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Summary 

1. A first step in the analysis of complex movement data often involves discretisation of the 

path into a series of step-lengths and turns, for example in the analysis of specialised 

random walks, such as Lévy flights. However, the identification of turning points, and 

therefore step-lengths, in a tortuous path is dependent on ad-hoc parameter choices. 

Consequently, studies testing for movement patterns in these data, such as Lévy flights, 

have generated debate. However, studies focusing on one dimensional (1D) data, as in the 

vertical displacements of marine pelagic predators, where turning points can be identified 

unambiguously have provided strong support for Lévy flight movement patterns.  

2. Here we investigate how step-length distributions in 3D movement patterns would be 

interpreted by tags recording in 1D (i.e. depth) and demonstrate the dimensional symmetry 

previously shown mathematically for Lévy-flight movements. We test the veracity of this 

symmetry by simulating several measurement errors common in empirical datasets and find 

Lévy patterns and exponents to be robust to low-quality movement data. 

3. We then extend the investigations to exponential and composite Brownian random walks 

and show that these also project into 1D with sufficient symmetry to be clearly identifiable 

as such. 

4. By extending the symmetry paradigm we propose a new methodology for step-length 

identification in 2D or 3D movement data. The methodology is successfully demonstrated in 

a re-analysis of wandering albatross Global Positioning System (GPS) location data previously 

analysed using a complex methodology to determine bird landing locations as turning points 

in a Lévy walk. For this high-resolution GPS data we show that there is strong evidence for 

albatross foraging patterns approximated by truncated Lévy flights spanning over 3.5 orders 

of magnitude. 

5. Our simple methodology and freely available software can be used with any 2D or 3D 

movement data at any scale or resolution and is robust to common empirical measurement 

errors. The method should find wide applicability in the field of movement ecology spanning 

the study of motile cells to humans.  

 

Keywords: albatross, cell tracking, correlated random walk, fractal path analysis, Lévy flight, optimal 

foraging theory, power law distribution, random walk, satellite tracking, scale-free movement. 
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Introduction 

A recent advance within the field of movement ecology that aims to progress our understanding of 

the mechanisms underpinning search behaviour of diverse organisms has focused on the 

identification of specialised random walks, such as Lévy flights, principally through the analysis of 

move step-length distributions arising from recorded movement paths (Viswanathan et al. 1996). A 

Lévy flight is a special category of super-diffusive random walk where the distribution of move step-

lengths fits an inverse power-law such that P(l) ≈ l-µ  where 1 < µ ≤ 3 where l is the move step-length 

and µ the power-law exponent. These movement patterns are characterised by clusters of short 

move-steps connected by rare long relocations, with the pattern being repeated at all scales. Lévy 

flights (or walks) have generated interest because they have been shown theoretically to optimise 

searches for sparse resources such as prey, when located beyond an organism’s sensory range 

(Viswanathan et al. 1999, Viswanathan et al. 2011). Empirical studies have now identified movement 

patterns consistent with Lévy flights (walks) in individuals from diverse species including insects 

(Maye et al. 2007, Reynolds et al. 2009, Bazazi et al. 2012, Reynolds 2012), jellyfish (Hays et al. 

2012), sharks, bony fish, turtles and penguins (Sims et al. 2008, Humphries et al. 2010, Sims et al. 

2012) and seabirds (Humphries et al. 2012), as well as from single cells such as E. coli and T-cells 

(Korobkova et al. 2004, Harris et al. 2012)..  

  Arguably the most robust evidence for Lévy-flight movement patterns in animals has come 

from studies of pelagic marine predators where move step-lengths have been derived from the 

depth recordings of electronic tags (Sims et al. 2008, Humphries et al. 2010, Hays et al. 2012, Sims et 

al. 2012). In one dimensional (1D) data such as this, vertical displacement step-lengths are 

straightforward to compute because putative turning points are simple to identify and are 

unambiguous, being the points where there is a change of direction (i.e. diving or ascending) 

between consecutive steps. While the 1D turning points identified in this way do not correspond 

exactly to the actual turning points in the original 3D movement of the animal, the overall scaling 

properties of Lévy flights are preserved. The step-lengths are analysed using maximum likelihood 

estimation (MLE) to estimate exponents and goodness of fit for power-law or exponential 

distributions (Clauset et al. 2009, Humphries et al. 2010). Testing of the Lévy flight foraging (LFF) 

hypothesis (Viswanathan et al. 2008, Viswanathan et al. 2011) is mainly concerned with power-law 

and exponential distributions because the LFF hypothesis predicts that Lévy flight searching is 

optimal when prey is sparse, whereas simple Brownian (exponential) movements are expected when 

prey is abundant.  
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The analysis of horizontal movement paths – in terms of a discrete random walk – for the 

presence of Lévy or Brownian patterns using MLE requires the identification of turning points in 

order for the step-lengths to be computed. While Lévy walk characteristics can be identified using 

functions such as root mean square fluctuation, or mean square displacement, these methods do 

not provide estimates of exponents and cannot be used to test fully the LFF hypothesis. Turning 

points are relatively straightforward to identify in the low spatial resolution datasets of animals 

tracked using Argos satellite transmitters, but the large and variable error fields make such data 

unsuitable for rigorous testing for Lévy flight behaviour (Bradshaw et al. 2007). In some movement 

data, such as from bacteria, T-cells or desert locusts, the recorded movements are essentially 

discrete, comprising, for example in the case of E coli, runs and tumbles; in these cases turn 

identification is also straightforward. This is also true of some lower resolution data, which is already 

closer to a discrete approximation of the original movement path. 

Tags equipped with Global Positioning System (GPS) sensors now provide data with high 

spatial accuracy and temporal resolution (Weimerskirch et al. 2002, Sims et al. 2009); however 

testing high resolution GPS data for Lévy flight patterns has proved problematic because of the 

difficulties in objectively identifying turning points in a tortuous path (Codling and Plank 2011, 

Humphries et al. 2012). Various methods have been proposed for the identification of turning 

points, for example the location of acute turning angles (e.g. Reynolds et al. 2007), or the deviation 

of the movement path from an arbitrary corridor encompassing the trajectory (Turchin 1998, de 

Knegt et al. 2007). However, while the results are dependent on the parameters chosen (Plank and 

Codling 2009), it can be difficult to set a threshold turning angle, or corridor width, that have a 

sound basis in the biology of the animal and which are not to some degree contentious. 

Consequently, the discretisation of the path into steps is in some cases somewhat arbitrary 

(Reynolds 2010) and parameter choices and the results of the analysis are sometimes difficult to 

justify. To illustrate the problems, the consequences of differing turn-angle thresholds in GPS data 

are explored in a sensitivity analysis of wandering albatross data presented in the Supporting 

Information (§2). In summary we found that the number of truncated Pareto-Lévy (TP) distribution 

fits to the 27 datasets was 4, 17 and 25, for the turn-angles 45, 90 and 135°, respectively. While both 

the number of fits, and the closeness of the fit in many cases, make the results of the analysis using 

135° compelling, there is no clear biological justification for that choice of angle. Therefore, it 

appears that there are potentially significant amounts of 2D data, from diverse species, that at 

present cannot be used reliably in either Lévy-flight or any other random walk movement analysis 

(e.g. correlated random walks, CRW), severely limiting widespread testing of these ideas in ecology. 



5 
 

A study by Sims et al. (2008) showed mathematically that a Lévy flight can be projected from 

3D to 2D and to 1D with preservation of the power-law exponent. From this it was suggested that 

the power-law-distributed 1D vertical displacements of marine predators were indicative of an 

overarching 3D Lévy-flight movement pattern. However, no empirical study has yet shown this to be 

the case, nor has the dimensional symmetry of a Lévy flight been demonstrated for the truncated 

Pareto-Lévy distribution, which was found to be the most common power-law distribution to best fit 

animal movement data (Humphries et al. 2010). 

Here we verify the purported dimensional symmetry of Lévy movement patterns using 

simulated 3D Lévy distributed move step-length datasets, with a range of exponents, from which any 

one of the dimensions can be used to form a 1D dataset. The conditions under which the symmetry 

holds are explored and compared with the results from exponential and composite Brownian 

datasets. We examine the effects that tag measurement errors, such as low spatial or temporal 

resolution, would have on the reliability of identifying move step-lengths, and detecting Lévy flight 

behaviour, in naturally complex datasets. By extending the symmetry paradigm we then present a 

methodology for the identification of step-lengths that can be applied to 2D or 3D data and 

demonstrate the utility of this methodology in a re-analysis of wandering albatross (Diomedea 

exulans) GPS location data previously analysed for the presence of Lévy flight patterns in the 

distribution of landing sites (Humphries et al. 2012). Software developed to test these ideas is freely 

available to download with this paper. 

Materials and Methods 

Simulated data 

Simulated move step-length datasets for Lévy, Exponential (Brownian) and composite Brownian 

distributions were generated with a range of parameters as described in the Supporting Information 

(§1). 

Empirical data 

High-temporal resolution Global Positioning System (GPS) location data was recorded using GPS 

loggers attached to 27 D. exulans incubating or brooding chicks at the Crozet Islands, Southern 

Indian Ocean (Weimerskirch et al. 2005, Humphries et al. 2012). Adhesive tape was used to attach 

GPS loggers to each bird’s back feathers (Weimerskirch et al. 1994). The tags returned a time series 

of geographic locations at intervals of between a few seconds to several minutes. Locations were 

converted to x y coordinates using a plate carrée projection prior to analysis. 
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Data analysis 

To test the hypothesis that a Lévy flight exponent (µ) should be symmetrical in all dimensions, data 

from each dimension was converted to step-lengths by computing the displacement in that 

dimension between consecutive data points. Maximum Likelihood Estimation (MLE) analysis was 

performed on the simulated datasets using the methods described by Clauset et al. (2009) and 

Humphries et al. (2012) (and Supporting Information §9). To verify the goodness of fit, p-values were 

computed using the Monte-Carlo method described by Clauset et al. (2009). The empirical data 

model selection, using both Akaike weights and the goodness of fit (GOF), was performed as 

described in the Supporting Information (§9) and Humphries et al. (2012).  

Results 

Analysis of simulated data 

A simulated 3D Lévy dataset (xmin = 1, μ = 2.0, xmax = 2500; Fig. 1a) was first analysed with MLE using 

the step-lengths in 3D to confirm the accuracy of the simulated data (Fig. 1b). A 1D dataset of step-

lengths was then computed using just the z axis to give a series of vertical displacements (Fig. 1c). A 

initial plot of this dataset, however, failed to confirm the expected symmetry with the plot shown in 

Fig. 1d, being quite unlike the plot shown in Fig. 1b. However, it was noted by Sims et al. (2008; 

Supplementary Methods and Results 2, p. 8) that projection from 3D to 1D was expected to produce 

many step-lengths < xmin which do not follow a power-law distribution. Closer inspection of the plot 

confirmed that the inflection point of the plot separating the two domains occurred at 1.0, the xmin 

value of the original 3D dataset. While points below xmin clearly do not fit a power-law distribution, 

those above xmin do, as expected. MLE analysis of the step-lengths above xmin showed a good fit to a 

truncated Pareto-Lévy power-law (TP) distribution with μ = 2.004 (Fig. 1e), which was very close to 

the value of μ = 2.0 used to generate the original 3D data set. Therefore, once data points below xmin 

were removed the symmetry of the Lévy flight was evident. The symmetry was confirmed by 

repeating the 1D analysis using the x and y dimensions and with the x, y and z dimensions of two 

further datasets with μ = 1.5 and μ = 2.5, which gave almost identical results once values below xmin 

were ignored (Table 1). Differences in the estimated exponents were < 1.0% and therefore the 

exponent values were conserved as predicted. Differences in the xmax values were expected given 

that with a power-law distribution long steps are much rarer than short steps and therefore these 

long displacements are effectively under-sampled. With the values closer to xmin there are very many 

more steps so the displacements in each dimension are more thoroughly sampled leading to the 

conservation of the xmin value along each axis. Analysis of a 3D Lévy flight dataset with xmin = 10 
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demonstrates that the inflection point again corresponds to the xmin value used to generate the 

original dataset (Fig. 1f), confirming this to be a general principle.  

With step-lengths drawn from an exponential distribution, representing simple Brownian 

movement, the overall pattern was also conserved in the 1D analysis, but not with the fidelity found 

for the Lévy distribution; the exponent differed by more than 57% (Table S5, Supporting information, 

§11) and the overall fit was not as good (Fig. 2). However the fit was still much better than the 

competing TP distribution and this result was supported by Akaike weights, which suggests that 3D 

exponential movements cannot easily be mistaken for Lévy movements (and vice versa) when 

reduced to one dimension. 

Composite Brownian (CB or CCRW) random walks have recently been proposed as alternative 

models to Lévy walks (Jansen et al. 2012, Reynolds 2012). Therefore a simulated CB dataset was 

generated, based on a fit to empirical data (see empirical analysis below) and was examined for 

symmetry in the same way as the other simulated datasets (Supporting Information, §7). This 

dataset was also found to project with sufficient symmetry for clear identification using AIC; indeed 

the plots of the individual x, y and z dimensions are almost indistinguishable from the original 3D 

plot (Supporting Information, §12, Figures S11 and S12).  

Estimating the xmin parameter 

In the simulated data the xmin parameter was already known. With empirical datasets however the 

xmin value cannot be known a priori and therefore an objective method of estimating this value is 

required. Clauset et al. (2009) suggest an iterative search of all possible values in the dataset as 

potential values for xmin, using a Kolmogorov-Smirnov goodness of fit (GOF) test to determine the 

best fitting value. Following detailed investigations (described in full in the Supporting Information, 

§4) a modified version of this scheme was adopted whereby the GOF result was modified according 

to the extent of the fit, with fits to a reduced data range being penalised; the purpose of which was 

to reduce the likelihood of fitting to a very small extent of the data. This method was found to 

perform well in estimating the true xmin value in simulated data and was therefore used when 

analysing both the simulated empirical measurement error data, and when re-analysing the 

wandering albatross GPS-tracked movement data. 

Empirical measurement errors 

To investigate whether the observed symmetry of a Lévy flight would be conserved in empirical data 

four sources of potential measurement error were simulated: (i) low spatial resolution, whereby the 

tag records in multiples of 0.5 or 1.0; (ii) under-sampling, whereby the animal performs more turns 
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than are recorded by the tag; (iii) over-sampling, whereby the tag records multiple locations 

between turning points, and (iv) track gaps, where random gaps appear in the data resulting in runs 

of data points followed by a gap, as might be expected in GPS datasets. Full details of these 

investigations are given in the Supporting Information (§5). Despite simulated errors being severe in 

some cases, all the truncated power-law datasets were correctly identified as being derived from a 

TP distribution. Similarly, the estimation of the exponent was in all cases accurate enough not to 

affect any interpretations or conclusions about behaviour patterns relevant to testing the LFF 

hypothesis. With both over- and under-sampled data the fitted xmin values were predictably high, 

leading to a power-law fit to less of the dataset, a feature that would therefore be expected in 

empirical data. 

A new analysis method for 2 and 3D data 

The results described above show clearly that 3D Lévy movement datasets have a dimensional 

symmetry in which the overall pattern and exponent are conserved when reduced to 1 dimension. 

The symmetry in Lévy flight has been shown to be robust to potential measurement errors in low 

spatial or temporal resolution data, supporting the contention that the 1D datasets analysed in 

previous studies (Sims et al. 2008, Humphries et al. 2010) are very likely to have been derived from a 

3D movement pattern consistent with that of a biological Lévy flight.  

The corollary of this symmetry is that a Lévy distributed 1D dataset is likely to be strongly 

representative of the 2D or 3D dataset from which it was originally derived; likewise a 1D 

exponentially distributed dataset will most likely have been derived from a 2D or 3D exponential 

dataset. The symmetry can be exploited to allow the straightforward and accurate determination of 

step-lengths in both 2D and 3D empirical data by analysing movements in a single dimension, as all 

dimensions will have characteristics representative of the whole. While it is possible that the 

horizontal and vertical components of a trajectory might differ, as is the case with wind-borne seeds 

(Reynolds 2013), differences are less likely between the axes of a horizontal movement path.  

While exponential datasets do not project into 1D with the same fidelity as a Lévy walk, they 

do so sufficiently well not to be easily mistaken for a Lévy pattern or vice versa, making the method 

valid for any 2D or 3D empirical data. Taking a single dimension solves the problems associated with 

identifying turning points, thus making the computation of step-lengths in complex movement 

datasets straightforward and objective.  
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An empirical demonstration of the new method 

To demonstrate the utility of our proposed new methodology we re-analysed 27 wandering 

albatross (D. exulans) datasets, previously analysed by Humphries et al. (2012), where landings on 

the water were identified and used as turning points for the Lévy analysis. In this study step-lengths 

were calculated as displacements in one dimension from the 2D GPS track of each bird. The datasets 

were recorded at minimum intervals of either 10 s or 1 min and therefore, for consistency, track 

gaps exceeding 1 min were ignored in all cases. The only other processing required was the 

correction of sampling artefacts through the coalescing of steps that formed part of a continuous 

movement, as described above. 

The simulated datasets used previously comprised 104 data points providing sufficient data to 

sample the distribution fully in all dimensions, resulting in equivalence in the estimated exponent for 

any dimension. With the albatross movement data, however, the datasets had far fewer data points 

once steps were coalesced and points below xmin were ignored, hence it was possible that a power-

law distribution may not have been sufficiently sampled in all dimensions for congruence in the 

exponent between either dimension (x or y). Therefore, both dimensions from each dataset were 

analysed separately and the results from each compared before conclusions were drawn about 

whether a Lévy or exponential pattern was present. 

Following the MLE analysis, model selection was performed, as described in Supporting 

Information, §9, to determine whether a dataset was best fit by either a truncated Pareto or 

exponential distribution (or neither). The best fitting model was therefore selected based on Akaike 

weights, the goodness of fit (Kolmogorov-Smirnov D statistic) and further, in the case of the TP, an 

exponent in the Lévy range and spanning at least 1.5 orders of magnitude of the data. 

Of the 27 D. exulans analysed, 20 birds (74%) were best fit by a TP distribution in both 

dimensions, 6 (22%) were best fit by TP in only one dimension, and a single bird was classified as 

being a ‘mixed’ model (i.e. fitting neither distribution) in either dimension. None were best fit by the 

exponential distribution in either dimension. The majority of fits were to a subset of the original 

data; however this was expected from the simulated data analysis. An average of ~69% of data 

points were ‘lost’ through the coalescing of move steps and the fitting of xmin, which tended to be 

conservative with the best fit often being well beyond the inflection point of the curve in the rank 

step-length plot (Fig. 3a). Furthermore, in most cases the inflection point was, as expected, less well 

defined than with the simulated data which tended to increase the fitted xmin value (Fig. 3b). It 

should be remembered that taking a single dimension results in a large number of points below the 

best fit xmin value and while this tends to make the fit appear poorer, these points are artefacts and 
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need to be ignored. While the average xmax value was 69% of the maximum step length, 15 of the 40 

datasets (i.e. the separate x and y dimensions, 37.5%) had xmax values equal to the maximum step. Of 

the 40 datasets 21 were found to have a best fit power-law model that spanned more than two 

orders of magnitude; the mean for all 40 datasets was 2.23 with values ranging from 1.51 to 3.79. 

For the 20 best fitting datasets the mean span was 2.66 orders of magnitude. Results are 

summarised in Supporting Information §11, Tables S11-13. The MLE results in the form of ranked 

step-length plots for all birds are shown in Supporting Information §12, Figure S10. A further 

requirement for a good fit to a Lévy walk is suggested to be uniform turn angle distribution. Analysis 

provided in the Supporting Information (§6) shows that this requirement is also fulfilled by the 

albatross data. 

To confirm further the TP distribution as the best fit we fitted the empirical data to composite 

Brownian (CB) distributions as described by Jansen et al. (2012). The results are described in full in 

the Supporting Information (§9) where it is shown that only 4 of the 20 datasets were best fit by a 

CB distribution. 

Given that the empirical data available for analysis comprised far fewer data points than the 

simulated data used previously, our result showing close equivalence in the estimated exponent (µ) 

values was perhaps unexpected. For the 20 birds that were best fit by a TP distribution the 

difference in the estimated value of µ between the two dimensions (expressed as the difference 

divided by the mean) ranged from 1.42% to 63%. However in 7 birds the μ values of the two 

dimensions were within 10%, and for a further 6 birds were within 20% of each other; therefore, the 

equivalence was somewhat higher than expected. 

Discussion 

We have demonstrated that a range of move step-length distributions typically found in empirical 

datasets project into 1D with sufficient fidelity, even with common empirical measurement errors, 

to be clearly identified in a subsequent MLE analysis. Using this finding we propose a method for the 

identification of turns and step-lengths in high resolution 2D or 3D datasets where previous methods 

have been found to be unsatisfactory. 

 The new method was illustrated using high resolution GPS data from wandering albatross 

(Diomedea exulans). We found Lévy movement patterns were prevalent, occurring in both 

dimensions for 20 of the 27 birds analysed. The majority of fits were found to be very good, with 

significant p-values computed for 23 individual dimension datasets and with 5 birds having 

significant p-values for both dimensions. In a previous study, where the distribution of landing 
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locations were analysed (Humphries et al. 2012), only four of the D. exulans datasets were best fit by 

a TP distribution. Because D. exulans landed relatively infrequently during foraging trips the analysis 

of the previous study resulted in very few data points which was shown to reduce the likelihood of a 

TP fit. Consequently the study by Humphries et al. (2012) detected fewer examples of Lévy flight 

behaviour, compared with the black browed albatross (Thalassarche melanophrys) datasets for 

which far more data points were available. In the current paper however, with significantly more 

data to analyse, we found very good support for the presence of Lévy flight movement patterns for 

the majority of wandering albatrosses, improving the rate of detection of Lévy flight behaviour from 

15% to 74% of individual birds. Given the significant increase in the detection of Lévy patterns with 

the new method it seems likely that previous studies purporting to demonstrate biological Lévy 

flight, or questioning its existence, might have been strengthened (e.g. Viswanathan et al. 1996), or 

have drawn quite different conclusions (e.g. Edwards et al. 2007, Edwards 2011), had this new 

methodology been employed. Furthermore, the movements analysed here represent characteristics 

of the actual flight path of the birds, rather than the distribution of the landings, which might 

correspond to the fractal nature of the prey distribution (Miramontes et al. 2012). The movements 

analysed here therefore better reflect the complex paths taken during animal foraging/searching 

behaviour.  

In the previous study by Humphries et al. (2012) the Lévy exponents were found to be lower 

than the theoretical optimum value of 2.0 (mean 1.19). Here, however, the mean value of 1.75 (s.d. 

0.31) is closer to the optimum. Exponents < 2.0 have been shown theoretically to be optimum values 

where targets (i.e. prey) are non-revistitable (i.e. single prey items as opposed to patches) 

(Viswanathan et al. 1999) and it was proposed by Humphries et al. (2012) that this was the most 

likely scenario for wandering albatrosses foraging in the open ocean. Eight datasets analysed here 

have a value slightly larger than 2.0, (mean 2.26, s.d. 0.16) suggesting more abundant prey. The 

results presented here therefore suggest a broader range of behaviours and of foraging 

environments than previously concluded. That not all datasets were found to fit a Lévy distribution is 

unsurprising since albatrosses are known to use olfactory clues (Nevitt et al. 2008) and will on those 

occasions be performing directed, rather than random searches, and will not be expected to fit a 

Lévy pattern. 

Given that Lévy movement patterns have been shown to optimise random searches for sparse 

targets (Viswanathan et al. 1999, Viswanathan et al. 2002, Viswanathan et al. 2011), our finding that 

Lévy movement patterns are prevalent in wandering albatrosses engaged in foraging trips in the 

open ocean, where prey patches are sparsely and unpredictably distributed, provides further 
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evidence that adaptations for stochastic search movements described by Lévy flights may have 

naturally evolved (Humphries et al. 2012, Sims et al. 2012). 

Applicability to empirical datasets 

In principle the method we have outlined here can be applied to almost any 2D or 3D movement 

dataset. It should be emphasised that the method is intended to identify turns and step-lengths in 

movement data suitable for subsequent analysis (such as MLE), but does not in itself provide direct 

evidence of the process that might have generated the observed step-length distribution, be it a 

correlated random walk, a Lévy walk or some other process, such as a continuous time random walk 

(Reynolds 2010).  

Furthermore, very low resolution datasets, such as those produced via Argos satellites, where there 

are few locations per day, will not capture sufficient fine-scale behaviour for robust conclusions to 

be drawn about the precise spatial form of the movement pattern (Bradshaw et al. 2007). As was 

found with the original analysis of the D. exulans landings data (Humphries et al. 2012), there are 

sometimes too few data points to sample the distribution sufficiently for a power-law to be 

discernible. Turchin (1998) comments that there is no generally acceptable solution to deal with 

over-sampled data, however, with 1D data, over-sampling is preferable to under-sampling. With 

over-sampled 1D data it is straightforward to coalesce steps that have been artificially divided by the 

sampling interval and therefore to recover accurately the correct turning points. With under-

sampled data, certainly at the further extremes, too much of the original movement is lost and 

cannot be recovered. Therefore high-resolution datasets, such as those obtained using GPS are 

expected to give much better results. 

Further research 

The method presented here would be well suited to other GPS datasets, for example golden 

eagles (Aquila chrysaetos) (Lanzone et al. 2012) or griffon vultures (Gyps fulvus) (Nathan et al. 2012), 

both of which perform extensive foraging flights and might be expected to exhibit Lévy flight 

patterns. Terrestrial GPS studies of predators such as wolves (Canis lupus) (Gurarie et al. 2011), lynx 

(Lynx Canadensis) (Olson et al. 2011) or cougar (Puma concolor) (Knopff et al. 2010) could also make 

use of this methodology for testing the possibility of scale-independence in animal movement or for 

identifying the times/locations where optimal search strategies may be employed. The method may 

also benefit studies of the movements of nematodes (Ohkubo et al. 2010) or even individual 

immune cells (Harris et al. 2012).  
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It would also be interesting to apply this method to studies that have led to debate, such as that 

by de Jager et al. (2011) where the movements of mussels (Mytilus edulis) were found to follow a 

Lévy-like walk pattern but which was challenged by Jansen et al (2012). The method presented here 

is simpler to implement than the methods employed in that study and requires no sensitivity testing 

to determine the best parameters.  

The simplicity of the method, together with the now very abundant, high resolution, 2D data 

available for analysis from a very broad range of studies, should allow a more thorough test of the 

Lévy flight foraging hypothesis, as well as the provision of a useful tool for the analysis of movement 

in diverse organisms. To encourage research in this area the software we developed to perform the 

MLE analysis is freely available for download with this paper from the Sims Lab web site.  
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Tables 

Table 1: Symmetry of Lévy analysis in 3 dimensions 

Analysing each dimension of the 3D tracks separately shows that both the exponent and the fit to 

the truncated Pareto distribution are conserved. Note that the p-values shown here should be 

interpreted as significant if > 0.1.  

µ Dimension xmin µ xmax % error in μ wAIC Alt wAIC p-value 

1.5 X 1.0055 1.5095 1680.55 -0.63% 1.00 0.00 0.7760 

1.5 Y 1.0006 1.5150 1408.71 -1.00% 1.00 0.00 0.8264 

1.5 Z 1.0004 1.5145 1099.32 -0.97% 1.00 0.00 0.1504 

2.0 X 1.0010 1.9855 613.42 0.72% 1.00 0.00 0.8420 

2.0 Y 1.0003 1.9919 808.47 0.40% 1.00 0.00 0.4960 

2.0 Z 1.0032 2.0099 2170.03 -0.50% 1.00 0.00 0.3992 

2.5 X 1.0001 2.4858 216.71 0.57% 1.00 0.00 0.7656 

2.5 Y 1.0012 2.4882 113.06 0.47% 1.00 0.00 0.7720 

2.5 Z 1.0014 2.4805 130.00 0.78% 1.00 0.00 0.9256 
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Figure legends 

Fig. 1: 3D and 1D analysis of a 3D Lévy flight. 

a) The 3D plot; b) MLE analysis in 3D showing a good fit with μ = 1.996, very close to the value of 2.0 

used to generate the data; c) vertical displacements from the z axis; d) rank step-length plot of 

vertical displacements showing two clear domains, red line indicates xmin at a value of 1.0; e) MLE 

analysis of step-lengths > xmin showing a good fit to truncated Pareto (TP) distribution with μ = 1.994, 

very close to the original 3D track; black circles are observations, red line is fitted TP, blue dashed 

line is competing exponential. f) Rank step-length plot of 1 dimension of a simulated 3D Lévy path 

with xmin = 10 and xmax = 10000, vertical red reference line indicates xmin, the plot is visually almost 

indistinguishable from that shown in d. 

Fig. 2: Analysis of a 3D exponential track. 

a) The 3D exponential track, note the smaller scale compared to the Lévy track shown in Fig. 1a. b) 

MLE analysis of the 3D track, where black circles are observations, red line is fitted exponential, blue 

dashed line is competing truncated Pareto. c) Vertical displacements from the 3D track. These look 

very different from the Lévy displacements shown in Fig. 1c. d) MLE analysis of vertical 

displacements for values > xmin (1.0) showing that while the exponential fit (red line) is clearly better 

that the competing TP (blue dashed line) the symmetry is not conserved as well as with a TP dataset. 

Fig. 3: MLE analysis of D. exulans bird V. 

a) and b) show the MLE analysis of the x and y dimensions, respectively, with all data points included 

to illustrate the extent of the fit. c, d) The same plots but with the data points below xmin removed to 

illustrate that above xmin the fit to a TP distribution is very good. Black circles are observations, red 

line is the fitted TP distribution, and blue dashed line is the competing exponential. 
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Fig 1: 3D and 1D analysis of a 3D Lévy flight 
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Fig 2: Analysis of a 3D exponential track 
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Fig 3: MLE analysis of D. exulans bird V 
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