80 ◦C to minimize adsorption. The residence time of air inside of the
main manifold was about 2 s, and from the “tee” to the PTR-MS another ∼2 s. A higher
sub-sampling flow by the PTR-MS may slightly improve the instrument response, but
resulted in unstable chamber pressure in the current setup.25

3.1 Optimization of the PTR-MS for Eddy covariance

The principle of the PTR-MS was described in detail by Lindinger et al. (1998). Very
briefly, from a water vapor source the instrument produces the hydronium ion (H3O+)
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with a proton affinity (PA) of 691 kJmol−1, which in turn transfers the charge to gas
molecules of higher PA. With PA of 754, 769, and 812 kJmol−1, methanol, acetalde-
hyde, and acetone are ionized efficiently by H3O+ to form ions at mass to charge ratio
(m/z) of 33, 45, and 59, respectively.

High sensitivity and low noise are desirable for EC. In order to maintain H3O+ as5

the primary source ion, a low pressure in the drift tube (reaction chamber) is typically
used in the PTR-MS (2∼3 mbar), which limits the concentrations of analytes and the
frequency of molecular collisions. Increasing the chamber pressure may improve sen-
sitivity, but can also lead to more dimerization of water molecules, which at a PA of
∼808 kJmol−1 (Goebbert and Wentold, 2004) does not ionize many OVOCs efficiently.10

A large fraction of the m/z 33 background is due to the oxygen isotope 16O17O+, which
relates to O+

2 by the isotopic fraction of 0.076 %. The amount of O+
2 in the system

decreases with increasing humidity (de Gouw et al., 2004), implying that the m/z 33
background may be lowered by increasing H3O+ input. Doing so may also result in
more water dimers, which can be broken by increasing the electric field or temperature15

in the reaction chamber. With aforementioned considerations, the following settings
were typically used: drift tube pressure of 2.8 mbar, temperature of 80 ◦C, voltage of
700 V, and water vapor flow of 9 sccm. A substantially higher m/z 59 background was
observed at chamber temperatures above 100 ◦C, presumably due to desorption. The
electric field to charge ratio (E/N) was 112 Td at 298 K (and greater at 80 ◦C), high20

enough to avoid excessive clustering of water molecules (de Gouw et al., 2003).
OVOC Backgrounds were quantified by diverting the gas flow through a platinum

catalytic converter (Shimadzu) at 350 ◦C for 2 min at the beginning of every hour. The
converter removes organic compounds but does not significantly alter signals at m/z
21 (H18

3 O+), 32 (O+
2 ), and 37 (H2O ·H3O+). For m/z 33, 45, and 59, background values25

were typically 0.8, 0.3, and 0.2 ppb and generally stable (derivations of concentrations
are described in Sect. 3.2). Estimated as 3σ of the 2-min backgrounds over a day, the
detection limits for mean concentrations of these compounds were 0.048, 0.021, and
0.016 ppb, respectively.

8108

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/8101/2013/acpd-13-8101-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/8101/2013/acpd-13-8101-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 8101–8152, 2013

Vertical fluxes and
atmospheric cycling

M. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

To maintain a high enough sampling frequency for EC, we only monitored a few
OVOC species simultaneously. Related to H3O+ by an isotopic ratio of 500, m/z 21
was measured at a dwell time of 50 ms, following by m/z 33, 36 (d3-methanol), 45,
and/or 59 at a dwell time of 100 ms each, resulting in a total sampling frequency of
2.1∼2.5 Hz. While shorter dwell times would result in faster sampling, potential gain5

in speed is offset by amplified instrumental noise at ppb level concentrations. On sep-
arate measuring or scan modes, m/z 32 and 37 were monitored occasionally, and
represented less than 1 % and 5 % of the m/z 21 signal, respectively.

At a dwell time of 100 ms, instrumental noise is much higher than detection limit for
mean concentration. Estimated as 1 σ of high rate data during a period of background,10

the noise levels for m/z 33, 45, and 59 were 0.21, 0.13, and 0.10 ppb, which agree
with statistical errors from a counting detector and are confirmed to be white noise
from the variance spectra. The PTR-MS generally performed well during this period,
with H3O+ of 2.5 ∼ 3.0×107 counts per seconds (cps). Instrument sensitivities differed
among OVOCs and improved somewhat with time, partly due to varying transmission15

efficiencies. From an hour after three days of continuous operation, sensitivities at m/z
33, 45, and 59 were 292, 456, and 511 cpsppb−1.

3.2 OVOC concentrations from PTR-MS

The PTR-MS converts the number of analyte molecules to a mixing ratio (C) through
the concentration of air in the drift tube:20

C =
109

[air]
1

kC+ · tdrift

cnts+C
cntsH3O+

TrH3O+

TrC+
(1)

The kinetic reaction rate, kC+ , depends on the chemical structure (dipole moment, po-
larizability, etc.) of the gas molecule (Zhao and Zhang, 2004). After removing back-
grounds, cntsC+ and cntsH3O+ are the signals of C+ and H3O+ in cps. TrH3O+ and TrC+

indicate the respective transmission efficiencies of the PTR-MS, which depend on ion25

extraction efficiency to the quadrapole, the efficiencies of the MS and of the detector
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(Taipale et al., 2008). Tr is mainly mass dependent, but also varies over time and from
one instrument to another.

The reaction time between H3O+ and the analyte within the drift tube, tdrift, is short
under our settings at only 94 µs:

tdrift =
l2

µ0Udrift

T0

Tdrift

Pdrift

P0
(2)5

Here l is the length of the chamber (9.3 cm) and µ0 the reduced mobility
(2.8 cm2 V−1 s−1). Udrift, Tdrift, and Pdrift are the steadily maintained drift tube voltage,
temperature and pressure, T0 and P0 the standard temperature and pressure. The ac-
tual residence time of air through the drift tube is much longer though. Out of the
60 mLmin−1 sub-sampling flow by the PTR-MS, roughly half goes through the drift10

tube, resulting in a residence time of ∼0.1 s, which is one of the limitations to instru-
ment frequency response.

In the field where temperature and humidity vary significantly, efficiency and perfor-
mance of the PTR-MS can fluctuate as well. Thus empirical calibration factors need
to be determined accurately and frequently for individual instruments using external15

gas standards, which is non-trivial. Alternatively, kC+ and Tr are not necessary for de-
riving ambient concentration from an internal isotopic standard with similar molecular
properties. Such should be the case for d3-methanol, which is structurally similar to
ambient methanol and only differs in mass by three amu. Analogous to how Univer-
sity of Hawaii measures DMS (Blomquist et al., 2010), we derive the concentration of20

ambient methanol (Cmethanol) from the ratio between counts at m/z 33 and 36:

Cmethanol = Cmethanol,std
cnts33

cnts36

A36,std

A33,amb
(3)

Calculated from the gravimetrically determined standard gas cylinder concentration
and measured mass flow dilution rate, Cmethanol,std is the mixing ratio of d3-methanol
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in the manifold. Because the d3-methanol concentration is nearly constant, we can re-
move counting noise from cnts36 with a low pass filter at a cutoff frequency of 0.017 Hz.
The last ratio on the right hand side (RHS) of Eq. (3) accounts for the distributions of
isotopomers at m/z 33 and 36. A36,std indicates the isotopic ratio of m/z 36 in the gas
standard cylinder, which was measured from mass scans to be 0.9925. A33,amb rep-5

resents the isotopic ratio of m/z 33 in ambient air, which was estimated from natural
abundance of elements to be 0.9860. Abundances of the deuterated isotopomer in
ambient air and the undeuterated isotopomer in the standard are insignificant and ne-
glected in this analysis.

We monitor slow drift in the PTR-MS from the ratio between ambient methanol con-10

centrations determined from isotopic dilution and directly outputted by the instrument:
R33 = Cmethanol/C33,PTR-MS. Here C33,PTR-MS was calculated from Eq. (1) assuming a re-

action rate of 2.6×10−9 cm3 s−1 (Zhao and Zhang, 2004) and instrument-specific trans-
mission efficiencies. From two separate 3-day periods, the hourly averaged R33 ranged
between 0.82 and 0.92, with a mean (1σ) of 0.87 (0.02). The use of Eq. (1) thus ap-15

pears to overestimate methanol concentration by 10∼20 %, likely due to uncertainties
and variability in kC+ and Tr. Without calibration standards for acetaldehyde and ace-
tone for this period, we first used recommended kC+ from Zhao and Zhang (2004) to
compute their concentrations following Eq. (1), and further corrected them for PTR-MS
drift by applying the factor R33. Such adjustments could introduce additional biases20

to mean concentrations, but should be better for preserving temporal trends. As with
cnts36 in (3), cntsH3O+ was low pass filtered in Eq. (1).

3.3 Possible biases in the concentration measurements

Because of the unit m/z resolution of the PTR-MS, different compounds very close
in mass are not distinguished. Such is the case at m/z 59, where propanal and gly-25

oxal can potentially interfere with the measurements of acetone. The PA of glyoxal is
675∼691 kJmol−1 according to theoretical calculations (Wróblewski et al., 2007), prob-
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ably too low to be ionized effectively by H3O+. While the detection of propanal should
be more efficient because of its greater PA at 784 kJmol−1, Warneke et al. (2003) sug-
gested that due to its short atmospheric lifetime (∼9 h), the background concentration
of this industrially emitted compound should be low away from source.

Northway et al. (2004) suggested that heterogeneous reaction with O3 on the in-5

let wall could lead to acetaldehyde formation, an artifact likely more severe for strato-
spheric air and for gas chromatography (Apel et al., 2008). Given our high manifold flow
rate and short residence time, a large inlet-related artifact seems unlikely. O3 concen-
tration measured at Rame Head was usually below 20 ppb, with a diurnal fluctuations
of 4∼5 ppb for SW winds. The lack of clear correlation between acetaldehyde and O310

as well as the low magnitude and range in O3 also do not support substantial hetero-
geneous production of acetaldehyde. Furthermore, in theory any artificially produced
acetaldehyde in the inlet should not be correlated with vertical wind velocity. Never-
theless, with potential artifacts and without specific internal standards, our measured
concentrations of acetone and acetaldehyde are more uncertain.15

3.4 General trends in OVOC concentrations

Concentrations of methanol, acetaldehyde, and acetone varied substantially due not
only to local production and destruction, but also horizontal advective and turbulent
transport. Figure 2 shows the OVOC concentrations vs. wind direction for 6∼8 June,
when a large low-pressure system passed by Plymouth, resulting in heavy precipitation20

at times and wind gusts up to 20 ms−1. High winds and wet deposition likely reduced
the PBL loadings of these OVOCs upwind, allowing observed concentrations to be
more reflective of local changes. We separate concentrations to day (approximately
one hour after sunrise to one hour before sunset) and night (one hour after sunset
to one hour before sunrise). For methanol, the nighttime concentration was ∼0.5 ppb25

and uniform with respect to wind direction. During the day, however, methanol con-
centration ranged from ∼0.5 ppb to an order of magnitude higher; the latter generally
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occurred when winds were from the NW, possibly related to anthropogenic activity.
Nighttime concentrations of acetaldehyde and acetone were also relatively steady at
∼0.1 and 0.4 ppb, independent of wind direction. In contrast, daytime concentrations of
acetaldehyde and acetone were 2∼3 times the nighttime values, peaking from WSW.
The directional dependence suggests that the higher daytime values were related to5

surface sources rather than widespread photochemical production in the atmosphere.
Methanol generally showed more fluctuations on short timescales than acetone,

likely due to greater strength and spatial heterogeneity of methanol sources. This is
clearly visible during 3∼4 March when winds were largely from the SW (Fig. 3). De-
spite similar mean concentrations of ∼0.4 ppb, σ in methanol concentration was about10

five times greater than that of acetone. If the fluctuations in concentration were mainly
from vertical turbulent transport, methanol flux should be several times larger than
acetone flux, which we show later to be the case. OVOC concentrations were often
elevated when winds were weak (e.g. 03:00 LT to 06:00 LT on 4 March). A shallow
nocturnal boundary layer during this period probably concentrated these gases.15

A time series of acetaldehyde concentration during 15 June is shown in Fig. 4 along
with solar irradiance. Whitecapping was clearly visible over the Plymouth sound on this
day with strong winds (∼11 ms−1) from the SSW. Atmospheric dimethylsulfide (DMS)
concentration was also detected by the PTR-MS, which confirmed the marine influ-
ence. Consistent with previous diel cycle observations (e.g. Bandy et al., 1996; Yang20

et al., 2009), DMS concentration decreased in the afternoon when photochemical de-
struction outpaced sea-to-air emission, until a few hours before sunset. Contrastingly,
acetaldehyde concentration generally increased with solar flux.

Crudely, we can consider the nighttime concentrations of OVOCs from the wind sec-
tor of 180∼270◦ to be their “baselines” for North Atlantic air, which for methanol, ac-25

etaldehyde, and acetone were 0.46 (0.20), 0.13 (0.02), and 0.39 (0.08) ppb (mean and
1σ from March to July). This methanol concentration is similar to previous aircraft mea-
surements over the Pacific (Singh et al., 2004) and ground-based observations from
the marine sector at Mace Head, on the west coast of Ireland (Lewis et al., 2005). The
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acetone concentration above is also comparable to those measured from the Tropical
Atlantic (Williams et al., 2004) and Mace Head (Lewis et al., 2005), but lower than
values reported by Marandino et al. (2005) north of 25◦ N in the Atlantic. Any inlet-
related artifact aside, 0.13 (0.02) ppb of acetaldehyde is somewhat lower than previous
nighttime observations by Zhou and Mopper (1993) from the Caribbean and by Lewis5

et al. (2005).

4 Eddy covariance flux calculations

Undisturbed atmospheric turbulence is critical for the EC method. The rooftop is ad-
mittedly not an ideal location because of potentially large distortion of airflow by the
building superstructure. To best capture SW winds, we extended the sonic anemome-10

ter horizontally beyond the building wall by ∼2 m (to the south). Wind velocities in
3-axis (u, v , w) and temperature (Ts) were recorded by the anemometer at a frequency
of 10 Hz. In our set up, u was along the NS direction, perpendicular to the wall, v along
the EW direction, and w positive upwards, such that a positive flux indicates an upward
transfer from the surface. The sonic anemometer temperature (Ts) was corrected for15

humidity to yield the air temperature (Ta). A standard double rotational correction was
applied to u, v , and w to account for the streamline of airflow over the building super-
structure. After rotation, both v and w averaged zero, while u aligned with the mean
horizontal wind.

The severity of wind distortion is reflected in the tilt angle from the second rota-20

tion, which typically ranged from ∼10◦ for W winds to ∼20◦ for SW winds, as air was
forced upwards when encountering the building. Distortion of airflow is also evident
from the ratios in the variance spectra (S) between u, v , and w after rotation. In the
inertial subrange (>∼ 1 Hz), both Sw (f )/Su(f ) and Sv (f )/Su(f ) should be ∼4/3, which
were indeed the case for westerly winds, implying minimally distorted flow. For SW25

winds, though, while Sw (f )/Su(f ) remained at 4/3, Sv (f )/Su(f ) was generally higher at
∼1.5, indicating a greater flow distortion (increased variance) in the direction orthogo-
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nal to the mean horizontal wind. Fortunately, the computation of scalar fluxes only re-
quires w, not u and v . Thus disturbance in the horizontal probably did not significantly
bias OVOC fluxes, but may have contributed additional scatter. Despite the non-ideal
measuring location, wind direction from the sonic anemometer generally shows good
agreement with the solid-state sensor from the PML rooftop and with the mechanical5

(cup) anemometer from Rame Head. Due to an instrument fault, one or two channels
of the sonic anemometer sensor often outputted corrupted data during heavy rain. No
EC flux could be derived in such periods; however, mean wind speeds from the Rame
Head were used in the evaluation of OVOC concentrations.

4.1 Sensible heat and momentum fluxes10

Sensible heat flux (QH = w ′T ′
a) and momentum flux (τ = ρw ′u′) were calculated hourly

using data from the sonic anemometer, with ρ being the ambient air density. As ex-
pected, QH generally followed the trend in temperature, higher during the day than at
night. Lower QH was observed for SSW winds over the Plymouth Sound than for W
winds over more land. Greater QH in the latter case was likely related to concrete build-15

ings and asphalt surfaces within in the flux footprint, which absorb and emit heat more
quickly than water. The absolute sampling error in QH was estimated following Fairall
et al. (2000) and amounted to ∼30 % for the daytime.

Momentum flux was generally negative, indicating a transfer of stress to the sur-
face and confirming the expected logarithmic wind profile. The friction velocity, u∗ =20

(−τ/ρ)1/2, demonstrated a near linear relationship with wind speed, but was larger
than what is expected over the ocean, likely because of the greater momentum rough-
ness length (z0) within the flux footprint. Categorizing the region from PML to the water
edge under class 6 for terrain roughness scale (World Meteorological Organization,
2006), z0 is on the order of 0.5 m. It is uncertain though how much the enhanced mo-25

mentum transfer measured affected the transfer of scalars, such as heat and OVOCs.
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To determine atmospheric stability, the Obukhov length was calculated as L =
−u3

∗/[κ(g/θv )/QH]. Here κ is the von Karmon constant, g the gravitational acceler-
ation, and θv the potential temperature. We take the vertical displacement as half of
the height of the roughness elements (5 m) and reference height z the measurement
height above displacement (∼40 m). The Monin-Obukhov stability parameter (z/L) var-5

ied from −1 (unstable) to slightly positive (weakly stable) in our observations, with zero
indicating neutrality.

4.2 OVOC fluxes

Precise timing is required for EC to prevent a loss of flux. While the anemometer data
were essentially instantaneous, several seconds were required for air to travel from10

the inlet to the PTR-MS, through the drift tube, and be detected. Additional time lag
may occur because of spatial separation between the wind sensor and the inlet and
inaccuracy of the computer clock. The most direct method to account for the total time
shift is to perform a lag correlation analysis between OVOC concentration and w.

We linearly interpolated winds from 10 Hz to match the sampling frequency of the15

PTR-MS at 2.1 ∼ 2.5 Hz. Lag correlations between w and all three OVOC species were
calculated hourly within a ±15 s window. A sharp peak in correlation coefficient indi-
cated a clearly detected flux, with the time of maximum correlation corresponding to
the total lag. Methanol flux was always easily detectable, yielding the most robust lag
time estimates at −4.5±0.5 s, consistent with given flow rates. Analogous analyses20

between w and acetaldehyde or acetone demonstrated clear peaks when the fluxes
were large, with lag times consistent with those from w: methanol. For other hours, lag
times from the methanol analysis were used for acetaldehyde and acetone flux calcula-
tions. After synchronization, OVOC fluxes were processed in hourly blocks. Periods of
rapid change in wind direction or large spikes in concentrations were excluded if they25

occurred at the beginning or end of the analysis window. We did not apply a despik-
ing algorithm on the concentrations prior to flux calculation, but instead used hourly
statistics for quality control, as described in Sect. 4.4.
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To examine the robustness of measured fluxes and determine the dominant flux
timescale, we compare the cospectra methanol, acetone, and acetaldehyde to the
cospectrum of sensible heat. Each was normalized ny the respective flux and usually
averaged over a few hours of steady winds to reduce noise. An example is shown in
Fig. 5. Measured coincidentally during and after trimming of garden bushes in the up-5

wind region, the OVOC fluxes were exceptionally large and the cospectra well-defined.
The four cospectra agreed with each other and demonstrated the expected shape from
atmospheric turbulent transport (Kaimal et al., 1972). During our observational period,
the methanol cospectrum was almost always well-defined and similar to that of sensi-
ble heat. Cospectra of acetaldehyde and acetone were noisier though because of the10

lower magnitudes of the fluxes.

4.3 Sampling error and precision in OVOC flux

Due to stochastic randomness in turbulent eddies, flux needs to be averaged over
a long enough time period (T ) to be statistically representative. We estimate the abso-
lute (random) sampling error in OVOC fluxes (∆FC) following Blomquist et al. (2010):15

∆Fc =
aσW σCa√
T/τWCa

[
1+

ϕCn

4σ2
Ca
τWCa

]1/2

(4)

An expansion of the formulae from Fairall et al. (2000), ∆FC in Eq. (4) arises from both
natural variability (first term on RHS) and instrumental noise (second term on RHS).
The natural variance in the OVOC concentration (σ2

Ca) is taken to be the second point20

in the autocovariance function. The noise contribution relates to the white noise of
the instrument (ϕCn), which was about 0.02∼0.03 ppb2 Hz−1. The integral timescale
(τWCa) increases with sampling height and decreases with wind speed:

τWCa = b
z
u

[min(5,max(0.5, (1+0.6z/L)))]−1 (5)
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∆FC is similar for neutral and unstable cases but becomes much greater for a stable
atmosphere. Using empirical values of 1 and 2.8 for a and b (C. Fairall, unpublished
data), the flux sampling error for methanol was on the order of ∼50 µmolesm−2 d−1,
or ∼30 % of the mean flux. ∆FC decreased to ∼30 µmolesm−2 d−1 (∼20 %) at winds
above 10 ms−1 but increased substantially in calm conditions. For acetaldehyde and5

acetone, the flux errors were on average ∼10 and ∼16 µmolesm−2 d−1, or ∼70 % and
50 % of the mean respective fluxes. Except for in pollution plumes, natural variance was
several times smaller than white noise, but contributed to majority (∼80 %) of the sam-
pling error in Eq. (4), which caused ∆FC to be greater for methanol than for acetalde-
hyde and acetone. As such, lowering instrumental noise alone may not substantially10

reduce flux uncertainty.
Spirig et al. (2005) estimated the precision in EC flux from variability of the covari-

ance at a time lag far away from the true lag. We follow the same strategy and calculate
“null” OVOC fluxes at an implausible lag time (+15 s). From several hours of steady
winds, σ of the null fluxes were ∼8, 5, and 4 µmolesm−2 d−1 for methanol, acetalde-15

hyde, and acetone, increasing with natural variance as well as instrumental noise. Esti-
mated as 3σ, the detection limits of our system with respect to these compounds were
∼24, 15, and 12 µmolesm−2 d−1 for hourly measurements, on the same order as ∆FC.

4.4 Quality control filters

Over spatially homogenous terrain and under stationary conditions, horizontal terms20

in the conservation equation approach zero, allowing measured turbulent transport at
height to be equated to surface flux. In reality, these criteria were strictly never satisfied
at our location due to variable seascapes and changing meteorological conditions. As
a result, we rely on quality control filters based on hourly statistics in winds, turbulence,
and OVOC concentrations to limit errors arising from nonstationarity and inhomogene-25

ity. Valid heat fluxes must satisfy all of the following: σ in wind direction less than 60◦,
ratio of horizontal wind variance to wind speed less than 1 ms−1, z/L less than 0.05,
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σW /u∗ between 1.0 and 1.6, QH over −20 Wm−2, and the difference between covari-
ance and cospectrum-integrated QH less than 20 % (for the daytime).

Schulz and Sanderson (2004) used σ in wind direction and the horizontal wind vari-
ance as stationarity criteria for analyzing shipboard data. We use the same indicators
but relax the thresholds given the more variable winds in our region. Based on EC mea-5

surements of DMS over the open ocean, Yang et al. (2011) showed greater uncertainty
and possible underestimation of the flux under stable conditions (z/L < 0.05), when
turbulence becomes more intermittent. A measure of the relative importance between
convective and mechanically driven turbulence, σW /u∗ is expected to be around 1.3 for
the surface layer. We interpret σW /u∗ far from 1.3 to indicate severe flow distortion or10

suppressed turbulence. Lastly, the integral of the cospectrum over all measured fre-
quencies is mathematically equivalent to the direct covariance. Methodological errors
are implied when the covariance and cospectrum-integrated fluxes differ substantially.
About 70 % of the hourly heat flux measurements pass the aforementioned filter. Be-
cause of the occurrence of stable nocturnal boundary layer, more daytime flux mea-15

surements remain valid.
For OVOC fluxes, we require QH to be valid, and place additional filters on short-

term variability and long-term trend in OVOC concentrations. Calculated as the hourly
σ divided by mean concentration, large short-term variability reflects changes in con-
centration due to processes other than vertical transport, such as advection of a plume20

or horizontal turbulent flux arose from inhomogeneity. Nominal criteria are less than
0.8 for methanol and acetaldehyde and less than 0.4 for acetone, the latter a result
of its smaller fluctuations. Long-term variability is quantified by the temporal change in
OVOC concentration (hourly) normalized to the mean, with a threshold set to 0.3 h−1 for
all OVOCs. About half of the measured OVOC fluxes pass all aforementioned criteria.25

Following Spirig et al. (2005) and Schulz and Sanderson (2004), we further evaluate
the stationairty assumption through the ogive analysis (Oncley, 1989). The ogive (Og)
is calculated as the cumulative sum of the cospectrum (Co) from the lowest measured
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frequency (fL) to the Nyquist frequency (fN):

Og(f ) =

fN∫
fL

Co(f )df (6)

For ease of comparison, dividing Eq. (6) by the flux yields a normalized Og of 1 at
fN. Ogives from two periods are shown in Fig. 6. On 4 July, strong surface emissions,
steady winds, and well-defined cospectra (Fig. 5) led to the expected “S” shape for all5

ogives. On 31 May, however, rising winds led to increasing concentrations in acetone
and acetaldehyde, but not methanol, which are reflected as elevated Og for acetone
and acetaldehyde at low frequencies. While it might be easier to satisfy the stationarity
requirement by computing flux at shorter intervals (e.g. 15 min), ∼hourly averaging is
beneficial for resolving OVOC transport at the given instrumental noise.10

4.5 Quantifying flux loss

Due to sampling limitations, the entire turbulence spectrum may not have been cap-
tured by our system. Particularly at high frequencies, flux loss occurs as a result of
limited instrument response, which is evident in Fig. 5. The drop off to zero is abrupt in
the OVOC cospectra at ∼1 Hz, whereas a “tail” remained in the sensible heat cospec-15

trum up to 5 Hz. While all four cospectra peaked at ∼0.07 Hz, OVOCs were normalized
to attenuated values and thus demonstrated higher maxima than heat. In addition,
OVOCs are often considered “sticky” due to their propensity to adsorb to the tubing
wall, which could limit instrument response.

We estimate flux loss in two ways – from the instrument frequency response and20

based on concurrent heat flux measurements. Bariteau et al. (2010) parameterized flux
loss through tubing using the instrument response time (τc), defined as the number of
seconds for a pulsed signal to fall to 1/e of its original value. An empirical filter function
is given the form: H(f ) = [1+(2πf τC)2]−1. True turbulent flux is then adjusted from mea-
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sured flux by the factor H(f )−1/2. While the theoretical response time of the PTR-MS is
quoted to be 0.1 s, the actual response time depends on sampling frequency and flow
rate. In earlier laboratory tests with identical flows, we injected d3-methanol standard
at the tip of the inlet and observed the decline of the signal once the standard was
turned off. At sampling frequencies of 2.1∼2.5 Hz, τc was estimated to be 1.0∼0.8 s –5

same as the respective fN. Inserting τc to the filter function and applying it to the mea-
sured cospectra resulted in flux corrections on the order of 10∼20 %, with half power
frequencies at ∼0.18 and 0.22 Hz.

Further loss in OVOC flux could occur as a result of spatial separation between the
gas inlet and the sonic anemometer (Moore, 1986). Thus we compare the transport of10

OVOCs (which is attenuated in high frequencies) to the transport of heat (which should
not be significantly attenuated). Instead of matching the cospectra, we find the ogive
approach for estimating high frequency attenuation (Spirig et al., 2005; Ammann et al.,
2006) to be more repeatable. Averaged over a few hours of relatively constant winds
to reduce noise, Og of OVOC usually reached 1 at a lower frequency than the heat15

ogive, implying high frequency attenuation. We scaled the OVOC Og to the heat Og
up to a frequency where attenuation was not yet significant (usually ∼0.05 Hz). The
corrected OVOC Og at fN then indicated the magnitude of flux attenuation. Three ex-
amples of the ogive analysis for methanol are shown in Fig. 7. On 30 May, 6 June,
and 15 June, the wind speeds were about 5, 8, and 11 ms−1, with stability parameter20

z/L at −0.70, −0.16, and −0.05, respectively. The estimated loss in flux at a sampling
rate of 2.1 Hz was ∼7, 17, and 24 % for these three days, increasing with wind speed
and stability, which is caused by greater flux contribution from high frequencies with
increasing mechanically driven turbulence. Losses in flux for methanol, acetaldehyde,
and acetone based on this analysis are similar to each other and comparable to the25

filter function estimates, suggesting insignificant roles of adsorption and sensor sepa-
ration.

Recently, Geissbaum and Schmidt (2009) examined the effect of flow distortion on
turbulent measurements from a location of severe wind obstruction (e.g. a heavily in-
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strumented tower). Through 3-D fluid dynamic modeling and large eddy simulation,
they found that the double rotation correction for streamline flow could lead to over-
estimation of scalar fluxes up to 15 %. Such a bias would be similar in magnitude to
our frequency-related flux loss, but opposite in direction. Given the flow distortion at
our site, we decide to present OVOC fluxes “as measured”, rather than applying any5

correctional factors. Nevertheless, the methods discussed above should be useful for
correcting measurements at more ideal locations. Overall, we see that most of turbulent
transport can be captured by sampling at a relatively modest rate of > 2 Hz. One benefit
of measuring at ∼45 m compared to closer to the surface is that a greater contribution
to flux comes from lower frequencies, which are better captured by our system.10

5 Results and discussion

Three time periods of flux measurements are shown here to demonstrate the applica-
tion of quality control filters and the variability in OVOC fluxes. The first is taken from 30
May to 1 June, during three days of largely sunny weather and light westerly breeze.
Figure 8 shows times series of wind direction and solar irradiance (a), temperature and15

sensible heat flux (b), methanol concentration and flux (c), acetaldehyde concentration
and flux (d), and acetone concentration and flux (e). We have included fluxes both ac-
cepted and rejected by the quality control filters, with error bars corresponding to the
random flux sampling errors (as with subsequent flux plots). With winds coming over
land, methanol concentration was high during this period. Many hours did not pass the20

quality control filters because of excessive variability in wind direction (usually when
winds ceased) or rapidly varying concentrations. Within remaining valid data, acetalde-
hyde flux followed the trend of QH, and was slightly positive at night (emission), while
acetone flux was usually positive but also occasionally negative (deposition).

The second example is taken from 6∼8 June (Fig. 9), the same period as Fig. 2.25

Wind direction was fairly steady from WSW on 6 June and W on 8 June, with mostly
sunny weather. Heavy rain fell for most of 7 June and the early morning of 8 June,

8122

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/8101/2013/acpd-13-8101-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/8101/2013/acpd-13-8101-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 8101–8152, 2013

Vertical fluxes and
atmospheric cycling

M. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

corrupting sonic anemometer data. Acetaldehyde flux was always positive, ranging
from ∼30 µmolesm−2 d−1 during the day to lower values in the early morning or late
afternoon. Acetone flux was positive under strong sunlight (∼60 µmolesm−2d−1), but
near zero otherwise. The rapid declines in fluxes of sensible heat, acetaldehyde, and
acetone on the afternoon of 6 June were probably due to not only diminishing solar5

irradiance at the end of the day, but also a shift in wind direction towards the south.
Methanol concentration varied more than an order of magnitude and changed markedly
with wind direction. The rapid build up and large spikes in methanol concentration
on 8 June, when acetaldehyde and acetone concentrations only increased gradually,
suggests pollution sources for the former.10

Lastly, Fig. 10 shows the times series during 15∼16 July. Wind speeds were
∼8 ms−1 the first day and increased to ∼11 ms−1 on the second day, while the weather
changed from sunny to mostly cloudy with intermittent showers. A rapid shift in winds
occurred from 05:00 LT to 08:00 LT on 16 July, accompanied by a 2-degree drop in
air temperature and doubling of methanol and acetone concentrations, whereas ac-15

etaldehyde concentration was less affected. EC fluxes during such hours of rapid
changes were rejected, as were hours with large spikes in OVOC concentrations (e.g.
14:00∼16:00 LT on 16 July for acetaldehyde). On average, acetaldehyde flux was
slightly positive, while acetone flux was near zero for the nighttime. Methanol flux did
not demonstrate a clear diel difference, but varied with wind direction.20

5.1 General trends in OVOC fluxes

In Fig. 11, we plot hourly fluxes of methanol, acetaldehyde, and acetone vs. wind direc-
tion. All valid hours from March to July are included here, which are further separated
into day and night. Methanol flux was large and always positive, peaking in the direc-
tion of WSW. Somewhat higher emissions (mean ±1σ) were observed during the day25

(235±110 µmolesm−2 d−1) than at night (169±92 µmolesm−2 d−1) over all wind direc-
tions considered; though from the direction of the Plymouth Sound (SSW) only, flux was
lower and also similar between day and night (153±72 µmolesm−2 d−1). For acetalde-
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hyde, much higher flux was observed during the day (23±15 µmolesm−2 d−1) than at
night (6±5 µmolesm−2 d−1) for WSW winds; however, no significant diel difference was
observed for SSW winds only based on limited data (8±6 µmolesm−2 d−1). Acetone
flux was quite variable but generally larger during the day (43±46 µmolesm−2 d−1).
With exception of one hour, nighttime acetone fluxes varied between generally5

−10 µmolesm−2 d−1 and 20 µmolesm−2 d−1. We can also compare Fig. 11 to the OVOC
concentration distributions in Fig. 2, even though the sampling times considered are
not identical. For acetaldehyde and acetone, higher fluxes during the day than at night
agree with the respective patterns in concentrations. For methanol, significant flux at
night is consistent with observation of substantial nighttime concentration. Wind direc-10

tions corresponding to maxima fluxes largely coincide with maxima in concentrations,
suggesting that the higher daytime concentrations were at least in part driven by greater
emissions.

Diel patterns in OVOC emissions from terrestrial sites have been reported previously
based on direct flux measurements (e.g. Karl et al., 2001; Davison et al., 2009) and15

observed concentrations (e.g. Hu et al., 2011). Here we demonstrate the relationship
between acetaldehyde/acetone flux and the sensible heat flux (Fig. 12 and 13). From
the direction of SW to W, a fairly high degree of correlation exists between acetaldehyde
flux and QH (r2 = 0.72); in contrast, no correlation is seen in the direction of SSW over
the Plymouth Sound. A positive correlation also exists between acetone flux and QH,20

in particular when winds were from the W (r2 = 0.52). The same analysis between
methanol and QH yielded a much weaker correlation (r2 = 0.22), which is not shown
here.

Temperature and light dependent, OVOCs are primarily emitted from plant growth
in the daytime during photosynthesis, while at night emissions should be shut off due25

to stomatal control (e.g. Nemecek-Marshall et al., 1995). Given the terrestrial plants
present in our flux footprint, positive correlations between OVOC fluxes and sensible
heat flux are unsurprising. Interestingly, for acetaldehyde flux the degree of correla-
tion is higher with QH than with temperature, solar flux, or PAR alone. At night, there
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can still be minor emissions of OVOCs from decaying plants, such as leaf litter. Mil-
let et al. (2010) estimated plant decay to account for about a quarter of the terrestrial
plant emission of acetaldehyde globally. Millet et al. (2008) and Jacob et al. (2002)
suggested similar contributions by decaying plants to terrestrial emissions of methanol
and acetone, respectively. Applying this fraction to our daytime fluxes from SW to W5

yield ∼6 µmolesm−2 d−1 of acetaldehyde and 11 µmolesm−2 d−1 of acetone, similar
to the mean nighttime fluxes. For methanol, 1/4 of the daytime flux only amounts to
∼60 µmolesm−2 d−1, less than half of the nighttime value. Thus there appear to be
other sources of methanol in addition to terrestrial plants, which would also explain the
lower correlation between methanol flux and QH. Since our measurements were made10

during the growing season, actual contributions from decaying plant matter might be
lower.

5.2 Flux and concentration footprints

To better understand the relationship between fluxes and concentrations, we must con-
sider their source regions, which are not identical here. The flux footprint describes the15

horizontal scale (source area) and relative contribution (probability distribution) to the
turbulent flux. Elliptical in shape and aligned in the upwind direction from the sensor,
the flux footprint varies with measurement height, surface roughness, and atmospheric
stability (Horst and Weil, 1992). We estimate our flux footprint using the simple param-
eterization from Kljun et al. (2004), which relies on u∗ and σw to describe the stability20

dependence. The following nominal model inputs were used: z of 40 m, PBL of 1 km,
z0 of 0.5 m, u∗ of 0.7 ms−1, and σw of 0.9 ms−1. The approximate footprints covering
cumulative flux contributions of 60 % and 90 % are shown in Fig. 1 for SW winds. The
far edge of the footprint at 90 % is about 1 km away from PML, with the peak contribu-
tion occurring at ∼350 m upwind of the sensor, near the waterfront. Lowering σW /u∗ to25

1.0 (more shear) lengthens the footprint by ∼20 %, while increasing σW /u∗ to 1.6 (more
convection) shortens it by ∼20 %. With winds from SSW to SW, the relative areal contri-
butions from land and water are on the order of 30 % and 70 %, respectively. Measured
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flux then represents the net turbulent transport from within the footprint, or a spatial
average of all emissions and depositions.

The source area for concentration (or the concentration footprint) is much larger than
the flux footprint (Wilson and Swaters, 1990; Schmid, 1994). Thus changes in mean
concentrations at the source can be detected at a long distance away, where turbulent5

flux contribution has already vanished. Large amounts of OVOCs are almost certainly
emitted from terrestrial plants in the Mount Edgcombe Park. At ∼2 km away from PML,
the park probably lies beyond the flux footprint, but is well within the concentration
footprint. Thus OVOC concentrations for SW winds likely reflect emissions within the
flux footprint and also from Mount Edgcombe, which are then advected to our sensor.10

5.3 Expected air–sea transfer

To put our measured fluxes in perspective, we use gas exchange parameterizations
to approximate the expected air–sea flux based on measured atmospheric concentra-
tions at PML (C) and waterside concentrations (Cw ) from near the Plymouth Sound:
Ka (CW /α−C). Here α is the dimensionless solubility, and Ka the total transfer velocity15

from the air perspective. Following the two-layer model (Liss and Slater, 1974), Ka is
expanded to individual transfer velocities through the airside and waterside (ka and kw,
respectively). For simplicity, we calculate ka from Duce et al. (1991) and kw from the
NOAA COARE gas transfer model (Fairall et al., 2003, 2011) with a constant of 1.3
for direct transfer and zero for bubble-mediated transfer. At 14 ◦C and a wind speed of20

8 ms−1, Ka for methanol, acetaldehyde, and acetone are on the order of 3100, 2100,
and 2300 cmh−1, respectively.

Since waterside OVOC concentrations were not measured concurrently to the EC
fluxes, we refer to near surface (∼5 m) observations from weekly sampling at the L4
station in 2011. As described in detail by Beale et al. (2011), seawater OVOC concen-25

trations were analyzed with the same PTR-MS coupled with a membrane-inlet. For the
year 2011, the mean (maximum) seawater concentrations of methanol, acetaldehyde,
and acetone from March to July were 50 (68) nM, 9 (19) nM, and 7 (10) nM. We also
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examined the possible influence of the River Tamar by taking water samples at a depth
of ∼10 cm along a transect from the mouth of the Plymouth Sound to inside of the
estuary on the morning of 16 June 2012. Measured at a period of outgoing tide, OVOC
concentrations were broadly similar to the springtime values in 2011 and did not show
any enhancement inside of the estuary compared to the Plymouth Sound.5

With nighttime atmospheric concentrations of 0.46, 0.13, and 0.39 ppb and the above
mean (maximum) waterside values, the expected air–sea fluxes are −10 (−9), 5 (13),
and −5 (−4) µmolesm−2 d−1 for methanol, acetaldehyde, and acetone, respectively.
The air–sea flux of methanol is much smaller in magnitude and opposite in sign to the
measured vertical flux, likely because deposition to the sea surface was overwhelmed10

by large terrestrial emissions. The expected oceanic emission of acetaldehyde is con-
sistent with the measured flux from the SSW. Though given the heterogeneities within
the flux footprint, the possibility of coincidental agreement cannot be ruled out. Lastly,
the small deposition flux of acetone predicted is consistent with EC measurements
from Marandino et al. (2005) and the recent model estimate from Fischer et al. (2012).15

While our mean nighttime flux of acetone was slightly positive, negative flux was also
occasionally observed and on the order of −5 µmolesm−2 d−1.

5.4 Photochemistry and local OVOC cycling

In addition to surface emission and deposition, OVOCs are also produced in situ from
oxidations of precursors and photochemically destroyed in the atmosphere. Here we20

crudely estimate their photochemical rates and compare them to observed vertical
fluxes and time rate of change in concentrations. The principal atmospheric source of
methanol is the reactions of methyl peroxy radical with itself and with other peroxy rad-
icals (Madronich and Calvert, 1990). Acetaldehyde is mainly formed from direct oxida-
tions of alkanes including ethane, propane, n-butane, as well as propene and ethanol25

by the OH radical (Millet et al., 2010), with oxidation of isoprene through intermediates
being a minor source. Acetone is produced from OH oxidation of propane and C4∼C5
isoalkanes, including mainly i -butane and i -pentane (Singh et al., 1994).
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For precursor concentrations, we use 1, 0.1, 0.03, 0.02, and 0.02 ppb for ethane,
propane, n-butane, i -butane, and i -pentane from springtime measurements at Mace
Head (Grant et al., 2011). From the same location, Salisbury et al. (2001) reported
∼0.02 ppb of propene and 4 ppt of peroxy radical (an upper limit of organoperoxy
radical) in the spring from the ocean sector. Lastly, from mass scans with the PTR-5

MS, we observed concentrations of ethanol and isoprene on the order of 0.1 and
0.04 ppb, respectively. For simplicity, we assume a diel average OH concentration of
106 moleculescm−3 and the kinetic reaction rates with OH from Sander et al. (2006).
The molar yields from precursor compounds are taken from Millet et al. (2008) for
methanol, Millet et al. (2010) for acetaldehyde, and Jacob et al. (2002) for acetone.10

The estimated methanol production rate from peroxy radical reactions is only
0.009 ppbd−1, much lower than the methanol destruction rate by OH at −0.078 ppbd−1

(for 1 ppb of methanol). The total photochemical production of acetaldehyde is
about 0.06 ppbd−1, several times lower than the OH destruction of acetaldehyde at
−0.28 ppbd−1 (for 0.2 ppb of acetaldehyde). Photochemical production of acetone is15

around 0.014 ppbd−1, while its loss to OH is also slow at −0.007 ppbd−1 (for 0.5 ppb of
acetone). Using the absorption cross-section and quantum yield from Blitz et al. (2004)
and the spectral actinic flux from the NCAR Tropospheric Ultraviolet and Visible
(TUV) Radiaiton Model (http://cprm.acd.ucar.edu/Models/TUV/), we estimate a pho-
tolytic loss of acetone of −0.011 ppbd−1, resulting in a net in situ acetone production20

of −0.004 ppbd−1. The long photochemical lifetime and limited air–sea flux suggest
greater importance of horizontal advection in the acetone budget.

Assuming a PBL of 1 km, photochemistry removed methanol, acetaldehyde, and
acetone at −3, −8, and −0.2 µmolesm−2 d−1. In comparison, we measured daytime
emission rates on the order of 200, 20, 40 µmolesm−2 d−1 for these compounds, re-25

spectively. For all three OVOCs, changes in emissions often did not correspond to
changes in their PBL loadings. In addition to advection, a part of this apparent im-
balance may be explained by the significant horizontal turbulent transport along the
mean wind direction (u′C′), which was usually on the same order as the vertical flux.
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Compared to the cospectrum of the vertical flux, that of the horizontal turbulent flux
was shifted towards lower frequencies, as shown in Fig. 14. The non-zero u′C′ implies
substantial horizontal flux divergence as a result of spatial inhomogeneity, which leads
to additional variance in concentration. Such natural variability not only contributes to
the random flux sampling error in the vertical and necessitates a longer averaging time5

(Blomquist et al., 2012), but also could potentially bias the EC measurement judging
from studies of sensible heat (Panin et al., 1998; Raabe et al., 2002).

6 Conclusions

In this paper, we characterized the performance of the PTR-MS for measuring fluxes of
a few OVOCs concurrently with direct eddy covariance. Random sampling errors and10

detection limits for hourly fluxes were similar in magnitude; both were determined not
only by instrumental noise, but also by natural variability in concentrations as well as
environmental conditions. At a sampling rate of 2.1∼2.5 Hz, high frequency flux loss
was estimated to be 10∼20 %, increasing with wind speed and atmospheric stabil-
ity. Actual uncertainties and biases at our sampling site could be greater due to the15

distortion of airflow around the building.
Measured OVOC concentrations and fluxes varied significantly with wind direc-

tion and time of day. From March to July, the mean nighttime concentration (1σ)
of methanol, acetaldehyde, and acetone were 0.46 (0.20), 0.13 (0.02), and 0.39
(0.08) ppb for winds from the sea. Higher concentrations of acetaldehyde and ace-20

tone were usually observed during the day, peaking in the direction of a forested
park. Methanol concentration did not demonstrate clear diel variability and was of-
ten elevated by an order of magnitude under calm conditions or westerly winds. At
∼200 µmolesm−2 d−1, methanol emission was about an order of magnitude larger than
those of acetaldehyde and acetone. Both the sign and the magnitude of methanol flux25

were at odds with the expected air–sea transfer, suggesting large terrestrial emission
and possibly anthropogenic influence. Positive correlations were observed between
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acetaldehyde flux, acetone flux, and sensible heat flux in the daytime for winds over
land, most likely due to emissions from terrestrial plants. From the direction of the sea,
however, acetaldehyde flux did not show significant diel difference and largely agreed
with the expected sea-to-air transfer. Given its short atmospheric lifetime, the observed
nighttime concentration of acetaldehyde was likely sustained in part by marine emis-5

sion, while contributions from photochemical production appeared to be minor. The
small air-to-sea flux of acetone predicted is consistent with only some of the observa-
tions.

This coastal environment is spatially patchy and temporally varying, often resulting
in inhomogeneous footprints and nonstationary conditions. Even with careful screening10

of non-ideal sampling conditions, accurate interpretations of measured fluxes are still
hampered by the complexity of the surroundings. The analytical methods and qualita-
tive relationships between fluxes presented here should be of greater merit than the
absolute magnitudes of the fluxes. To more accurately constrain the air–sea exchange
of OVOCs, measurements at sea under more ideal conditions are necessary.15
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Plymouth	  Sound	  

Mount	  Edgcombe	  	  
Park	  

Plymouth	  	  
	  Marine	  Laboratory	  	  

N	  

90%	  

60%	  

River	  Tamar	  	   River	  
Plym	  	  

Fig. 1. Map of the Plymouth Sound and the location of Plymouth. The small and large ellipses
illustrate the approximated 60 % and 90 % (cumulative) flux footprint under typical conditions.
At ∼2 km SW of the PLM and separated by the River Tamar, the forested Mount Edgcombe
Park likely lies outside of the flux footprint.
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(A)

(B)

(C)

Fig. 2. Concentrations of methanol (A), acetaldehyde (B), and acetone (C) as a function of wind
direction during 6∼8 June. For acetaldehyde and acetone, concentrations were higher during
the day than at night and demonstrated maxima in the direction of WSW (Mount Edgcombe
park). Much higher methanol concentrations were observed during the day and typically from
the NW, possibly due to anthropogenic emission.
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Fig. 3. Concentrations of methanol and acetone during 3∼4 March, along with wind speed
(from SW). Greater fluctuations were apparent in the concentration of methanol than in acetone
on short timescales, in part due to greater spatial heterogeneity of methanol sources. Methanol
concentration increased by an order of magnitude when the wind ceased, likely due to a shallow
nocturnal boundary layer.

8141

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/8101/2013/acpd-13-8101-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/8101/2013/acpd-13-8101-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 8101–8152, 2013

Vertical fluxes and
atmospheric cycling

M. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 4. Concentrations of acetaldehyde and DMS on 15 June, along with solar irradiance. With
strong winds from SSW (over the Plymouth Sound), DMS concentration was detectable by
the PTR-MS and demonstrated the expected diel variability, while acetaldehyde concentration
peaked in solar noon and declined for the rest of the daytime.
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Fig. 5. Cospectra of sensible heat, methanol, acetone, and acetaldehyde normalized to the
respective fluxes during 4 h of steady winds on 4 July. Trimming of plants immediately upwind
resulted in exceptionally large fluxes and well-defined cospectra for all three OVOC species,
which showed good agreement with each other.
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(A) (B)

Fig. 6. Ogive of sensible heat, methanol, acetone, and acetaldehyde normalized to the respec-
tive fluxes for 4 July (A) and 31 May (B). On 4 July (same period as Fig. 5), the ogives of
different OVOCs demonstrated good agreement with each other and to that of sensible heat
due to strong local emissions and steady winds. In contrast, rising winds on 31 May caused
increasing concentrations of acetone and acetaldehyde, which is evident in the greater ogives
at low frequencies.
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(A) (C)(B)

Fig. 7. Ogives of sensible heat and methanol (before and after attenuation correction) for three
days of different wind speeds and atmospheric stability. Flux loss at high frequencies increased
with wind speed and stability, where a greater contribution to the flux came from smaller eddies.
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(B)

(A)

(C)

(D)

(E)

Fig. 8. Time series of wind direction and solar irradiance (A), temperature and sensible heat
flux (B), methanol concentration and flux (C), acetaldehyde concentration and flux (D), and
acetone concentration and flux (E) from 30 May to 1 June, three sunny days with mostly light to
moderate breeze from land. Methanol concentration increased by over an order of magnitude
when the winds ceased, while acetaldehyde and acetone concentrations were generally higher
during the day than at night. Many hours of fluxes did not pass the quality control criteria
because of excessive variability in wind direction.
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(B)

(A)

(C)

(D)

(E)

Fig. 9. As with Fig. 8, but for 6∼8 June. During this windy period, acetaldehyde and acetone
fluxes as well as concentrations were higher during the day, following the trend of heat flux.
Acceptable flux measurements could not be made for most of 7 June and a few hours on 8
June due to corruption of the sonic anemometer data in the presence of heavy rain.
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(B)

(A)

(C)

(D)

(E)

Fig. 10. As with Fig. 8 and 9, but for 15∼16 July. Fluxes varied noticeably with wind direc-
tion, reflecting an inhomogeneous footprint. A rapid change in wind direction at ∼06:00 LT on
16 July brought along lower temperature and much higher methanol and acetone concentra-
tions. Fluxes were rejected during such periods of highly variable conditions for violation of the
stationarity assumption.
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(A)

(B)

(C)

Fig. 11. Hourly fluxes of methanol (A), acetaldehyde (B), and acetone (C) from March to July.
Methanol fluxes were large and always positive, peaking in the direction of WSW. For acetalde-
hyde, fluxes from the direction of the Plymouth Sound were slightly positive and demonstrated
little difference between day and night. Acetone flux was lower at night than during the day, and
occasionally negative.
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Fig. 12. Acetaldehyde flux vs. heat flux from March to July, color-coded by wind direction. When
winds were coming from SW to W, a strong positive correlation was observed between the
two fluxes (r2 = 0.72), likely as a result of terrestrial plant emission. With SSW winds, though,
acetaldehyde flux was generally lower and demonstrated no clear relationship with heat flux,
suggesting possible oceanic emission.
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Fig. 13. Acetone flux vs. heat flux from March to July, color-coded by wind direction. A positive
correlation was sometimes observed between the two fluxes, such as when winds were from
the west (r2 = 0.52).
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Fig. 14. Normalized methanol cospectra for vertical covariance (same as Fig. 5) and horizontal
covariance on 4 July. The horizontal cospectrum peaked at a lower frequency than the vertical
cospectrum, likely related to spatial inhomogeneity.
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