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Abstract We used coincident Envisat RA2 and AATSR temperature and wind speed data from 2008/2009
to calculate the global net sea-air flux of dimethyl sulfide (DMS), which we estimate to be 19.6 Tg S a21. Our
monthly flux calculations are compared to open ocean eddy correlation measurements of DMS flux from 10
recent cruises, with a root mean square difference of 3.1 lmol m22 day21. In a sensitivity analysis, we varied
temperature, salinity, surface wind speed, and aqueous DMS concentration, using fixed global changes as
well as CMIP5 model output. The range of DMS flux in future climate scenarios is discussed. The CMIP5
model predicts a reduction in surface wind speed and we estimate that this will decrease the global annual
sea-air flux of DMS by 22% over 25 years. Concurrent changes in temperature, salinity, and DMS concentra-
tion increase the global flux by much smaller amounts. The net effect of all CMIP5 modelled 25 year predic-
tions was a 19% reduction in global DMS flux. 25 year DMS concentration changes had significant regional
effects, some positive (Southern Ocean, North Atlantic, Northwest Pacific) and some negative (isolated
regions along the Equator and in the Indian Ocean). Using satellite-detected coverage of coccolithophore
blooms, our estimate of their contribution to North Atlantic DMS emissions suggests that the coccolitho-
phores contribute only a small percentage of the North Atlantic annual flux estimate, but may be more
important in the summertime and in the northeast Atlantic.

1. Introduction

The global oceans are the largest natural source of atmospheric sulfur through the emission of the gas
dimethyl sulfide (DMS) [Bates et al., 1992]. Derived from the growth and decay of phytoplankton, DMS is
ubiquitous in the surface ocean, with dissolved concentration grossly supersaturated relative to the overly-
ing air, resulting in consistent emission to the atmosphere. Once in the marine atmosphere, the oxidation of
DMS leads to sulfur dioxide, sulfuric acid, and sulfate aerosols, among other products. These acidic and
hygroscopic species affect atmospheric chemistry [Charlson and Rodhe, 1982], and contribute to the nuclea-
tion of new particles as well as the growth of existing particles to cloud condensation nuclei (CCN). Such
condensation nuclei affect the Earth’s radiation budget (and thus climate) by directly scattering sunlight
and indirectly influencing cloud physics and albedo [Charlson et al., 1987].

Despite increasing anthropogenic sulfur emissions, DMS remains the predominant source of sulfur mass to
the remote marine atmosphere [Yang et al., 2011b]. There is, however, much debate over the exact role that
DMS plays in regulating our climate. Gunson et al. [2006] modeled a 0.8�C cooling for a doubling of DMS
emission, and a 1.6�C warming for a halving of DMS emission. Furthermore, their modeled DMS emission
increases over time in response to warming and decreases in response to cooling, consistent with a nega-
tive climatic feedback. Other studies suggest less climate sensitivity to DMS. For example, Boucher and Loh-
mann [1995] and Woodhouse et al. [2010] found the radiative properties of clouds to depend more on total
sulfate and cloud droplet number concentrations (partly anthropogenic) than on DMS and naturally derived
sulfate. Similarly, Quinn and Bates [2011] argued that the climate regulation by DMS is weak mostly because
of other sources of CCN, e.g., sea salt and organics, while Clarke et al. [2013] found the main source of CCN
in the marine boundary layer (MBL) to be entrainment of preexisting aerosols from the free troposphere
rather than nucleation and growth within the MBL. The impact of DMS on clouds is thought to be most sig-
nificant in regions with minimal competitions from anthropogenic CCN [Twomey, 1991]. Boucher et al.
[2003] showed large spatial heterogeneity in their modeled indirect radiative forcing due to DMS-derived
aerosols, varying from close to zero to 25 Wm22. Woodhouse et al. [2013] recently demonstrated highly
variable sensitivity of CCN production as a function of DMS emission and argued for the importance of
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monitoring of future changes in spatial DMS distributions. Six et al. [2013] argued that ocean acidification
would reduce DMS emissions, resulting in a radiative forcing of 0.4 Wm22.

Previous estimates for the present day global sea-to-air flux of DMS range from 15 to 33 Tg S a21 [Elliott,
2009; Kettle and Andreae, 2000; Sim�o and Dachs, 2002]. Based on the most recent DMS climatology, Lana
et al. [2011] estimated a mean annual emission of 28.1 Tg S a21, with a range from 17.6 to 34.4 Tg S a21

depending on the choice of transfer velocity parameterization (see subsection 4.1). Predictions of future
DMS emission vary significantly, especially on a regional scale [Cameron-Smith et al., 2011; Halloran et al.,
2010] due to combined uncertainties in the changes of seawater DMS concentration, winds, temperature,
etc. Observations and recent modeling studies indicate that the concentration of DMS in surface seawater
is the net result of rapid but variable biological production and consumption processes [Gal�ı et al., 2013]. A
small perturbation in DMS source or sink can significantly influence the amount of seawater DMS available
for air-sea exchange.

Earth observation (EO) data from satellites have the potential to help predict regional changes in DMS emis-
sions. In the Arctic, where in situ observations are rare, the use of EO data underpinned by field data is cur-
rently the most feasible way of reliably monitoring sea-air gas fluxes. EO data have previously been used to
derive sea-air fluxes of CO2 at the global scale [e.g., Boutin et al., 2002], and the improved quasi-global avail-
ability of EO data has facilitated recent studies of CO2 sea-air exchange over a substantial area of the Arctic
Ocean [Arrigo et al., 2010; Else et al., 2008]. In comparison, the use of EO data to study sea-air gas exchange
of trace gases including DMS is novel. Such methods have the potential to improve our understanding of
the global sulfur cycle and its impact on climate.

One specific example of EO data utility is the potential to constrain the contribution to the global DMS flux
from coccolithophore blooms. Algal species produce a large range of intracellular dimethylsulfoniopropio-
nate (DMSP), which is the major algal precursor to DMS [Keller et al., 1989]. Diatoms are low DMSP/DMS pro-
ducers, with intracellular DMSP on the order of 0.86 mmol/mol C [Stefels et al., 2007]. In sharp contrast, the
haptophyte phytoplankton group, which contains coccolithophores, has a higher intracellular DMSP con-
tent (11 mmol/mol C), which is second only to dinoflagellates (22 mmol/mol C) [Stefels et al., 2007]. In the
open ocean, certain coccolithophore blooms are clearly detectable by satellites. Some blooms have been
observed to produce substantially elevated DMSP and DMS concentrations and are thought to contribute
substantially to the DMS sea-to-air flux [Malin et al., 1993; Matrai and Keller, 1993; Steinke et al., 2002a].

Globally and regionally, predicting future DMS emissions requires predictions of (1) surface seawater DMS
concentration; (2) changes in forcing parameters (e.g., wind speed, SST, salinity), and (3) the sensitivity of
DMS flux to these forcing parameters.

Here we use spatially and temporally coincident EO data from the European Space Agency’s (ESA) Envisat
satellite to estimate the global flux of DMS in 2008 and 2009. We then evaluate the sensitivity of sea-air
DMS exchange in the global ocean to changes in temperature, salinity, wind speed, and aqueous DMS con-
centration, both using fixed scalar changes in conditions and arising from future climate model scenarios.

2. Methods

2.1. Data Inputs
We used EO data from Radar Altimeter 2 (RA2) and Advanced Along Track Scanning Radiometer (AATSR) on
ESA’s Envisat satellite. RA2 is an altimeter that can provide estimates of wind speed at 10 m height (U10)
with a small surface footprint. In the absence of clouds, AATSR provides estimates of sea surface skin tem-
perature SSTskin over a much wider swath [Donlon et al., 2007]. The fields of view of the two instruments
overlap, providing spatially and temporally coincident measurements. Globally, RA2 has an error standard
deviation of 1.25 ms21 and a bias of 20.28 ms21 [Queffeulou et al., 2010], while AATSR has a standard devia-
tion of 0.16�C and bias of 10.2�C [O’Carroll et al., 2008]. We processed the RA2 and AATSR data for 2008–
2009 using standard ESA methods and binned them to a 1� 3 1� geographic grid, see [Land et al., 2013] for
details.

Climatological values of the bulk concentration of DMS in surface seawater (DMSw) were obtained on a
1� 3 1� grid from the Lana et al. [2011] climatology, while climatological salinity values were obtained on
the same grid from the NOAA National Oceanographic Data Center (http://www.nodc.noaa.gov/OC5/
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WOA09/pr_woa09.html). Global daily air pressure fields were provided by the European Centre for Medium-
range Weather Forecasting (ECMWF) operational data set (N80 Gaussian gridded analysis on surface levels;
ERA-40 format, 6 h fields). The pressure data were reprojected from their original 2.5� 3 2.5� grid to the 1�

3 1� grid using linear interpolation. Daily sea ice coverage data were provided by the Operational Sea Sur-
face Temperature and Sea Ice Analysis (OSTIA) system [Donlon et al., 2011; Stark et al., 2008] based on the
EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF) daily analyses. These daily global OSTIA
sea ice coverage data were averaged from their original 0.05� 3 0.05� grid to the same 1� 3 1� grid. We
used a 4096 3 2048 global land mask (0.09� 3 0.09�) to determine the proportion of land by area in each
1� 3 1� pixel. The land mask is needed to calculate the net fluxes and the use of a higher spatial resolution
subgrid for the land mask gives a more accurate representation of the integrated flux from coastal pixels.

2.2. Calculating Sea-Air DMS Fluxes
We estimated the sea-to-air flux of DMS (F) in lmol S m22 day21 as the product of the gas transfer velocity,
Kw (cm h21), and the difference in DMS concentration (nM) between the base [DMSaqw] and the top
[DMSaq0] of the mass boundary layer at the sea surface, multiplied by 0.24 to convert Kw into m day21:

F50:24KW DMSaqw
� �

2 DMSaq0
� �� �

: (1)

[DMSaqw] is set to the bulk concentration DMSw from Lana et al. [2011], while [DMSaq0] is set to H DMSa, where
H is the dimensionless Henry’s Law solubility from liquid to gas, calculated as a function of temperature and
salinity using the methods of Johnson [2010], and DMSa is the bulk concentration of DMS in air, giving

F50:24Kw DMSw2H3DMSað Þ: (2)

DMSa (units 1029 mol/L of air) is estimated as DMSw (in units of nM) divided by 400, where both concentra-
tions are expressed in equivalent units. The dimensionless water/air ratio of 400 represents an order of mag-
nitude value based on observations from 10 open ocean cruises (see Table 1). This fixed ratio clearly does
not capture variations on small temporal or spatial scales, but is intended to be broadly representative of
the ratio on a regional to global level. The relative importance of the H 3 DMSa term varies with tempera-
ture (and slightly with salinity) due to changes in H. In 2 years of monthly global data at 1� spatial resolution,
H 3 DMSa varies from 2% of DMSw in the warmest waters to 7% in the coldest.

Kw is the reciprocal of the total resistance to gas transfer on both sides of the air/water interface [Liss and
Slater, 1974], given by

1=Kw51=kw1H=ka (3)

Daily maps of the in-water gas transfer velocity kw were derived from the SSTskin and U10 data using the
wind-based parameterization of Goddijn-Murphy et al. [2012], who compared all available DMS eddy correla-
tion measurements of gas-transfer velocity with altimeter-derived U10:

Table 1. Summary of DMS Concentrations and Fluxes From 10 Cruises, Compared to Fluxes From This Study

Cruise TAO PHASE BIO Knorr 06 DOGEE aa DOGEE ba Knorr 07 SO GasEx VOCALS Knorr 11

Location Equatorial
Pacific

North Pacific Sargasso Sea South Pacific Northeast Atlantic Northeast
Atlantic

North Atlantic Southern Ocean Southeast
Pacific

North Atlantic

Latitudeb 21 5 30 216 43 54 48 251 220 50
Longitudeb 298 2179 266 2106 217 211 251 238 280 245
Time Nov 2003 May–Jun 2004 Jul–Aug 2004 Jan 2006 Jun–Jul 2007 July 2007 July 2007 Mar–Apr 2008 Oct–Nov 2008 Jun–Jul 2011
DMSw

c 2.6 (0.8) 1.7 (0.7) 2.6 (0.4) 3.8 (2.2) 1.2 (0.6) 6.9 (3.1) 2.5 (1.1) 1.6 (0.7) 2.8 (1.1) 4.1 (2.0)
DMSa

c 0.0064 (0.0020) 0.0036 (0.0020) 0.0056 (0.0022) 0.0140 (0.0152) 0.0053 (0.0034) 0.0203 (0.0073) 0.0125 (0.0087) 0.0052 (0.0024) 0.0024 (0.0021) 0.0167 (0.0127)
DMSw/DMSa 406 470 464 271 226 340 200 308 1120 245
In Situ Fluxd 7.1 (3.7) 5.1 (3.1) 6.2 (2.4) 12.1 (15.0) 2.7 (2.4) 18.1 (9.4) 5.9 (4.9) 2.9 (2.1) 3.4 (1.9) 7.6 (7.6)
EO Fluxe 3.2 (21.1) 5.0 (0.0) 5.1 (20.5) 8.8 (20.2) 6.6 (1.6) 12.0 (20.6) 2.5 (20.7) 2.6 (20.1) 4.9 (0.8) 6.4 (20.2)
Publication Huebert

et al. [2004]
Marandino

et al. [2007]
Blomquist

et al. [2006]
Marandino
et al. [2009]

Huebert
et al. [2010]

Huebert
et al. [2010]

Marandino
et al. [2008]

Yang
et al. [2011a]

Yang
et al. [2009]

Bell
et al. [2013]

aThese two are the same cruise but two distinct water masses.
bCruise Mean, Degrees N or E.
cCruise Mean, lmol m23 5 nM.
dCruise mean (standard deviation), lmol m22 day21.
eMean of all cruise months in a 5� 3 5� window (deviation from cruise mean/cruise standard deviation).
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kw5 2:2U1023:4ð Þ Sc

660

� �20:5

; (4)

where Sc is the Schmidt number of DMS, calculated as a function of temperature and salinity using the
methods of Johnson [2010]. We calculated ka for DMS as a function of wind speed and temperature using
the methods of Johnson [2010].

2.2.1. Net DMS Fluxes
Using equations (2–4), we calculated the flux F per unit area of open water. Land and sea ice coverage
data were used with F to calculate the net DMS flux from a 1� 3 1� grid cell. Open water area in a given
cell was calculated by subtracting land surface area and sea ice surface area, if any, from the cell. Follow-
ing the Takahashi et al. [2009] approach for CO2, we considered <10% sea ice coverage to have a negligi-
ble effect on the DMS flux from a cell, and the calculated flux was unmodified. Sea ice coverage >90%
still allows some flux of DMS due to leads, polynyas etc. (where sea-air DMS fluxes may be very strong,
Else et al. [2011]), so in this case coverage was set to 90%. Multiplying F (per unit area) by the remaining
ice free ocean area gives the net DMS flux from the cell. This differs from the methodology of Lana et al.
[2011], who set DMS flux to zero if sea ice coverage exceeded 75%, neglecting ice effects otherwise. In 2
years of monthly global 1� gridded data, the RMS difference in the annual hemisphere-integrated flux
between the two methods of dealing with partial ice cover is negligible on a global scale (0.003 Tg S a21

in the northern hemisphere and 0.02 Tg S a21 in the southern hemisphere – compare with figures in
Table 3).

2.2.2. Missing Data
In a given cell on a given day, it may be that not all the required data are present. RA2 has a small footprint,
so daily coverage of RA2 data is generally smaller than that of AATSR. AATSR is vulnerable to cloud contami-
nation, so it is quite rare for both data sets to give coincident valid data. The salinity and DMSw data sets are
also incomplete, with a small amount of missing data around some coastlines. To address this problem, we
adopted a hierarchical strategy:

1. If all daily composite data sets are valid at a given position, we use these values;
2. If RA2 or AATSR daily data are missing, we use the monthly composite of that data set.
3. If monthly composite data are missing, we use a composite of that month over the whole time series

(currently 2 years).
4. If time series composite data are missing, in the case of U10, we substitute U10 from the daily ECMWF

data. If SSTskin is missing, the cell flux is not directly calculable. The same is true if DMSw or S is missing,
but this only happens for a very small number of pixels around coastlines, where land masks differ
slightly. In these cases, we estimate the cell flux as the monthly average flux in the corresponding 10�

latitude band and apply it to the cell. This averaging occurs for 2.2% of the global open water area and
17% of the area in the Arctic over the 2 years.

2.3. Sensitivity to Temperature, Salinity, Wind Speed, and DMS Concentration
We initially varied SSTskin, salinity, U10 and DMSw independently and uniformly over all months and
positions. Though these are not realistic scenarios, they give us a simple insight into the sensitivity of
the global flux to changes in individual climate variables. In order to give a more realistic simulation
of the effects of predicted climate change, we then used output from the fully coupled ocean-
atmosphere Met. Office Hadley Centre Earth System model HadGEM2-ES [Collins et al., 2008] down-
loaded from version 5 of the Coupled Model Intercomparison Project (CMIP5), using the RCP8.5 sce-
nario [Taylor et al., 2012]. This makes monthly global predictions from 2006 to 2100 assuming a
scenario of high anthropogenic CO2 emissions. We considered variations in SST, salinity, U10, and
DMSw. The model SST is the temperature a few metres below the sea surface, not SSTskin. However,
the difference is a few tenths of a degree, averaging 0.14�C for wind speeds greater than 6 ms21

[Donlon et al., 2002], so the temporal changes described in subsection 3.2 are largely unaffected. Each
parameter was reprojected to the 1� 3 1� grid and averaged over 6 years in each month of the year.
The data for 2006–2011 were then compared with those for 2031–2036 to estimate the effect of 25
years of change. Averaging over 6 years reduces the effect of transient features in a given year, such
as the El Ni~no-Southern Oscillation. We used pixel by pixel changes in this case rather than a uniform
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global change because there is strong spatial variability, especially in salinity, U10 and DMSw, which
exhibit significant regions of both positive and negative trends.

The sensitivity of DMS flux to plausible changes in each of the four parameters was investigated by applying
25 years of change to one parameter while keeping the others fixed at their original values. SST variations
were applied to kw, ka, H and hence F through the temperature dependence of Sc (ka is not expected to
have a large temperature dependence because the airside Schmidt number is largely temperature inde-
pendent). For consistency, salinity variations were applied to kw, H and hence F through the small salinity
dependences of Sc and H, though this was not expected to have much effect. The salinities at the surface
and at a depth of a few meters were assumed to covary. U10 and DMSw changes were applied as percen-
tages, since in both cases variations can be negative or positive and values can be close to zero. U10 varia-
tions were applied to kw and ka, and DMSw variations were applied directly in equation (2). Finally, we
applied 25 years of change to all four parameters (SST, salinity, U10, and DMSw) simultaneously.

This analysis enabled us to gain insight into the impact of plausible changes in temperature, salinity, wind
speed, and aqueous DMS concentration from 2006–2011 to 2031–2036.

2.4. Contribution of Coccolithophores to the North Atlantic DMS Flux
The Lana et al. [2011] climatology was constructed from all available data and no overarching sampling
strategy was employed to coordinate the data collection. Some past research activities have focussed on
reduced sulfur cycling and certain fieldwork thus specifically targeted coccolithophore blooms [e.g., Steinke
et al., 2002b]. Other DMS data have been collected along transect lines, objectively analysing whatever sea-
water masses are encountered. Bloom features thus have the potential to be underrepresented or overre-
presented within the climatology, which is not scaled to account for the spatial and temporal frequency of
phytoplankton blooms.

The coccolithophore Emiliania huxleyi is an
ideal phytoplankton species for Earth Observa-
tion. When the plankton grow and divide at a
high rate, they shed their calcium carbonate
plates (liths) into the surrounding seawater
[Paasche, 2001]. In bloom conditions, the liths
create a strong backscattering signal that can
be observed by satellite remote sensing [Balch
et al., 1991], and can have a significant local
effect on radiative forcing [Gondwe et al.,
2001]. Recent work has facilitated the routine
identification of coccolithophore blooms in
the North Atlantic [Shutler et al., 2010]. Shutler
et al. [2013] used this approach to estimate the
proportion of time and space that coccolitho-
phore blooms are present within the North
Atlantic (75�W–11�E, 35–68�N), see Table 2.

Observations of surface water DMS values
within phytoplankton blooms containing high
coccolithophore cell density range between
4.8 and 25.0 nM (Table 1). How long this

Table 3. Annual Mean DMS Flux (Tg S a21) per 10 Degree Latitudinal
Band in 2008–2009, Compared With the Climatology of Lana et al.
[2011]

Latitude 2008–2009 Mean Flux Climatology

90�–80�N 0.0 0.0
80�–70�N 0.1 0.1
70�–60�N 0.2 0.2
60�–50�N 0.6 0.9
50�—40�N 0.9 1.5
40�–30�N 1.0 1.5
30�–20�N 1.1 1.4
20�–10�N 1.8 2.6
10�–0�N 2.1 2.6
0�–10�S 2.1 2.2
10�–20�S 2.5 3.5
20�–30�S 2.1 3.0
30�–40�S 1.9 2.7
40�–50�S 1.6 2.8
50�–60�S 1.1 2.1
60�–70�S 0.5 0.9
70�–80�S 0.1 0.1
80�–90�S 0.0 0.0
Northern hemisphere 7.8 10.8
Arctic (north of 66�N) 0.2 -
Global 19.6 28.1

Table 2. Monthly Coverage of E. Huxleyi Blooms in the North Atlantic (75�W–11�E, 35–68�N) and Northeast Atlantic (40�W–11�E, 60–
68�N) During April–Septembera

Coverage (%)

April May June July August September Annual

North Atlantic 0.003 0.08 0.29 0.95 0.44 0.14 0.16
Northeast Atlantic 0.003 0.005 0.36 3.7 2.8 0.87 0.65

aCoverage in other months is assumed to be negligible.
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increase in DMS is sustained
over the course of a coccolitho-
phore bloom is not well
known. We combined satellite-
derived spatial coverage of
North Atlantic coccolithophore
blooms (calculated using the
methods of Shutler et al. [2013]
and summarized in Table 2)
with a range of estimates of
the increase in DMS levels due
to the bloom and the duration
of the increased DMS, to esti-
mate coccolithophore bloom-
driven sea-to-air DMS flux over
plausible ranges of bloom DMS

enhancement and duration, in the hope that future work will constrain these ranges. We calculated the
increase in annual DMS flux assuming that blooms increase DMS by 5, 15, and 25 nM while a bloom is iden-
tified from satellite in a given pixel, and this effect is assumed to continue for 1–20 days, day 1 being the
day of satellite detection.

3. Results and Discussion

3.1. Integrated DMS Flux
The mean daily open water DMS flux F over 2008–2009 is shown in Figure 1, and its seasonal variations are
shown in Figure 2, which also shows eddy correlation measurements of DMS flux from 10 cruises (cruise
mean, not seasonal mean). Cruises that overlap two seasons are shown in both. The annual integrated DMS
fluxes over 10� latitude bands are listed in Table 3, along with the annual global, northern hemisphere, and
Arctic (north of 66�N) DMS fluxes. These figures are compared with the equivalent climatological values
from Lana et al. [2011]. The cruise data shown in Figure 2 are summarized in Table 1, which also shows the
mean EO modeled DMS flux F (‘‘EO Flux’’) over the cruise months in 2008–2009 in a 5�35� window around
the mean cruise position.

Eight out of 10 of the EO fluxes are less than the in situ fluxes, implying a possible bias. However, all but
two of the differences are less than the standard deviation of in situ flux, and a paired t-test reveals no sig-
nificant difference between the two (p 5 0.16). As a further check, we estimated the bias between the two
data sets by calculating the mean of each, weighted by the reciprocal of the standard deviation of in situ
flux. The in situ mean was 5.2 lmol m22 day21 and the EO mean was 4.9 lmol m22 day21, both with a
standard error of 1.1 lmol m22 day21, implying an EO underestimate of 7 6 28%.

The root mean square difference between the mean in situ fluxes and the mean EO flux is 3.1 lmol m22

day21, similar to the global mean flux of 3.5 lmol m22 day21 calculated from our data. Much of this vari-
ability can be accounted for by differences in DMS between ship and climatology (RMS difference in DMS is
32%, equating to a 32% difference in flux, see Section 3.2) and differences in wind speed between ship and
satellite (RMS difference in wind speed is 16%, equating to a 21% difference in flux), while SST has much
less effect (RMS difference of 0.9�C, suggesting a flux difference of 2.5%).

Lana et al. [2011] found a global flux of 28.1 Tg S a21, while our analysis suggests a global flux of 19.6 Tg S a21.
In the northern hemisphere, Lana et al. [2011] estimate a flux of 10.8 Tg S a21 while we find 7.8 Tg S a21.
A significant part of these differences can be ascribed to the choice of flux parameterization. This study uses a
linear relationship between kw and wind that has been derived from direct measurements of DMS flux [Goddijn-
Murphy et al., 2012], while Lana et al. [2011] use the quadratic relationship of Nightingale et al. [2000], resulting
in increased fluxes at high wind speeds. It has been proposed that the difference in the functional form of
these gas exchange parameterizations results from bubble-mediated gas transfer at high winds, which is
enhanced for insoluble gases [Woolf et al., 2007]. Highly insoluble gases were used to estimate the nonlinear
relationship between k and wind speed in Nightingale et al. [2000]. In contrast, DMS is moderately soluble, and

Figure 1. Annual mean sea-air DMS flux (lmol S m22 day21) over 2008–2009.
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recent eddy correlation measurements at high wind speeds do not suggest gas-transfer velocity enhancements
at high-wind speeds [Bell et al., 2013; Goddijn-Murphy et al., 2012; Marandino et al., 2009; Yang et al., 2011a].
When we recalculate our fluxes using Nightingale et al. [2000], we obtain a global flux of 23.1 Tg S a21 and a
northern hemisphere flux of 8.8 Tg S a21.

3.2. Sensitivity to Predicted Changes in Temperature, Salinity and Wind Speed
In the initial sensitivity study, we changed a single parameter by a fixed amount, independent of location or
month. In all cases, we found the effect to be linear (r2> 0.997), so only the effect per unit change in the
parameter is quoted. The effect of increasing SSTskin uniformly was an increase in mean global DMS flux of
0.55 Tg S �C21 (12.8% �C21). The effect of increasing salinity uniformly was a decrease in global flux of
0.028 Tg S PSU21 (20.14% PSU21). The effect of increasing log(U10) uniformly (i.e., increasing U10 by a uni-
form proportion) was an increase in global flux of 25 Tg S per unit of (natural) log(U10), hence a 1% increase
in U10 results in an increase in global flux of 0.25 Tg S (11.3%), reflecting the approximately linear relation-
ship between flux and wind speed. The effect of increasing log(DMSw) uniformly was an increase in global
flux of 20 Tg S per unit of (natural) log(DMSw), hence a 1% increase in DMSw results in an increase in global
flux of 0.19 Tg S (11.0%), reflecting the approximately linear relationship between flux and DMSw.

The modeled 25 year changes in SST, salinity, U10 and DMSw in four seasons, each with 3 months, are shown
in Figures 3–6. Some of the spatial and temporal variability of SST, salinity and DMSw changes can be
explained simply as a function of latitude, independent of longitude or month (22, 23, and 21% of variance
explained for SST, salinity and DMSw, respectively). Figure S1 (supporting information) shows the mean
annual changes in SST, salinity, wind speed, and DMSw over all longitudes as a function of latitude and
month.

The effects on global annual integrated flux of applying 25 years of predicted changes in SST, salinity, U10

and DMSw are shown in Table 4, along with the effects of changing all four parameters simultaneously. The

Figure 2. Seasonal mean sea-air DMS flux (lmol S m22 day21) over 2008–2009. Also shown in black circles are cruise mean fluxes from
Table 1. January–March (left to right): Knorr 06, January 2006; SO GasEx, March–April 2008; SOAP, February–March 2012. April–June (left to
right): PHASE, May–June 2004; Knorr 11, June–July 2011 (top, yellow); SO GasEx, March–April 2008 (bottom, blue); DOGEE a, June–July
2007. July–September (left to right): BIO, July–August 2004; Knorr 07, July 2007; Knorr 11, June–July 2011; DOGEE a, June–July 2007; DOGEE
b, July 2007. October–December (left to right): TAO, November 2003; VOCALS, October–November 2008.
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Figure 3. Change in SST (�C) using CMIP5 data over the 25 years from 2006–2011 to 2031–2036.

Figure 4. Change in salinity (PSU) using CMIP5 data over the 25 years from 2006–2011 to 2031–2036.
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Figure 5. Change in log10(10 m wind speed) using CMIP5 data over the 25 years from 2006–2011 to 2031–2036.

Figure 6. Change in log10(DMS concentration) using CMIP5 data over the 25 years from 2006–2011 to 2031–2036.
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effects on annual mean F of applying 25 years of predicted changes
are shown in Figure S2 (supporting information). It can immediately
be seen from supporting information Figure S2 that the effect of
salinity changes is by far the smallest except very close to the coast.
The effects of SST changes are typically small and positive, increasing
in areas where the flux is already large (Figure 1). The effects on flux
of U10 changes are large and negative in most regions (due to the
model predicting decreased wind speed), although less so in polar
regions. The effect of DMSw changes is highly variable, with localized
‘‘hot spots’’ of positive or negative change. The effect of changes in

all four parameters is dominated by the effect of wind, so the net effect is generally negative with some
positive ‘‘hot spots,’’ notably in the eastern Atlantic around 40�N, which has increased DMSw (Figure 6), and
in the Sea of Okhotsk north of Japan, which has increased wind speed and DMSw (Figures 5 and 6). Applying
25 years of predicted changes in SST, U10, and DMSw affects seasonal mean F as shown in Figures 7–9. The
effect of applying all four changes simultaneously is shown in Figure 10. The effect of salinity was generally
as small in each season as the annual effect shown in supporting information Figure S2b, so this is not
shown individually.

Our results suggest a decrease in global DMS flux in the 25 year scenario examined, mostly due to physical
changes, i.e., reduced wind speed. It should be noted that if the surface DMS concentrations were to
increase more than predicted by the CMIP5 model due to biological processes/feedbacks unaccounted for
in the current model, the DMS flux would increase correspondingly.

3.3. Uncertainties and Error Propagation
Uncertainties and bias in the remote sensing data used to calculate F could have a significant impact on the
resultant DMS fluxes. Previous work on CO2 fluxes [Land et al., 2013] has shown that the effect of random
errors in SST and U10 is of the order of 1% of the total uncertainty estimate in the Arctic, and a similarly small
proportion is likely for global DMS fluxes, hence this error source is neglected. To investigate the effect of
possible bias in the input data sets, we follow Land et al. [2013] and take the precautionary step of using

Figure 7. Changes in seasonal mean sea-air DMS flux (lmol S m22 day21) due to 25 years of predicted changes in SST.

Table 4. Changes in Global Annual
Mean DMS Flux (Tg S a21) Due to 25
Years of Changes in SST, Salinity, 10 m
Wind Speed and DMS Concentration

Parameter 25 Year Change (Tg S a21)

SST 10.46 (12.3%)
Salinity 10.10 (10.5%)
U10 24.3 (222%)
DMSw 10.33 (11.7%)
All four 23.7 (219%)
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Figure 8. Changes in seasonal mean sea-air DMS flux (lmol S m22 day21) due to 25 years of predicted changes in 10 m wind speed, on
the same scale as Figure 7.

Figure 9. Changes in seasonal mean sea-air DMS flux (lmol S m22 day21) due to 25 years of predicted changes in DMS concentration, on
the same scale as Figures 7 and 8.
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the square root of the sum of squares of the published global bias and standard deviation for each data set.
This allows for the possibility of regional biases that cancel in the global bias but contribute to the global
standard deviation. The standard deviations of SST and U10 are 0.16�C and 1.25 ms21, respectively, and the
global biases are 0.2�C and 0.28 ms21, combining to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:16210:22
p

50:26�C and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:25210:282
p

51:28 ms21.
These should be considered to be upper estimates of the error due to bias. The mean and standard devia-
tion of DMSw are given regionally by Lana et al. [2011]. We converted these to a regional error in ln(DMSw)
and found the area weighted global average of dln(DMSw) to be 0.12, or a 12% error in DMSw. We can use
the sensitivities found in subsection 3.2 to translate these errors in SST and DMSw into errors in global DMS
flux. These are 0.14 Tg S (0.7%) and 2.4 Tg S (12%), respectively. The fixed error in wind speed is incompati-
ble with the proportional change used in subsection 3.2, so instead we offset all wind speeds by 1.28 ms21

and recalculated the global flux, resulting in a change in global flux of 4.8 Tg S (25%). Assuming them to be
uncorrelated, these errors sum to 5.4 Tg S (27%). Correlation between errors may result in higher total
errors.

Goddijn-Murphy et al. [2012] give an RMS error of dkw55:5 Sc
660

� �20:5
for their k parameterization. Again

assuming the worst case of bias equal to the RMS error, we recalculated fluxes using k values dkw greater
than predicted, resulting in an increase in global DMS flux of 9.4�Tg S (48%). Clearly this dominates the
uncertainty in global flux, which then becomes 10.9 Tg S (55%).

3.4. Contribution of Coccolithophores to the North Atlantic DMS Flux
Table S1 (supporting information) shows the increase in annual mean flux over the whole North Atlantic
due to DMS increases within detected coccolithophore blooms of 5, 15, and 25 nM, and with durations of
1–20 days. It is also shown as a percentage of the annual mean flux calculated from the Lana et al. [2011] cli-
matology. Figure 11a shows the percentage data as a contour plot, while Figure 12 shows the spatial distri-
bution of the increase in flux for the most conservative case (5 nM increase for 1 day). It should be noted
that the most extreme case at the upper right of Figure 11a, an increase of 25 nM for 20 days, is highly
unlikely to be a good representation of North Atlantic blooms as a whole; we include these extremes to
ensure that the unknown actual values are represented in supporting information Table S1 and Figures 11

Figure 10. Changes in seasonal mean sea-air DMS flux (lmol S m22 day21) due to 25 years of predicted changes in SST, salinity, wind
speed, and DMS concentration on the same scale as Figures 7–9.
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and supporting information S4. For a given increase and duration, this approach is likely to be an underesti-
mate of the true DMS flux as satellite backscatter cannot identify all coccolithophores (some do not shed
their liths) or other DMS-producing, noncoccolithophore species. Also, it should be noted that the method
of Shutler et al. [2013] specifically targets anomalously high reflectances, and so does not detect any back-
ground concentration of coccolithophores, which may also contribute a DMS flux.

Our calculations suggest that the contribution to the annual DMS flux by coccolithophore blooms identified
using satellite backscattering may be a relatively small proportion of the Lana et al. [2011] climatological
flux, which includes some contributions from coccolithophores. This suggests that noncoccolithophore spe-
cies and coccolithophore species not identifiable from space are collectively an important driver of North
Atlantic seawater DMS concentrations. An alternative explanation for our analysis is that the ad hoc sam-
pling approach for data in the DMS climatology has led to an inherent bias toward DMS blooms and a sub-
sequent overestimate of the DMS flux. Objective sampling tracks (i.e., non bloom-focussed) for future DMS
data collection would address this issue.

In summer, DMS flux from coccolithophores has the potential to be substantial (Table 2), particularly in the
northeast Atlantic where blooms are more prevalent (Figure 12). To illustrate this, the increase in DMS flux
due to coccolithophore blooms in the northeast quadrant of the North Atlantic (32�W to 11�E, 52 to 68�N,
shown as a black box in Figure 12) in July is shown in Figure 11b as a percentage of the equivalent flux cal-
culated from the Lana et al. [2011] climatology.

The progression of coccolithophore bloom activity is illustrated in supporting information Figure S3, show-
ing the distribution of bloom effect on monthly DMS flux from April to August. Blooms start in the Celtic

Sea and English Channel in
April, moving to the shelf break
west of Ireland in May, the
shelf break north of Ireland,
the North Sea and the Green-
land Sea between Greenland
and Iceland in June, concen-
trating in a small region west
of Iceland and the southern
North Sea in July and August.
To investigate the local impact
of coccolithophore blooms, we
calculated the mean percent-
age effect on DMS flux for all

Figure 11. (a) Change in North Atlantic annual mean flux; (b) change in monthly mean flux in the northeast Atlantic (40�W–11�E, 60–
68�N) in July. Both are shown as a function of increase in DMS concentration within a coccolithophore bloom and duration from the last
satellite bloom detection, expressed as a percentage of the mean flux calculated from the Lana et al. [2011] climatology. For reference, the
annual mean flux in the North Atlantic is 4.44 lmol m22 day21 and the mean flux in the northeast Atlantic in July is 10.20 lmol m22

day21. Note that these include the effects of coccolithophores.

Figure 12. Change in North Atlantic annual average DMS flux (lmol S m22 day21) with a
5 nM increase in DMS concentration during a coccolithophore bloom and a duration of 1
day. White areas have no coccolithophore blooms detected, brown is land.
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pixels with nonzero effect, i.e., pixels identified as being bloom affected (pixels not colored white or brown
in Figure 12 and supporting information Figure S3). Results are shown annually in supporting information
Figure S4a and for July (the month of greatest effect on North Atlantic fluxes) in supporting information Fig-
ure S4b. The annual effect ranges from 1 to 38%, while the effect in July ranges from 5 to 147%.

To more accurately quantify the contribution of coccolithophore blooms to regional DMS emissions,
detailed investigations are required into the relationship between bloom intensity (spectral backscattering)
and seawater DMS concentration.

4. Conclusions

In this paper, we describe a new method for calculating net DMS fluxes from EO data using a k
parameterization that is calibrated for DMS, showing the applicability of EO data to the monitoring
of DMS net fluxes. Specifically, we look at the effect of predicted changes in climate on the flux of
DMS from ocean to atmosphere. It shows that the effect of 25 years of changes predicted by a
CMIP5 climate model is globally dominated by the prediction of decreased surface wind speed, which
results in a 22% decrease in global DMS flux, while changes in temperature, salinity, and DMS con-
centration have smaller positive effects, with a combined effect of a 19% decrease in global flux. We
also evaluate DMS emission from satellite-observed coccolithophore blooms in the North Atlantic,
which is small compared to the annual climatology, but may be more important in the summertime
and in the northeast Atlantic.
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