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The effects of ocean acidification (OA) on nitrous oxide (N2O) production and on the community com-
position of ammonium oxidizing archaea (AOA) were examined in the northern and southern sub-polar
and polar Atlantic Ocean. Two research cruises were performed during June 2012 between the North Sea
and Arctic Greenland and Barent Seas, and in January–February 2013 to the Antarctic Scotia Sea. Seven
stations were occupied in all during which shipboard experimental manipulations of the carbonate
chemistry were performed through additions of NaHCO3

�þHCl in order to examine the impact of short-
term (48 h for N2O and between 96 and 168 h for AOA) exposure to control and elevated conditions of
OA. During each experiment, triplicate incubations were performed at ambient conditions and at
3 lowered levels of pH which varied between 0.06 and 0.4 units according to the total scale and which
were targeted at CO2 partial pressures of �500, 750 and 1000 matm. The AOA assemblage in both Arctic
and Antarctic regions was dominated by two major archetypes that represent the marine AOA clades
most often detected in seawater. There were no significant changes in AOA assemblage composition
between the beginning and end of the incubation experiments. N2O production was sensitive to
decreasing pHT at all stations and decreased by between 2.4% and 44% with reduced pHT values of
between 0.06 and 0.4. The reduction in N2O yield from nitrification was directly related to a decrease of
between 28% and 67% in available NH3 as a result of the pH driven shift in the NH3:NH4

þ equilibrium.
The maximum reduction in N2O production at conditions projected for the end of the 21st century was
estimated to be 0.82 Tg N y�1.
Crown Copyright & 2015 Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Anthropogenic activities currently add 10 PgC per year to the
atmosphere as CO2. The change in atmospheric CO2 from
�280 ppm (ppm) in pre-industrial times to 395 ppm in 2013 (Le
Quéré et al., 2014) has impacted the earth system on several scales.
The oceans and atmosphere are intimately linked so that changes
to the partial pressure of atmospheric CO2 result in proportional
changes in dissolved CO2 in the marine environment. As a result of
this, the rise of global temperatures due to an enhanced green-
house effect has been buffered by the exchange of approximately
25% of anthropogenic CO2 into the oceans (Le Quéré et al., 2014)
and it is this condition that has resulted in a profound change to
ocean carbonate chemistry and the phenomenon of ocean acid-
ification (OA) (Raven et al., 2005). As a consequence pH has
decreased by 0.0011–0.0024 units per year for the last two
evier Ltd. This is an open access a
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decades (Rhein et al., 2013), so that oceanic pH is on average �0.1
units lower than it was prior to the industrial revolution. This pH
decrease equates to an increase in acidity of 26% and further
increases are predicted. Projections afforded by the current gen-
eration (CMIP5) of model-based scenarios (Moss et al., 2010)
indicate decreasing ocean pH of between 0.06 and 0.33 units for
the 2090s relative to the 1990s for “high mitigation” RCP2.6 and
the “business as usual” RCP8.5 scenarios respectively (Bopp et al.,
2013; Ciais et al., 2013). Based on our current understanding of
microbial biogeochemistry, it is expected that elevated oceanic
pCO2 and the subsequent decrease in pH will have direct (e.g. the
increase in N2 and CO2 fixation by Trichodesmium; Hutchins et al.,
2007) and indirect (e.g. the increase in shallow water reminer-
alisation associated with a reduced ballast effect; Hofmann and
Schellnhuber, 2009) impacts on microbial nutrient cycling. It is
considered that these effects may fundamentally alter current
biogeochemical cycles (e.g. Codispoti, 2010).

N2O is a trace gas whose atmospheric concentration is
increasing at a mean rate of �0.75 ppb yr�1 (Hartmann et al.,
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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2013). It is a greenhouse gas with a global warming potential on a
100 year timescale of approximately 300 times that of CO2

(Ramaswamy et al., 2001) and it contributes significantly to stra-
tospheric ozone depletion (Ravishankara et al., 2009). Though the
N2O concentration in most of the surface of the global ocean is in
close equilibrium with the atmosphere (Nevison et al., 1995), the
oceans contribute about 30% of the natural N2O source to the
atmosphere (Bange, 2006) and there is a fine balance between the
oceans acting as net producer or consumer of N2O. Environmental
effects associated with a changing climate, which include rising
temperatures, oxygen depletion and ocean acidification are quite
likely to impact the level of this equilibrium (Codispoti, 2010).

Nitrous oxide is biologically produced through three processes:
nitrification involves the two stage aerobic oxidation of NH4

þ

through NO2
� to NO3

� , where the release of N2O as a by-product
is dependent on the ambient O2 concentration (Goreau et al., 1980;
Loescher et al., 2012). Denitrification is the anaerobic transfor-
mation of NO3

� into N2 which has N2O as an intermediate. In the
third route, nitrifier-denitrification, N2O can be formed during the
reduction of NO2

� via nitric oxide to N2O. In the open oceans
nitrification is the dominant mechanism for the production of N2O
(Freing et al., 2012), and in the limited number of studies that have
been reported, this process has been shown to be particularly
sensitive to OA in sub-surface marine waters. Huesemann et al.
(2002) found a linear reduction in nitrification rate with high
additions of CO2, so that at pH 6.5, nitrification was reduced by up
to 90% of the natural condition. That experiment was more rele-
vant to the effects associated with CO2 disposal than with levels of
OA predicted for the coming century. In a study where pH was
manipulated between 8.09 and 7.42 at several locations in the
Pacific and Atlantic, Beman et al. (2011) showed unequivocal evi-
dence for an inhibitory effect of short term OA on nitrification.
Kitidis et al. (2011) manipulated conditions of pH between ambi-
ent and 6.5 for water column samples from the English Channel
and found that ammonium oxidation rate decreased with
decreasing pH to near complete inhibition at pH 6.5.

It has been hypothesized that nitrification rates may be altered
by increasing OA either directly, by impacting on microbial phy-
siology or community composition, or indirectly by changes to the
supply of organic material (Codispoti, 2010). Hutchins et al. (2009)
speculated that increasing levels of CO2 may lead to an increase in
autotrophic nitrification rates through a reduction of CO2 limita-
tion or CO2 fertilization effect. To date this effect has not been
observed for the open ocean and the limited number of studies
have shown some equivocality in their findings. Clark et al. (2014)
performed an investigation of OA on nitrification and N2O in near
surface (�5 m) waters of the NW European shelf seas. The
absence of any relationship between OA and N2O observed is, in
part, attributed to the oxygenated status of these waters and the
low production of N2O expected. Clark et al. also observed varia-
bility in the impact of OA on nitrification which did not allow a
relationship or mechanistic understanding of the relationship
between OA and nitrification to be developed. In a study of
estuarine and near coastal waters of Narragensett Bay, Fulweiler
et al. (2011) found that nitrification rates increased along
decreasing natural gradients of pH. Whilst not dismissing the CO2

fertilisation effect, Fulweiler et al. concluded that a combination of
environmental conditions was likely to be the biggest driver
influencing nitrification. The decrease in rates could be associated
with change in the microbial community possibly as a result of
competitive strength to compete for available NH4

þ/NH3, or as a
result of reduced NH3, the favored substrate for the first stage of
nitrification (Ward, 2008a). The NH4

þ:NH3 equilibrium has a pKa

of �9.2, favouring NH4
þ in an acidifying ocean.

Changes in the microbial ammonium oxidising community
composition as a result of changing OA have been reported by
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Bowen et al. (2013) who saw greater changes in assemblage
composition and abundance of ammonium oxidising bacteria
(AOB) than of ammonium oxidising archaea (AOA). Whilst both
AOB and AOA are found throughout the oceans and produce N2O
(Santoro et al., 2011; Loescher et al., 2012) AOA are considered to
be the principal nitrifying organisms (Wuchter et al., 2006).

To our knowledge, there are no reports to date which confirm
the inhibition of N2O production by OA, although the limited
evidence from studies on nitrification indicate that this is to be
expected. Decreasing oceanic oxygen and decreasing ballast effect
(sinking rate of particles) are both predicted to increase the release
of N2O from nitrification in a future ocean (Codispoti, 2010; Gehlen
et al., 2011) and so prediction of the overall N2O inventory and net
emissions will prove problematic. Beman et al. (2011) performed
an indicative budget for N2O production from nitrification, which
suggested that a decrease in nitrification between 3% and 44% (the
range indicated by Beman for the next 20 to 30 years) could result
in reduced N2O emissions comparable to all current N2O produc-
tion from fossil fuel combustion and industrial processes.

Here we report on two studies (Tyrrell et al., this issue) per-
formed to investigate the impact of OA on N2O production and
AOA distribution as a contribution to the United Kingdom Ocean
Acidification (UKOA) program. Experiments were performed at
ocean stations (E01–E05) during cruise JR271 of the RRS James
Clark Ross between the North Sea and Arctic Ocean in June 2012,
and at stations (B03 and B04) during cruise JR274 to the Southern
Ocean in January–February 2013 (Fig. 1).
2. Methods

Seawater was collected from Niskin bottles deployed on a
titanium frame at the base of the surface mixed-layer defined by
the temperature profile (except for E04). The Niskin bottles were
transferred to a positive pressure Class-100 filtered trace metal
clean container to avoid contamination. Unfiltered water was
dispensed into 4.5 L polycarbonate incubation bottles and the
bottles were closed pending carbonate chemistry manipulation.
Single experimental bottles were individually manipulated to
achieve a range of 4 different target pCO2 levels (ambient, 550, 750
and 1000 μatm), according to the initial carbonate chemistry of
the seawater at the time of the water collection. The manipulation
of the carbonate system was achieved through additions of
NaHCO3

�þHCl (Borowitzka, 1981; Gattuso and Lavigne, 2009;
Schulz et al., 2009) and immediately verified by total alkalinity
(TA) and DIC analyses. Values of pCO2 and pHT (total scale) were
determined using CO2sys (Lewis and Wallace, 1998). Following
manipulation of pCO2, bottles were closed with PTFE backed butyl
septa before being further sealed with parafilm and incubated.

Tests have been performed previously to confirm the validity of
this approach and to test the integrity of the polycarbonate bottles
to N2O diffusion. At six positions on a transect through the Atlantic
Ocean between the UK and the Falkland Islands, replicate bottles
(2–4) were filled with seawater and poisoned with the addition of
1 ml saturated HgCl2 and incubated in the dark at collection
temperature. N2O concentration was determined on collection,
and thereafter triplicate analyses of N2O were made at several
time points over 6 days. N2O concentration remained stable during
each of these storage tests, the coefficient of variation varied
between 1.3% and 5.2% (mean 3.9%, n¼16 time points�3 ana-
lyses). F tests between N2O in killed samples and initial con-
centrations, and between killed samples and the expected
(atmospheric equilibrium) concentration confirmed 86% and 87%
similarity in variance respectively.

During this study, N2O concentration was determined in tri-
plicate on samples first prepared (T0) and after 48 h (T48) of
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Fig. 1. Location of experiments performed during (a) JR271 in June 2012 and (b) JR274 in January–February 2013.
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incubation. Subsamples from the incubations were filtered for
determination of AOA at T0 and at several time points afterwards.
Incubations were performed in the dark within a purpose-built
experimental laboratory container allowing precise temperature
control. The temperature was adjusted to the in situ value at the
time of the water collection. Temperature within a dummy incu-
bation bottle was monitored using a traceable thermometer, while
two recording thermometers were used to monitor air tempera-
ture in the incubator. Samples were also collected for N2O analysis
from CTD casts performed at each of the experimental stations
during JR271 only.

2.1. N2O analysis

Samples were collected using acid cleaned Tygon tubing
directly from CTD Niskin bottles or by siphoning from 4.5 L incu-
bation bottles into 1 L borosilicate flasks. Single samples were
taken from CTD bottles and triplicates from the incubated sample.
Samples were overfilled in order to expel air bubbles, poisoned
with 200 mL of saturated HgCl2 solution and temperature equili-
brated at 25.070.5 °C. In all cases samples were analyzed within
8 h of collection. N2O was determined by single‐phase equilibra-
tion gas chromatography with electron capture detection similar
to that described by Upstill-Goddard et al. (1996). Each individual
sample was calibrated against three certified (75%) reference
standards of 287, 402 and 511 ppb (Air Products Ltd.) which are
traceable to NOAA WMO-N2O-X2006A scale for N2O mole frac-
tions. Mean instrument precision from daily, triplicate analyses of
the three calibration standards (n¼81) was 0.95%. Concentrations
of N2O in seawater were calculated from solubility tables of (Weiss
and Price, 1980) at equilibration temperature (�25 °C) and sali-
nity. All N2O data from this study are available from the British
Oceanographic Data Centre according to. http://dx.doi.org/10.
5285/268dfd3b-dcc6-3f4a-e053-6c86abc0c2f9.

2.2. amoA AOA microarray

The array (BC016) was developed following the archetype array
approach described and employed previously (e.g. Ward and
Bouskill, 2011; Bowen et al., 2013), with 90-mer oligonucleotide
probes. Each probe included an amoA-specific 70-mer region and a
20-mer control region (50-GTACTACTAGCCTAGGCTAG-30) bound to
a glass slide. The design and spotting of the probes have been
Please cite this article as: Rees, A.P., et al., The inhibition of N2O prod
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described previously (Bulow et al., 2008). Using an established
algorithm (Bulow et al., 2008), 99 different archetypes were
identified representing 8296 archaeal amoA sequences, which had
been aligned and analyzed by Biller et al. (2012). The Archetype
probes are numbered according to their representation in the
database; of the 48000 sequences aligned by Biller et al. (2012),
the largest number of them, 1191 are represented by AOA1, 1149 by
AOA2 and 795 by AOA3, and so forth. The probe accession num-
bers and sequences are listed in Table S1.

2.3. Target preparation, microarray hybridization, and data analysis

Seawater samples (up to 8 L) were filtered onto 0.2 mm pore
size Sterivex filters (Millipore, Billerica, MA) using a peristaltic
pump, and filters were flash frozen in liquid nitrogen and stored at
�80 °C. Total DNA and RNA were extracted from Sterivex filters
using the AllPrep DNA/RNA Kit (Qiagen Sciences) with slight
modifications (as in Ward, 2008b) to the manufacturer's instruc-
tions. The extraction procedures were performed twice on each
Sterivex filter in order to maximize the DNA yield. cDNA was made
from the RNA immediately upon purification using the Superscript
III Kit (Life Technologies) following the manufacturer's instructions
after concentrating the RNA extract using MinElute columns
(Qiagen Sciences).

Archaeal amoA genes were amplified from the DNA and cDNA
using primers Arch-amoAF (50-STAATGGTCTGGCTTAGACG-30) and
Arch-amoAR (50-GCGGCCATCCATCTGTATGT-30) and protocols as
described by Francis et al. (2005). DNA and cDNA from To and Tf
(Tf¼T final¼96 h for all five Arctic experiments, 144 h for Ant-
arctic experiment B03 and 168 h for Antarctic experiment B04).
Targets for microarray hybridization were prepared from the amoA
PCR products according to Ward and Bouskill (2011), hybridized in
duplicate on a microarray slide and washed as described pre-
viously (Ward and Bouskill, 2011)). Washed slides were scanned
using a laser scanner 4300 (Agilent Technologies, Palo Alto, CA)
and analyzed with GenePix Pro 6.0 (Molecular Devices, Sunnyvale,
CA). Quantification of hybridization signals was performed as
described previously (Ward and Bouskill, 2011). A normalized
fluorescence ratio (FRn) for each archetype was calculated by
dividing the fluorescence signal of the archetype by the highest
fluorescence signal within the same array. Then the FRn of each
archetype from the duplicate arrays were averaged. The relative
fluorescence ratio (RFR) of each archetype was calculated as the
uction by ocean acidification in cold temperate and polar waters.
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contribution of FRn of the archetype to the sum of FRn of all amoA
archetypes on the array and averaged for duplicate arrays from
each sample. The original array data are available at Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/projects/geo/)
at the National Center for Biotechnology Information under GEO
Accession no. GSE72072.

2.4. Statistical analysis

The array data were analyzed using the vegan package in R
(CRAN website; http://www.R-project.org) (Borcard et al., 2011).
RFR values were transformed (Arcsin(Square root)) in order to
normalize the proportional data. Environmental data were trans-
formed (square root) and then standardized around zero (deco-
stand in vegan). The transformed data were used in all diversity
and ordination analyses according to Borcard et al. (2011). The null
hypothesis that the amoA community composition did not differ
between groups of samples (e.g., time points or experiments) was
tested using Multi-response Permutation Procedure (MRPP)
(Zimmerman et al., 1985) with a significance level of 5%.
Fig. 2. Surface temperature versus salinity for cruises JR271 (X) and JR274 ( ).
Experimental stations are represented by E01 ( ), E02 ( ), E03 ( ), E04 ( ),

E05 ( ), B03 ( ) and B04 ( ).
3. Results

3.1. Station environmental characteristic

A full description of the carbonate chemistry during both
cruises is presented by Tynan et al. (this issue). During cruise
JR271 in the Arctic region, the range of conditions experienced
ranged between the nutrient poor northern North Sea to higher
surface nitrate concentrations within the sea-ice of the Fram Strait
in the Greenland Sea (Table 1). Experimental stations E01 and E02
were representative of the summertime North Atlantic and can be
seen to cluster closely with respect to their surface temperature
and salinity signal (Fig. 2), but are distinct with regards NO3

� ,
NH4

þ and pCO2/pH signals (Table 1). Temperature at the depth of
sample collection during JR271 (Fig. 3) ranged between –1.76 °C at
station E04 and 9.49 °C at station E02. For the 5 stations occupied
during JR271, pCO2 was maximal at E02 at 391.5 (pH minimum of
8.051) and decreased to a minimum of 263.0 matm at E04 (max-
imum pH of 8.186) within the Arctic ice-fields.

Southern Ocean stations B03 and B04 during JR274 were
selected primarily for the benefit of other investigations to have
contrasting conditions of phytoplankton biomass, with low
chlorophyll concentrations of 0.63 mg L�1 at B03 and higher levels
of 4.19 mg L�1 at E04. Temperatures at the depth of sample col-
lection were 0.89 and �1.20 °C at B03 and B04 respectively
(Fig. 4). The highest ambient pCO2 and lowest pH levels out of all
seven stations were experienced at B03 at 425.6 matm and 7.999
respectively. Experimental sample collection was performed as
soon as possible after arrival at the station position and before
Table 1
Location of ocean acidification experiments and environmental variables encountered d

Experiment Latitude Longitude Depth (m) Temp (°C) NO3
� (l

JR271
E01 56.267°N 02.633°E 50 6.7 0.65
E02 60.594°N 18.857°W 60 9.49 9.18
E03 76.175°N 02.549°W 60 0.16 10.1

E04 78.353°N 03.664°W 40 �1.76 4.16

E05 72.892°N 26.001°E 60 6.01 8.76
JR274
B03 52.69°S 36.63°W 85 0.89 25.83
B04 58.08°S 25.93°W 46 �1.2 21.51
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water column profiles of N2O could be performed. Seawater for
experimental manipulation was collected from the base of the
surface mixed layer, which was determined from the temperature
profile, to coincide with expected maxima in near surface N2O
concentration and production from nitrification (e.g. Forster et al.,
2009; Kitidis et al., 2010). During JR271 this approach proved
successful at stations E01, E02, and E05 (Fig. 3a, b and e) where
N2O concentrations were elevated relative to those at the
immediate surface indicative of active production at these depths.
At stations E03 and E04, freshwater associated with melting ice in
the near surface created a stronger defined pycnocline at
approximately 38 m and 18 m respectively (inset on Fig. 3c and d)
which appeared to favor nitrification and N2O production and
meant that sampling at 60 m and 40 m was of waters with
reduced N2O and apparently lower production rates.

Water column profiles of dissolved N2O were not determined
during JR274.

3.2. OA impact on N2O concentration

Over the 48 h period of incubation N2O was produced in all
bottles which had received no amendment to their carbonate
chemistry. That is, there was a mean production of N2O of 5.9, 6.6,
1.4, 0.3 and 3.6 nmol L�1 in two days for stations E01–E05
respectively during JR271 and of 2.2 and 1.1 nmol L�1 for stations
B03 and B04 respectively during JR274. In all cases the con-
centration of N2O decreased linearly with increasing OA (Fig. 4,
Table 2) between ambient pH and pH 7.75. The observed decrease
in N2O concentration between treatments ranged between 12.4%
and 43.3% of the ambient condition during JR271. The largest
changes in response to OA treatment were experienced at stations
E01, E02 and E05 (37.7%, 43.3% and 23.8% respectively) where
water sample collection was closest to the region of maximum
uring JR271 (June 2012) and JR274 (January–February 2013).

M) NH4
þ (nM) pH pCO2 (latm) Location

44 8.105 339.4 North Sea
452 8.051 391.5 South of Iceland
502 8.152 292.0 Greenland Sea

1. Ice-Edge
69 8.186 263.0 Greenland Sea

1. In-Ice
178 8.110 331.4 Barents Sea

7.999 435.6 North of South Georgia
8.093 343.4 East of S. Sandwich Islands
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Fig. 3. Temperature and N2O profiles for each of the experimental stations (a) E01, (b) E02, (c) E03, (d) E04, (e) E05, (f) B03, and (g) B04. In panels (c) and (d) the inset panel
shows the density profile (σT). In all cases the depth of seawater sample collection is indicated by the dashed line. N2O profiles were not performed during B03 and B04.
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N2O concentration (Fig. 3), which is assumed to be coincident with
maximum production. At E03 and E04, sample water collection
was approximately 35 m and 20 m below the depths of maximum
N2O, and changes in N2O concentration with decreasing pH are
less apparent (16.1% and 12.4% respectively), though still sig-
nificantly correlated (po0.02). During JR274, water column pro-
files of N2O were not made and so it is not possible to relate the
properties of the incubated samples to the natural distribution of
N2O. Decreases in N2O with increasing OA were observed (Fig. 4,
Table 2) though these were low relative to observations during
JR271 (13.1% and 4.0% for B03 and B04 respectively).
4. AOA assemblage

In the samples from the Arctic cruise JR271, 42 of the 99
archetypes were detected at 1% of the total hybridization signal in
the five experiments. MRPP analysis showed that there were no
significant differences in assembly composition for comparisons
among stations, between To versus Tf, or between DNA versus RNA
for ambient or �1000 matm. The RFR values for all samples were
averaged to evaluate the relative abundance of the archetypes. Of
the 42 archetypes detected at 41% of the signal, only three had an
average RFR greater than 5%. The overwhelmingly strongest signal
was due to Archetype AOA3, which represents sequences from the
marine water column. The second strongest signal was from
Archetype AOA1, which also represents marine water column and
sediment sequences, and includes the cultivated ammonia-
oxidizing archaeon Nitrosopumilus maritimus. The third and
Please cite this article as: Rees, A.P., et al., The inhibition of N2O prod
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fourth largest RFRs were Archetypes AOA73 and AOA83, which
represented only five and two sequences, respectively, in the Biller
et al. (2012) database, all from sediments or soils. The RFR for the
five archetypes that had the highest average signals across all
samples are shown in Supplementary Fig. 1.

Consistent with the MRPP analysis, PCA clustered most of the
samples together (Fig. 5). Three samples from E01, however, were
distinct. DNA from 1TfAmbD and RNA from 1ToAmbR to 1Tf1000R
had the greatest Archetype richness (N, number of Archetypes
detected at 41% of total signal) at 24, 17 and 15 Archetypes
respectively. The next richest sample was 2Tf1000D with 13 sig-
nificant Archetypes. In the other 27 samples, N ranged from 4
to 10.

Twenty-four of the 99 Archetypes were detected at 1% of the
total hybridization signal in the two Antarctic experiments from
JR274. The top three Archetypes were AOA3, AOA1 and AOA73 as
above, but only AOA3 and AOA1 had an average RFR greater than
5%. The fourth strongest signal was AOA7, a marine water column
clade representing 296 sequences in the Biller et al. (2012) data-
base. The RFR for the five archetypes that had the highest average
signals across all samples are shown in Supplementary Fig. 2.

PCA clustered the assemblages by station and between RNA
and DNA (Fig. 6). MMRP analysis indicated that the assemblages in
Experiments 3 and 4 were significantly different (po0.004) and
that the composition of the assemblages represented in the DNA
was significantly different from that in the RNA (po0.013). These
differences are due to different contributions of the smaller sig-
nals; AOA1 and AOA3 were the strongest signals in all DNA and
RNA samples. There were no significant differences between To
uction by ocean acidification in cold temperate and polar waters.
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and Tf in DNA or RNA for the two experiments (po0.603).
Archetype richness was greater in Experiment B04 (average
N¼10.3) than in Experiment B03 (average N¼7) and the overall
range was 4–15.
5. Discussion

The AOA assemblage in both Arctic and Antarctic regions was
dominated by two major archetypes that represent the marine
AOA clades most often detected in seawater. Although several
other archetypes were present, the dominance of AOA1 and AOA3
implies that their physiological characteristics control the rates of
Fig. 4. Mean N2O concentration (71 sd) against pHT during CO2 manipulation
experiments during (a) JR271, with the inset showing the same N2O data against
pCO2, and (b) JR274. In both panels, squares represent the ambient concentration at
T0, circles are N2O concentration after 48 h incubation. In (a) E01 yellow, E02
turquoise, E03 red, E04 blue, E05 black. In panel (b) B03 red, B04 white.

Table 2
The linear relationship between N2O and pH for the 7 stations occupied during JR271 a

Experiment Ambient pH Manipulated pH

JR271
E01 8.105 8.06–7.75
E02 8.051 8.12–7.88
E03 8.152 8.14–7.75
E04 8.186 8.19–7.63

8.19–7.79
E05 8.110 8.11–7.79
JR274
B03 8.02 8.02–7.79
B04 8.11 8.11–7.78
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nitrification and their sensitivity to OA. The recently described
oceanic AOA isolate (Santoro et al., 2015), Candidatus Nitrosopela-
gicus brevis, is a member of the AOA3 archetype, suggesting it is
characteristic of the most abundant AOA in the polar oceans.

There were no significant changes in AOA assemblage compo-
sition between the beginning and end of the incubation experi-
ments, probably because all the samples were overwhelmingly
dominated by the two most abundant archetypes. The incubation
period was not long enough to cause significant turnover in the
assemblage, even if OA did exert differential selective pressure on
the assemblage members. Significant differences were found
between Antarctic stations B03 and B04, and between RNA and
DNA at these stations, but not among treatments. The observed
differences were due to varying relative contributions of the lower
abundance archetypes and therefore imply little about the differ-
ential activity or response of the assemblage as a whole, although
differential effects on N2O production among the lower abundance
archetypes cannot be ruled out. This apparent lack of sensitivity of
the AOA assemblage to short term OA is consistent with the pre-
vious observation of Bowen et al. (2013) that AOA assemblages are
not very sensitive to small pH changes in both long (3 weeks) and
short (6 days) exposures.

Sample collection for the OA manipulation experiments was
directed towards the base of the euphotic zone, and samples were
nd JR274.

range Regression r2

N2O¼22.44 pH�163.7 0.947
N2O¼29.721 pH�225.15 0.956
N2O¼5.8887 pH�33.616 0.977
N2O¼2.4324 pH�5.0328 0.524
N2O¼4.6811 pH�23.114 0.999
N2O¼9.5179 pH�63.166 0.999

N2O¼9.2705 pH�56.879 0.907
N2O¼2.0183 pHþ0.6177 0.987

Fig. 5. PCA of AOA during JR271. Stations are color coded, E01¼yellow,
E02¼turquoise, E03¼red, E04¼blue, E05¼black. R¼RNA (triangles); D¼DNA
(circles). To¼ initial; Tf¼final. Amb¼ambient; 1000¼highest CO2 treatment. Red
crosses represent individual AOA archetypes.
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Fig. 6. PCA of AOA during JR274. Stations are color coded, B03¼red, B04¼white.
DNA¼circles; RNA¼triangles. Red crosses represent individual AOA archetypes.
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Fig. 7. Mean percentage decrease in observed N2O concentration associated with
estimated decreases in NH3 concentration during JR271. E01 yellow, E02 turquoise,
E03 red, E04 blue, E05 black.
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incubated in the dark and so it is considered that competition from
phytoplankton for available NH3 or NH4

þ is likely to be low. As the
nitrifying AOA community composition proved resilient to changes
in OA it would seem that observed changes in N2O concentration
were more likely associated to an altered NH4

þ:NH3 equilibrium
(Hutchins et al. 2009; Beman et al., 2011). Beman et al. (2011)
suggested that the decline in NH3 with increasing OA is the driving
factor in the reduced rates of NH4

þ oxidation observed during
their study. NH3 is the substrate used in the first stage of nitrifi-
cation (Ward, 2008a) and the equilibrium equations of Bell et al.
(2007, 2008) indicate that at constant temperature and salinity,
NH3 concentrations in seawater would decrease by 50% over a pH
change from 8.1 to 7.8 (Wyatt et al., 2010). Using the equations
presented by Bell et al. we estimated concentrations of NH3 from
calculated pKa and in-situ determined pHT and NH4

þ concentra-
tion. Using a fixed value of pKa of 9.3, Beman et al. (2011) esti-
mated that NH3 typically represented 6.3% of total NHx. At the
stations sampled during JR271, using pKa determined from ambi-
ent temperature and salinity (9.9, 9.9, 10.1, 10.2, 10.0 for stations
E01 to E05 respectively), we estimate a mean contribution of NH3

to NHx of 0.6870.15%. For the manipulated conditions of pH
during JR271 (Table 2) the NH3 concentration is estimated to
decrease to between 28% and 67% of the ambient concentration at
Please cite this article as: Rees, A.P., et al., The inhibition of N2O prod
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the start of each experiment. Over wide geographic areas and
conditions of pH or CO2 manipulation Beman et al. (2011) found
significant correlations between percentage changes in NH3, pH
and ammonium oxidation rates, as did Huesemann et al. (2002)
and Kitidis et al. (2011) between pH and ammonium oxidation.
During the current study we have shown similar relationships
between absolute values of pH and N2O (Table 2) and in Fig. 7
between the percentage decrease in N2O during incubation
experiments and the decrease in NH3 (r2¼0.735, po0.1) as a
result of the induced shift in the NH4

þ:NH3 ratio. Our results
indicate that changes in pHT of between 0.23 and 0.4 (mean¼0.31)
for these ocean regions, which range between northern temperate
and Arctic and Antarctic sea-ice, are likely to result in decreases of
dissolved N2O of between 12% and 43% (mean¼21%), as a result of
a reduced NH3 regime of between 28% and 67%. These changes in
pHT are towards the higher end of those conditions projected for
the late 21st century by CMIP5 simulations, e.g. Bopp et al. (2013)
indicate decreases of 0.22 and 0.33 pH units for RCP6.0 and RCP8.5
respectively, whilst Gattuso et al. (2015) indicate a range of
decrease of 0.14–0.4 pH units for RCP2.6 and RCP8.5 respectively.
Both Beman et al. (2011) and Kitidis et al. (2011) observed a
decline in ammonium oxidation rates even at their lowest
manipulated conditions of OA. Our data confirm this sensitivity
with decreases in dissolved N2O following treatments of between
2.3% and 23% (mean¼12%) at the lowest OA manipulations which
varied between 0.06 and 0.23 (mean¼0.13) pH units.

The decreased production of N2O with increasing OA has the
potential to offer a negative feedback to a warming environment
by reducing the atmospheric radiative forcing contribution of N2O.
This could derive from two mechanisms: a direct reduction in the
flux of N2O from the ocean to the atmosphere, which could be
further exacerbated by a reversal of the direction of flux, should
the ocean change from source to sink of atmospheric N2O. Beman
et al. (2011) estimated that their observations of decreased nitri-
fication rates (3–44%), would lead to a global decrease in N2O
production of between 0.06 and 0.83 Tg N y�1 in the next 20 to 30
years. This is of particular note as it is comparable to all current
N2O production from fossil fuel combustion and industrial pro-
cesses (0.7 Tg N y�1). By taking a similar approach and assuming
that 50% of the global ocean source of N2O of 3.8 Tg N y�1 (Den-
man et al., 2007) is produced through nitrification (Codispoti,
2010), the data from the current study indicate comparable, albeit
slightly lower reductions in oceanic N2O production. For the lower
range of treatments (mean pHT decrease¼0.13) the estimated
reduction in the ocean N2O source is between 0.04 and
0.44 Tg N y�1 and for the highest treatments (mean pHT

decrease¼0.31) the predicted decrease ranges between 0.23 and
0.82 Tg N y�1.

Our experiments have shown that OA will decrease the pro-
duction of N2O in the pelagic water column. It is though clearly
apparent that our future oceans will not undergo OA in isolation
from other predicted changes. Warming of the oceans, decreasing
oxygen levels (Gruber, 2011; Riebesell and Gattuso, 2015) and an
OA induced reduction in the export of organic material to the deep
ocean (reduced ballast effect – Codispoti, 2010; Gehlen et al., 2011)
are all expected to impact on N2O production and release to the
atmosphere. Each of these conditions offers a positive feedback to
a warming environment with regards their impacts on N2O and so
to a greater or lesser extent will counter the reduction in N2O
caused by OA. The individual stressors are identified but combined
effects may prove to be additive, synergistic or antagonistic (Rie-
besell and Gattuso, 2015) and the ultimate impact of these mul-
tiple stressors in the ocean offers an unknown, uncharacterised
and currently unpredictable control over the release of N2O to the
atmosphere.
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