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Abstract 

With the global rapid expansion of offshore renewable energies, there is an urgent need to 

assess and predict effects on marine species, habitats, and ecosystem functioning. Doing so 

will require dynamic, multitrophic, ecosystem-centric approaches coupled with 

oceanographic models that can allow for physical and/or biogeochemical indicators of 

marine ecosystem change to be included. However, in such coupled approaches, indicators 

carry uncertainties that can propagate and affect species higher up the trophic chain. 

Dynamic Bayesian networks (DBNs) are pragmatic approaches that probabilistically 

represent ecosystem-level interactions. They allow for uncertainties to be better estimated 

than mechanistic models that only account for expected values. In this study, we calculated 

variance as a measure of uncertainty from selected indicators and used them to build DBN 

models. A hidden variable was incorporated to model functional ecosystem change, where 

the underlying interactions dramatically change, following a disturbance. We wanted to 

assess whether propagating uncertainty into the modelling process affects the predictive 

accuracy of the models in the context of reconstructing the time series of the ecosystem 

dynamics. Model accuracy was improved for 60% of the species once variance was added. 

The models were better in capturing the temporal inter-annual variability, once variance was 

calculated with a rolling window approach. The hidden variable successfully modelled 

previously identified ecosystem changes, however, now with the added uncertainty, the 
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changes that implicated the ecosystem state were identified earlier in the time series. The 

results indicate that using DBNs is highly valuable as it gains accuracy with the addition of 

uncertainty.  

  

1.0 Introduction 

Marine ecosystems consist of complex dynamic interactions among species and the 

environment, the understanding of which has significant ecological and societal implications 

for predicting nature's response to changes in climate and biodiversity (Barange et al., 2014; 

Molinos et al., 2016). Such interactions are further exacerbated by spatial and temporal 

variation of the ecosystem and its components (Polis et al 1996, Hunsicker et al 2011, 

Doney et al 2012). Stressors such as, climate change, fishing, and resource exploitation 

have also been shown to modify the driving forces in ecosystems (Blanchard et al 2012, 

Cheung et al 2019; Lotze et al 2019). Understanding and disentangling the drivers of 

ecosystem change can be challenging because of the variability in observations, for example 

due to imperfect methods of observation and uncertainty in potential associations due to 

external forces like climate change (Link et al., 2012). Such complexities are a major 

challenge for modellers, particularly as data are often rather scarce due to the relatively high 

costs of collecting field data, the practical difficulties of collecting samples from all parts of 

the ecosystem, and the lack of scientific understanding about the entire range of factors that 

may be relevant to the ecosystem functioning.   

Significant progress has been made in developing ecosystem models that use traditional 

statistical approaches to understand the relationships between several variables (Lynam et 

al., 2017), including “end-to-end” ecosystem models to predict impacts of environmental 

change on the structure and function of marine food webs and the services they provide 

(Heath et al., 2021). However, all these models assume that the underlying functional 

relationships do not change their form over time. This assumption might not be true, as 
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ecosystems are known to sometimes undergo relatively fast structural changes that have a 

major effect on the ecosystem dynamics (Mollman et al., 2008). Further, it is possible that 

the changes are driven by unobserved components, i.e. ecosystem variables that we do not 

have data for. Allowing for uncertainties in the modelling process rather than just accounting 

for expected values is also an improvement to deterministic models which might remain 

fraught with errors when applied to problems with real data (Wikle, 2003). Thus, it is 

recommended that ecosystem models develop fuller non-mechanistic appreciation of 

ecological interactions across space and over time due to changing pressures at different 

levels of the trophic chain (Uusitalo et al., 2018).  

Approaches using time series of multispecies population characteristics, as well as both 

physical and biological ecosystem components are useful methods to understand the drivers 

of ecosystem change, such that patterns of species population change can be quantified 

across space and over time, under different climate and/or anthropogenic scenarios (Lynam 

et al., 2017). In particular, coupling physical dynamics from high resolution oceanographic 

models (e.g., Finite Volume Community Ocean Model (FVCOM)) into ecosystem models can 

allow for critical physical (e.g., temperature) and/or biogeochemical (e.g., oxygen) indicators 

of marine ecosystem change to be included. However, all modelled and to some extent 

observed physical variables carry inherent biases and uncertainties. Additionally, model 

resolution and boundary forcing may contribute further to these errors (Powley et al., 2020). 

In coupled physics-ecosystem models, these errors can propagate through dependent 

physical and/or biogeochemical parameters and may affect variables higher up the trophic 

chain.   

Other sources of error could come from data being assembled from different spatial and 

temporal scales, for example, fish stock data in one-year resolution, whilst climate data, such 

as sea surface temperature available on a daily resolution. The spatial and temporal scale of 

physical and biological indicators is a challenging issue with respect to understanding the 

multiplicity of mechanisms underlying observed patterns and variability changes (Wiens, 
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1989, 1990; Levin, 1992) and especially the trophic interactions of highly mobile marine 

animals (fish, seabirds, and marine mammals) within dynamic marine environments. 

However, the inclusion of physical and biological indicators is essential as they can be 

significant drivers of variation, or direction of change, in either behaviours, distributions 

and/or population dynamics of the highly mobile top predator marine species, thus delivering 

an understanding of the indicators of habitat and ecosystem change (Trifonova et al., 2022). 

For example, one of several possible physical indicators to measure stratification is the 

potential energy anomaly (PEA, J/m3). PEA represents the amount of work required to bring 

about complete vertical mixing per unit of volume (Simpson and Bowers, 1981) and indicates 

the strength of stratification and mixing rate (De Boer et al., 2008; De Dominicis et al., 2018). 

The seasonal cycle of stratification underpins primary production cycles. Recent modelling 

outcomes reveal that PEA plays a significant role in predicting the abundance changes of 

both lower (e.g., sandeel larvae) and higher trophic level (e.g., harbour porpoise, black-

legged kittiwake) marine species on a regional spatial scale (Carroll et al., 2015; Trifonova et 

al., 2021) and to a lesser extent, in determining habitat preferences on a North Sea scale 

(Sadykova et al., 2017; Wakefield et al., 2017). PEA can reflect more subtle spatial and 

temporal changes within a habitat type (van Leeuwen et al., 2016) and season (Simpson 

and Bowers, 1981), thus further highlighting the importance of spatial and seasonal 

distribution of physical processes as good indicators up through the entire trophic chain and 

any changes that are affecting ecosystem functioning. 

Being able to propagate uncertainty into ecosystem models can be very useful when applied 

to environmental challenges with real data. Understanding how levels of uncertainty affect 

the predictive accuracy of the ecosystem models could provide more insight into which 

variables are the causes and even if certain variables are relevant at all in efforts to 

reconstruct ecosystem dynamics. Most importantly, explicit accounting for uncertainty can 

add substantial practical insight to many real-life problems that can aid communicating 

theories and results to industry and policy (Uusitalo, 2007).   
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One way of dealing with uncertainty in environmental domains is using statistical indicators 

related to variability, autocorrelation and recovery time (Carpenter et al., 2011; Scheffer et 

al., 2009). Such approaches have been demonstrated as new tools for understanding 

nonlinear dynamics in ecosystems, thus revealing new indicators of vulnerability and 

improving ecosystem management in a rapidly changing environment. Previous studies 

have demonstrated the use of variance and autocorrelation in the early detection of data 

patterns that govern the temporal ecological dynamics (e.g., ecosystem shift: Scheffer et al., 

2009). Specifically, studies have used an increase in the mean and increase in the variance 

in the Quickest detection method to account for the expected ecosystem shift and 

uncertainty, respectively (Carpenter et al., 2014). Also, it has been demonstrated that such 

metrics can improve the predictive accuracy of ecosystem models when trying to predict 

functional changes, i.e., regime shifts (Trifonova et al., 2014). To understand and predict 

ecosystem response to perturbation, it is necessary to unravel the ecological networks 

underlying ecosystem’s stability and fragility (Dunne et al., 2002). However, identifying all the 

interactions and quantifying all the unexpected effects and interactions due to external 

pressures within complex real ecosystems can be rather challenging and beyond the scope 

of traditional fieldwork (Aderhold et al., 2012).  

Computational inference of ecological interactions presents an alternative route to unravel 

ecosystem dynamics. Specifically, one way forward of dealing with these issues is to use 

probabilistic methods such as Bayesian networks (BNs) that can be used to capture 

ecological patterns between variables (Hui et al., 2022) and reveal spatiotemporal trends 

(Tucker and Duplisea 2012), without requiring specific information on mechanisms and vast 

amounts of observational data used in traditional ecosystem models (Uusitalo 2007). 

Modelling time series is achieved by using an extension of the BN known as the Dynamic 

Bayesian Network (DBN) which allow predictions to be made across different spatial and 

temporal scales and with a range of indicator species or functional groups representing all 

trophic levels (Trifonova et al., 2015). A hidden variable can be used to enable the modelling 
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of non-stationary dynamics (Tucker and Liu, 2004), which is potentially highly useful in 

ecological analyses where complex ecological interactions change in time due to changing 

pressures at different levels of the trophic chain. Its value depends on all the observed 

variables it is linked to, and a change in the pattern of the hidden variable indicates a change 

in the system interactions. BNs use probability as a measure of uncertainty: beliefs about 

values of variables are expressed as probability distributions, and the higher the uncertainty, 

the wider is the probability distribution. As information accumulates, knowledge of the true 

value of the variable usually increases, i.e., the uncertainty of the value diminishes and the 

probability distribution grows narrower (Gelman et al., 1995; Sivia, 1996).  

In this study, we focused on providing a method to propagate uncertainty (i.e., calculated as 

variance) from a set of physical and biological indicators that included critically important 

factors of ecosystem change (e.g. stratification, primary production, temperature; Trifonova 

et al., 2021). Understanding how levels of uncertainty affect the predictive accuracy of the 

ecosystem models could provide more insight into which indicators are more relevant when 

evaluating ecosystem structure and function in efforts to determine the ecosystem state. In 

this way, we wanted to provide a pragmatic yet powerful methodology that can be used 

within marine spatial planning considerations of the relevant implications of future climate 

change versus anthropogenic impacts (e.g., offshore large-scale wind developments). 

Firstly, the indicators were used to build dynamic hidden BN models, and we wanted to 

assess whether bringing in uncertainty into the modelling process would affect the predictive 

accuracy of the models in the context of reconstructing the ecosystem dynamics. To be able 

to do so, we used a machine learning optimization technique to find the data-driven 

estimates of interactions among the physical and biological indicators. We used the learned 

data-driven interactions to construct a dynamic BN, i.e. one that explicitly represents the 

behaviour of the system over time, that incorporates a hidden variable to enable the 

modelling of non-stationary dynamics. A hidden variable was incorporated in the model to 

see whether we can detect a change in the interactions of the observed variables over time. 
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Therefore, we wanted to see whether the hidden variable can be used to model changes in 

the ecosystem state. We then calculated the variance as a measure of uncertainty for 

selected physical and biological indicators and used it to define their conditional probability 

distributions when learning the model variants of the hidden dynamic BN model. We used a 

rolling window approach to calculate variance and autocorrelation for all the ecosystem 

components to build a separate model variant. We examine the models' accuracy in terms of 

their ability to reproduce observations of the trends (increases versus decreases) in all the 

ecosystem components. We evaluate the potential usefulness of Bayesian inference for 

ecosystem-level interactions by examining whether using statistical metrics, such as 

variance and autocorrelation, improves the predictive accuracy and modelling of the 

ecosystem state.  

 

 

2.0 Materials and Methods 

2.1 Study region and ecosystem components  

Focus of the study are UK coastal waters and specifically the region of Firth of Forth, as 

defined by the spatial boundaries in Figure 1, which currently contains Scotland’s largest 

operational offshore wind farm. The marine environment in this area is very complex due to 

a composite bathymetry exhibiting localized shelf banks, suggesting that the region might be 

subjected to small-scale processes defining a “mosaic” of heterogenous hydrodynamic 

conditions (Zampollo et al., 2025). The Forth is known to support overwintering populations 

and juveniles of estuarine fish communities and represents a significant percentage of the 

commercial activity in the North Sea (Elliott et al., 1990). The Isle of May, located about 40 

km east of the Firth of Forth, is known to be a National Nature Reserve hosting > 250,000 

breeding seabirds and a population of breeding grey seals that feed upon eastern productive 

offshore waters (Harris and Wanless, 1998).  
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Fig.1 The spatial boundaries of the study region: Firth of Forth.  

The time series input data consisted of annual values (1990–2022) as either seasonal mean 

values of physical variables (e.g. temperature) or cumulative values of biological variables 

(e.g. net primary production), or maximum values of physical and biological variables: 

current speeds and maximum Chl-a, respectively. Biological variables for population 

dynamics included total annual abundance, recruitment or mean breeding/pupping success 

(Table 1). Individual zooplankton species were grouped by summing up the abundance into 

assemblages, based on the geographical distribution and ecological characteristics of the 

underlying species, based on Beaugrand et al., 2004. All other trophic levels (fish, seabirds 

and mammals) were not grouped but used as individual species in the ecosystem models 

(Table 1). We refer to all the variables in the study as “ecosystem components” but 

distinguish components based on them being either physical (e.g. horizontal currents speed) 

or biological (e.g. sandeel recruitment) indicators. The ecosystem components in the study 

were chosen as they cover the main physical and biological variables that have been shown 

to be important to marine mammals and seabirds and their prey (Carroll et al. 2015, 

Wakefield et al. 2017, Chavez-Rosales et al. 2019). These will alter with climate change 

(Wakelin et al. 2015, Holt et al. 2016, Sadykova et al. 2017), and with the next biggest 
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change to our shallow seas: very large number of new structures and substantial (100’s 

GWs) extraction of energy from ORE (van der Molen et al. 2014, Boon et al. 2018, De 

Dominicis et al. 2018; Daewel et al., 2022; Dorrell et al., 2022). Previous studies were also 

conducted on a larger spatial scale (i.e., > 1000 km2) identifying the indicators used here as 

key regarding ecosystem change (Trifonova et al., 2021) and assessing both ecosystem 

status and resilience to natural and anthropogenic changes (Trifonova et al., 2023).   

 

 

Table 1. Summary of physical and biological data.  

Category   Ecosystem 
component 

Explanation    Source  

Physical  Bottom temperature 
(BT) 

Annual summer (May- 
August) mean bottom 
temperature (˚C) 

Atlantic-European 
North West Shelf-
Ocean Physics 
Reanalysis provided 
by E.U. Copernicus 
Marine Service 
Information using 
the Nucleus for 
European Modelling 
of the Ocean 
(NEMO) model 
(CMEMS-NWS 
physics) 

Physical Sea surface 
temperature (SST) 

Annual summer (May-
August) mean sea 
surface temperature 
(˚C) 

CMEMS-NWS 
physics 

Physical  Potential Energy 
Anomaly (PEA) 

Annual summer (May- 
August) mean potential 
energy anomaly (J/m3). 
The energy required to 
mix the water column 
completely and 
commonly used as an 
indicator for the strength 
of stratification (De 
Dominicis et al., 2018) 

CMEMS-NWS 
physics 

Physical Horizontal current 
speed (HSpeed) 

Annual summer (May- 
August) mean maximum 
depth averaged 
horizontal currents 
speed (m/s) 

CMEMS-NWS 
physics 
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Physical Vertical current 
speed (VSpeed) 

Annual summer (May- 
August) mean maximum 
depth averaged 
horizontal currents 
speed (m/s) 

CMEMS-NWS 
physics 

Primary 
production  

Chlorophyll-a (max 
Chl-a) 

Annual summer (May- 
August) mean maximum 
chlorophyll-at any depth 
(mgC/m3)  

Atlantic-European 
North West Shelf-
Ocean 
Biogeochemistry 
Reanalysis provided 
by E.U. Copernicus 
Marine Service 
Information using 
the European 
Regional Seas 
Ecosystem Model 
(ERSEM) (CMEMS-
NWS 
biogeochemistry) 

Primary 
production 

Net primary 
production (NetPP)  

Annual summer (May-
August) mean depth 
averaged net primary 
production (gC m-
2 year−1) 

CMEMS-NWS 
biogeochemistry 

Physical  Mixed Layer Depth 
(MLD)  

Annual summer (May-
August) mean mixed 
layer depth (m). The 
deepest layer affected 
by surface turbulent 
mixing; indicator for the 
variations of primary 
production   
 

CMEMS-NWS 
physics 

Biogeochemical  Oxygen within the 
Bottom Mixed Layer  
(Oxy) 

Annual summer (July- 
October) mean 
minimum oxygen (µmol 

L⁻¹) 

CMEMS-NWS 
biogeochemistry 

Abundance A2 zooplankton 
assemblage   

Annual summer (May-
August) total sum count 
of zooplankton species 
(e.g. Calanus 
helgolandicus) 

Continuous plankton 
recorder (CPR) 
survey 

Abundance A4 zooplankton 
assemblage   

Annual summer (May-
August) total sum count 
of zooplankton species 
(e.g. Para-
Pseudocalanus spp.) 

CPR Survey  

Abundance A5 zooplankton 
assemblage   

Annual summer (May-
August) total sum count 
of zooplankton species 
(e.g. Acartia spp.) 

CPR Survey 

Abundance A6 zooplankton 
assemblage   

Annual summer (May-
August) total sum count 
of zooplankton species 

CPR Survey 
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(e.g. Calanus 
finmarchicus) 

Recruitment   Sandeel   Annual number of 
individuals to enter the 
fished component of the 
stock 

ICES Stock 
Assessment  

Recruitment  Herring   Annual number of 
individuals to enter the 
fished component of the 
stock 

ICES Stock 
Assessment  

Recruitment Sprat   Annual number of 
individuals to enter the 
fished component of the 
stock 

ICES Stock 
Assessment  

Recruitment Mackerel   Annual number of 
individuals to enter the 
fished component of the 
stock 

ICES Stock 
Assessment  

Recruitment Haddock   Annual number of 
individuals to enter the 
fished component of the 
stock 

ICES Stock 
Assessment  

Recruitment Cod  Annual number of 
individuals to enter the 
fished component of the 
stock 

ICES Stock 
Assessment  

Human 
pressure  

Catch of pelagic fish 
species (herring, 
sandeel, sprat, 
mackerel; Catch 
PEL)   

Annual total sum of 
nominal catches (tonnes 
live weight) 

ICES Historical 
Nominal Catches 
(1950–2010) and 
Official Nominal 
Catches (2006–
2022) 

Human 
pressure 

Catch of demersal 
species (cod, 
haddock; Catch 
DEM)   

Annual total sum of 
nominal catches (tonnes 
live weight) 

ICES Historical 
Nominal Catches 
(1950–2010) and 
Official Nominal 
Catches (2006–
2022) 

Human 
pressure 

Catch of shellfish 
species (scallops, 
Nephrops; Catch 
Shell)   

Annual total sum of 
nominal catches (tonnes 
live weight) 

ICES Historical 
Nominal Catches 
(1950–2010) and 
Official Nominal 
Catches (2006–
2022) 

Human 
pressure 

Landings of pelagic 
fish species (herring, 
mackerel; Landings 
PEL) 

Annual summer (May-
August) total sum of 
landed fish (tonnes live 
weight) 

Marine Management 
Organization 
(MMO)’s annual UK 
Sea Fisheries 
Statistics 

Human 
pressure 

Landings of 
demersal fish 
species (cod, 
haddock; Landings 
DEM)   

Annual summer (May-
August) total sum of 
landed fish (tonnes live 
weight) 

MMO Fisheries 
Statistics 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Human 
pressure 

Landings of shellfish 
species (scallops, 
Nephrops; Landings 
Shell)   

Annual summer (May-
August) total sum of 
landed shellfish (tonnes 
live weight) 

MMO Fisheries 
Statistics  

Breeding 
success   

Northern 
gannet (Morus 
bassanus) 

Annual summer mean 
number of chicks 
fledged per pair 

Seabird monitoring 
programme  

Breeding 
success   

Black-legged 
kittiwake (Rissa 
tridactyla)  

Annual summer mean 
number of chicks 
fledged per pair 

Seabird monitoring 
programme  

Breeding 
success   

Common 
guillemot (Uria 
aalge) 

Annual summer mean 
number of chicks 
fledged per pair 

Seabird monitoring 
programme  

Breeding 
success   

Razorbill (Alca torda) Annual summer mean 
number of chicks 
fledged per pair 

Seabird monitoring 
programme  

Abundance  Harbour 
porpoise (Phocoena 
phocoena) 

Annual summer (May-
August) mean of 
encounter rate 

Waggitt et al., 
(2020).  

Productivity  Grey 
seal (Halichoerus 
grypus) 

Annual summer mean 
estimates of pup 
production 

Special Committee 
on Seals (SCOS, 
2022)  

Abundance  Harbour seal (Phoca 
vitulina) 

Annual summer 
(August) total sum count 
of harbour seals 

SCOS, 2022 

 

 

2.2 Bayesian networks  

Formally, a Bayesian network (BN) describes the joint distribution (a way of assigning 

probabilities to every possible outcome over a set of variables, X1…XN) by exploiting 

conditional independence relationships, represented by a directed acyclic graph (DAG) 

(Friedman et al., 1999). The conditional probability distribution (CPD) associated with each 

variable X encodes the probability of observing its values given the values of its parents and 

can be described by a continuous or a discrete distribution. In this case, the CPD is called a 

Conditional Probability Table (CPT) and all the CPTs in a BN together provide an efficient 

factorization of the joint probability: 

𝑝(𝑥) =∏𝑝(𝑥𝑖|𝑝𝑎𝑖)

𝑛

𝑖=1

 

where pai are the parents of the node xi (which denotes both node and variable).  
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The DAG consists of nodes (or variables) and edges (or links) between the nodes. “Parent” 

nodes are those from which arrows originate, and “child” nodes are those to which arrows 

are pointing. Edges between nodes represent dependency relationships. Each node in the 

DAG is characterized by a state which can change depending on the state of other nodes 

and information about those states propagated through the DAG. By using this kind of 

inference, one can change the state or introduce new data or evidence (change a state or 

confront the DAG with new data) into the network, apply inference and inspect the posterior 

distribution (which represents the distributions of the variables given in the observed 

evidence). The graphical structure of BNs is particularly convenient when we aim to describe 

an ecological network to model all the interactions between species and their environment 

that also provides a user-friendly framework to communicate the results (Chen and Pollino, 

2012). It is relevant to think of the BN as a “graph”, describing species as the “nodes” within 

the graph, and interactions as the links or “edges” that join the nodes (Faisal et al., 2010). 

2.3 Dynamic Bayesian networks  

Modelling time series is achieved by using an extension of the BN known as the Dynamic 

Bayesian Network (DBN), where nodes represent variables at time slices. DBNs are directed 

graphical models of stochastic processes that characterize the unobserved and observed 

state in terms of state variables, which can have complex interdependencies (Murphy, 2001). 

DBNs can model the dynamics of a dataset using a hidden variable.  

This hidden variable is used to model unobserved variables and missing data and can infer 

some underlying state of the series when applied through an autoregressive link that can 

capture relationships of a higher order (Murphy, 2001). The hidden variable allows us to 

examine unmeasured effects that would bring further insight on the importance of ecosystem 

dynamics to better understand community structure and resilience in an exploited ecosystem 

(Trifonova et al., 2015, Uusitalo et al., 2018). In most domains, the observed variables 

represent only some characteristics of a system, which can have a negative effect on the 

learning procedure. For example, the apparent complexity of a predicted variable can be 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

explained imagining it is a result of two simple processes, the “true” underlying state, which 

may evolve deterministically, and our measurement of the state, which is often noisy 

(Murphy, 2002). We can then “explain away” unexpected outliers in the observations, as 

opposed to strange fluctuations in “reality”. 

A hidden variable can be linked to one, multiple, or all, of the observed ecosystem 

components in the model. Then, the hidden variable value depends on all the observed 

ecosystem components it is linked to, and a change in the pattern of the hidden variable 

indicates a change in the system interactions. This is highly useful in ecological analyses 

where nonstationary dynamics are common and complex ecological interactions change with 

time due to changing pressures e.g., climate change (Chen and Pollino, 2012). In this work, 

the hidden variable was included in the models, to capture complex interdependencies 

between and among ecosystem components that might represent something external to the 

community, which is not purely constrained within the model structure. We use the hidden 

variable in this study, to represent a change in the underlying ecosystem dynamics (i.e. 

ecosystem state), following a natural or anthropogenic disturbance to the system interactions 

in the study region. 

2.4 Uncertainty propagation 

We used the variance as a measure of uncertainty (i.e., a high variance meaning greater 

uncertainty about the outcome of 𝑋 given its parents or a low variance meaning that X is 

more tightly constrained by its parents). For example, in the case of two variables X and Y, 

with Y influencing X. The conditional distribution P (X|Y) can be modelled as a Gaussian 

distribution with mean (𝜇𝑋(𝑌)) and variance (𝜎𝑋
2(𝑌)): 

𝑃(𝑋|𝑌) = 𝑁 (𝜇𝑋(𝑌), 𝜎𝑋
2(𝑌)) 

In a Bayesian network, uncertainty about a variable propagates through the network from the 

parent nodes to the child nodes. We defined variance in the CPD which reflects the 

uncertainty associated with predicting the value of a variable given its parents. When set up 
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in this way, the uncertainty, in turn, influences the accuracy and reliability of the model 

predictions (i.e., if the conditional variance of a node is high, the distribution of possible 

outcomes for that node will be wide). The accuracy of a Bayesian network model can be 

affected by how well it handles uncertainty and variance, especially in terms of its predictive 

performance.  

However, a more complex model which accounts for varying variance in different parts of the 

network (e.g., different variances for different conditional distributions), can sometimes 

improve predictions by allowing the model to better reflect the underlying uncertainties in the 

system (Nabney and Cheng, 1997; Simoen et al., 2015; López et al., 2022). If variance is 

assumed to be constant or ignored in certain parts of the model, it may lead to overly 

simplistic models that fail to capture important nuances in the data.  

There is copious literature that addresses statistical metrics, such as variance and 

autocorrelation and their use as indicators of an approaching regime shift (Jiao et al., 2009; 

Carpenter et al., 2014). In previous work, they have been used to identify a functional 

collapse (i.e., regime shift) by modelling early-warning signals in the time-series (Trifonova et 

al., 2014). However, here, we use them as an alternative approach to account for uncertainty 

and examine whether their inclusion influences the model accuracy. We are also interested 

in identifying to what extent including them in our model impacts the expected values of the 

hidden variable. Previous work has shown that after the addition of the metrics in the model, 

the hidden variable was more stable and more likely to reflect the underlying ecosystem 

dynamics (i.e., capture a regime shift) (Trifonova et al., 2014).  
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3.0 Experiments 

3.1 Learning Bayesian networks  

We learn the Bayesian network structure for each of the spatial regions by applying a hill-

climb optimization technique. The hill-climb search begins with an empty network. In each 

stage of the search, networks in the current neighbourhood are found by applying a single 

change to a link in the current network such as “add arc” or “delete arc” and choose the one 

change that improves the score the most. We used the Bayesian Information Criterion (BIC) 

for scoring candidate networks: 

𝐵𝐼𝐶 = 𝑙𝑜𝑔𝑃(𝜃) + 𝑙𝑜𝑔𝑃(𝜃|𝐷) − 0.5𝑘𝑙𝑜𝑔(𝑛) 

where Θ represents the model, D is the data, n is the number of observations (sample size) 

and k is the number of parameters. log P(Θ) is the prior probability of the network model Θ, 

log P(Θ|D) is the log likelihood whilst the term k log(n) is a penalty term, which helps to 

prevent overfitting by biasing towards simpler, less complex models. The learned Bayesian 

network links represent dependence, these are spatial relationships that are predictive in an 

informative, not causal aspect (Milns et al., 2010, Trifonova et al., 2015). The method 

identifies similarity in the temporal trend of the paired variables (i.e. both variables increase, 

or as one increases, the other decreases over time). We performed the hill-climb with 

random restart (n = 10), which conducts several hill-climbing runs, perturbing the result of 

each one as the initial network for the next. Then, we apply the learning for 1300 iterations. 

The maximum number of “parent” nodes (learned from the hill-climb) was limited to three to 

avoid over-fitting (Trifonova et al., 2015). This hill-climb approach produces a probabilistic 

dependency output per year (i.e., value from 0 to 1) and for all the possible combinations of 

paired relationships between the observed variables. We define a confidence threshold - the 

minimum confidence (estimate of the probability of finding a relationship) for a relationship to 

be accepted in the learned network structure. We defined relationships of high confidence in 

time as those in which we have the greatest mean confidence (calculated from all the years 
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per identified relationship) of being in the generated network (threshold ≥ 0.25). We use the 

confidence value to represent the strength of each dependency relationship between a pair 

of two variables. The confidence of the identified relationship represents the level of 

similarity in the temporal trend of the paired variables. In addition, to learn the network 

structure for each year in the time window, the hill-climbing was conducted on a window of 

data (size of window = 10). In this way, we would be able to capture any significant 

interactions over the previous 10 years. Based on the level of confidence and the number of 

the identified relationships between the observed indicators and between the observed 

indicators with the hidden variable, we define “best” indicators, which represent the most 

confident data-driven estimates of indicators of ecosystem dynamics and their changes 

across space and time. 

3.2 Ecosystem models comparison   

3.21 HDBN ecosystem model 

The modelling approach is a dynamic Bayesian network model with a hidden variable 

(HDBN) that is a modified version of the model developed in Trifonova et al. (2015, 2017). 

The model was developed from the identified consistent physical and biological indicators 

from Section 3.1. From the strongest relationships, up to three indicators (i.e. “parent” 

nodes) were selected that drive each target ecosystem component (i.e. “child” node) and 

were used to build the modelling structure. Therefore, in this way the HDBN ecosystem 

model captures the spatial and temporal variability of multiple biophysical interactions 

throughout the trophic chain, ensuring that the strongest relationships (i.e. relationships of 

high dependency that are predictive in an informative, not causal aspect), and so the most 

consistent indicators of ecosystem change, are the ones identified in this process. The 

model included a single hidden variable that was modelled as a discrete node with two 

states.  
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When the model parameters are fitted with data, the value of the hidden variable is set so 

that it maximizes the fit of the model to the data (e.g. the log-likelihood). If the patterns of the 

observed variables change in the time series, e.g. the slope of a dependency between two 

variables changes, the value of the hidden variable linked to these variables’ changes. Thus, 

we use the hidden variable in this study, to represent a change in the underlying ecosystem 

dynamics (i.e. ecosystem state). To do this, the hidden variable was linked to all the 

ecosystem components in the model.  

We want to compute P (Ht|Xt, Xt – 1), where Ht represents the hidden variable and Xt 

represents all observed variables at times t. We use the predicted variable states from time t 

to infer the hidden state at time t. The hidden variable was parameterized using the 

Expectation Maximization (EM) algorithm (Bilmes, 1998). In this case, the log-likelihood is: 

𝐿(Ɵ) = log𝑃(𝑋|Ɵ) = log∑𝑃(𝑋,𝐻|Ɵ)

𝑗

 

where ∑H is the sum over the set of hidden variables H, required to obtain the marginal 

probability of the data. In the first step of the EM, the hidden variable is inferred using the 

predicted states, whilst in the second step the estimated likelihood function is maximized. 

When the algorithm converges to a local maximum, the parameters are estimated. We used 

an exact inference method: the junction tree algorithm (Murphy, 2001).  

3.22 HDBN + physics and HDBN + ecology ecosystem models  

The variance (i.e., the square root of the standard deviation) was calculated for all the 

physical and biogeochemical drivers and used to populate their CPDs (i.e., gaussian 

distributions) when building the first model variant, the HDBN + physics ecosystem model. In 

the second ecosystem model variant (HDBN + ecology), the variance was calculated for the 

biological indicators (i.e., zooplankton abundance, fish recruitment, birds breeding success 

and mammals’ abundance and/or harbour porpoise encounter rate) and was used to 

populate their CPDs when building the HDBN + ecology ecosystem model. In this way, we 
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can account for varying variance in different parts of the network (e.g., different variances for 

different conditional distributions), which will potentially improve predictions by allowing the 

models to better reflect the underlying uncertainties in the system. In contrast, parameters 

for the HDBN model were not specifically assigned. In the case of gaussian nodes, the 

following was assumed: if node is called Y, its continuous parents (if any) are called X, and 

its discrete parents (if any) are called Q. The distribution on Y is defined as follows:  

Y|X=x, Q=i  ~  N( mu( : , i)  +  W( : , : , i)  *  x,  Sigma ( : , : , i) ),  

where N (mu, Sigma) denotes a normal distribution with mean mu and covariance Sigma 

(Murphy, 2001). 

3.23 HDBN + VAR + AC ecosystem model  

Finally, variance and autocorrelation were calculated on a window of data, set to size 10, so 

that each metric captures the value of interest over the previous 10 years. The size of the 

window was found to be optimum due to the length of the time series Note, the predictions 

from this model variant will be available for a shorter time series due to the windowing 

approach. The metrics were included in another ecosystem model variant (HDBN + VAR + 

AC), and they were both linked to all the remaining ecosystem components. We explore to 

what extent including the two statistical metrics in our model impacts the expected values of 

the hidden variable but also whether including the two metrics influences the model 

accuracy. This model will not be addressed as a competing model in the results and 

discussion, we simply wanted to state the overall predictive accuracy during the learning 

process using a windowing approach, however, the learned value of the hidden variable will 

be discussed in the following sub-section.  

We examine the models’ (i.e., HDBN, HDBN + physics, HDBN + ecology and HDBN + VAR 

+ AC, Table 2) accuracy in terms of their ability to reproduce observations of the trends 

(increases versus decreases each year of the time series) in all the ecosystem components 

(oceanographic processes as well as species/functional groups at all trophic levels). The 
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same modelling structure (learned from the identified relationships from Section 3.1) was 

used for all the model variants, except for the HDBN + VAR +AC model, where variance and 

autocorrelation were both linked to all the remaining ecosystem components. In the HDBN + 

physics and HDBN + ecology models, the difference was the added variance to the CPDs, 

but the graphical structure was identical. Model performance, in terms of sum of squared 

error (SSE), was assessed for each model and predictions were compared on a year-to-year 

basis versus the original input data. Non-parametric bootstrap (re-sampling with replacement 

from the training set, (Friedman et al., 1999) was applied 250 times for the model and its 

variants to obtain statistical validation in the predictions. The data were standardised prior to 

conducting the experiments to a mean of 0 and standard deviation of 1. We conduct all 

experiments using the Bayes Net Toolbox in MATLAB (Murphy, 2001). 
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Fig.2 (a) General structural form of the dynamic Bayesian network model with a hidden 

variable (HDBN) where X1…XN represents the set of variables and arrows denote conditional 

independence relationships. (b) The strongest data-driven relationships, that were used to 

build the ecosystem models, however, only some illustrative ecosystem components are 

shown, to maximise visual clarity. The same illustrative ecosystem components are 

presented in sub-section 4.12. Blue-coloured links indicate relationships with the physical 

indicators, red with fisheries catch and landings, green with primary production components, 

orange with zooplankton assemblages and purple with higher trophic levels. Symbols used 

to denote the ecosystem components are next to the relationships. 

 

 

 

 

 

Table 2. Summary of HDBN models  

Models Name Comments 
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HDBN Hidden Dynamic Bayesian 
network model 

A hidden dynamic Bayesian network model 
with no variance specified in the CPDs  

HDBN + 
physics 

Hidden Dynamic Bayesian 
network model with conditional 
variance on physical and 
biogeochemical indicators  

Variance was calculated for BT, SST, PEA, 
max Chl-a, NetPP, MLD, Hspeed, Vspeed, 
Oxygen and was used to populate their 
CPDs 

HDBN + 
ecology 

Hidden Dynamic Bayesian 
network model with conditional 
variance on biological indicators  

Variance was calculated for zooplankton 
abundance, fish recruitment, birds 
breeding success and mammals’ 
abundance and/or productivity and was 
used to populate their CPDs 

HDBN + 
VAR + AC 

Hidden Dynamic Bayesian 
network model with statistical 
metrics: variance and 
autocorrelation  

Variance and autocorrelation were 
calculated on a rolling window of data 

 

4.0 Results 

4.1 Model Comparison 

4.11 Lowest SSE values  

SSE per species, per model were compared to assess how well each model performed 

against the annual input data values. The HDBN model reported the highest number of 

ecosystem components (n=9, 47%) predicted most accurately (least SSE per species), 

closely followed by the HDBN + physics (n=6, 32%). These results are reassuring that the 

inference scheme can handle the increased model complexity. The model with the least 

accurately predicted ecosystem components was the HDBN + ecology (n=4, 21%) with 

some SSEs higher than 30.00, which highlights the importance of the level of variance when 

running these types of models. We found the threshold of 30.00 to be most appropriate 

based on examining the range of SSE values across models as well as across ecosystem 

components. Although the general improvement in predictive accuracy of the HDBN model 

over the competing models, there is a similar level of accuracy (i.e., least SSE difference: 

less than 5.00 between the generated overall predictions of two models) for most of the 

ecosystem components. Two exceptions to that were haddock and razorbill. For these 

species, the SSE difference across the competing models was always higher than 5.00. 

Some ecosystem components (e.g., the zooplankton functional group A6), were generally 
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predicted with higher SSEs values from two of the competing models (i.e., SSE higher than 

30.00) in comparison to the remaining ecosystem components. Overall, the HDBN + VAR + 

AC also performed well, specifically reporting some low SSE values for the lower trophic 

levels (e.g., A2 zooplankton group) and higher trophic level species like haddock and 

harbour seal (i.e., SSE less than 10.00). At the same time, a higher SSE (i.e., SSE higher 

than 30.00) was reported for the seabirds (e.g., razorbill).  

Overall, for higher trophic levels of fish and above (i.e., seabirds and mammals) the addition 

of either physical or biological variance saw a better fit (decrease in SSE) for 77% of those 

13 species (10/13). When comparing predictions across the ecosystem components, 

mammal species were most accurately predicted by either the HDBN + physics or HDBN 

model. The seabird species were most accurately predicted by either the HDBN + physics or 

HDBN + ecology, highlighting the importance of including variance in the case of these 

higher trophic level ecosystem components. Across the fish species, it was harder to find 

any specific patterns in terms of which model reported most accurate performance per 

species, however, some patterns were identified based on what specific indicators (physical 

vs biological) were driving the fish recruitment in the models. For example, sandeel and 

herring were both most accurately predicted by the HDBN + physics model and their levels 

of recruitment are both driven by a combination of physical and biogeochemical indicators, 

whilst the sprat, which was most accurately predicted by the HDBN was driven by biological 

indicators and catch.   

Table 2. Sum of squared error (SSE) of the ecosystem components predictions generated by 

the HDBN and its variants (a). The component-specific interactions that are used to build the 

HDBN models are shown inside the brackets. The * symbol indicates most accurate 

predictions for ecosystem components across the three models (values of SSEs that are 

less than 30.00). (b) shows SSE of the ecosystem components generated by the HDBN + 

VAR + AC. In a separate table as the values are not directly comparable to the other three 

models.  
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a) 

Ecosystem components  HDBN HDBN + 
physics  

HDBN + 
ecology 

Max Chl-a (PEA, Hspeed, MLD) 22.48* 29.85 25.39 
NetPP (Oxy, Hspeed) 6.34* 6.92 6.43 
A2 (Hspeed, Vspeed) 29.96* 31.14 30.99 
A4 (PEA, NetPP, Vspeed) 10.08* 10.13 11.33 
A5 (PEA, Vspeed) 9.63* 10.47 9.85 
A6 (BT, NetPP, Hspeed) 29.35* 32.50 41.32 
Sandeel (BT, A4, Catch DEM) 20.15 17.59* 19.52 
Herring (MLD, NetPP, Land PEL) 26.85 25.80* 29.50 
Sprat (A2, A6, Catch PEL) 26.99* 27.96 29.46 
Mackerel (BT, A2) 30.99 30.50 27.94* 
Haddock (NetPP, Catch DEM) 26.01 20.03 18.03* 
Cod (MLD, Max Chl-a, Land DEM) 14.64* 24.68 14.92 
Kittiwake (Vspeed, Sandeel, Sprat) 29.1 27.04* 43.13 
Guillemot (MLD, NetPP, Sandeel) 29.79 24.36* 30.57 
Gannet (A6, Herring, Sprat) 29.44 36.13 29.84* 
Razorbill (Mackerel, Haddock, Cod) 29.71 31.90 21.48* 
Grey seal (BT, NetPP, A6) 14.80 13.12* 20.93 
Harbour seal (Max Chl-a, A5, Cod) 29.41* 31.55 42.90 
Harbour porpoise (Max Chl-a, Oxy, 
Sprat) 

15.51 11.55* 13.44 

b) 

 HDBN + VAR + AC 

Max Chl-a 22.34 
NetPP 16.72 
A2 9.31 
A4 16.17 
A5 26.88 
A6 22.52 
Sandeel 17.07 
Herring 26.69 
Sprat 38.38 
Mackerel 14.38 
Haddock 9.11 
Cod 23.87 
Kittiwake 29.65 
Guillemot 32.66 
Gannet 10.39 
Razorbill 37.64 
Grey seal 10.92 
Harbour seal 9.68 
Harbour porpoise 11.87 
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4.12 Temporal trends  

We compared example ecosystem components and their population trend predictions in time 

across the three model variants. We want to visually demonstrate how well the model 

variants performed in reproducing the inter-annual variability and long-term patterns (always 

shown as blue lines) versus the original input data (red lines). Note, we only show some 

illustrative examples, with their 95% confidence intervals calculated from the bootstrap 

predictions' mean and standard deviation, shown in the Supporting information (SI). The 

models were able to capture many of the changes (increases versus decreases) of the 

ecosystem components across over time, predicting the general trends in population 

dynamics for all lower trophic level functional groups and higher trophic level species using 

three or fewer indicators. 

 

 

 

 

Fig.3 Model predictions (blue line) from the HDBN and its model variants (HDBN + physics, 

HDBN + ecology and HDBN + VAR + AC) versus real data (red line) for sandeel recruitment. 

SSEs are shown under the panels.   
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For sandeel, the HDBN and HDBN + physics were better able to capture the declining trend 

in the early 2000s, in comparison to the HDBN + ecology. The HDBN + physics (least SSE 

value) in comparison to the HDBN was better in modelling some of the individual yearly 

variations (e.g., years 2014, 2019), however, the declining trend (from the 1990s to early 

2000s) over time was better captured by the HDBN model. The HDBN + VAR + AC model 

variant performed well in capturing some of the individual yearly variations (e.g., 2005).  

 

 

Fig.4 Model predictions (blue line) from the HDBN and its model variants (HDBN + physics, 

HDBN + ecology and HDBN + VAR + AC) versus real data (red line) for cod recruitment. 

SSEs are shown under the panels.  

Similarly, the two best performing models (least SSE values) were able to capture the long-

term trend in the case of cod recruitment, specifically, the declining trend from the early 

2000s, whilst the HDBN + physics model was better in capturing some of the specific yearly 

variations (mid to late 2000s). Similarly, to the sandeel, the HDBN + VAR + AC model for 

cod, was able to capture well a lot of the individual yearly variations.  
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Fig.5 Model predictions (blue line) from the HDBN and its model variants (HDBN + physics, 

HDBN + ecology and HDBN + VAR + AC) versus real data (red line) for guillemot breeding 

success. SSEs are shown under the panels.  

In the case of guillemot, all three model variants were able to capture the declining trend 

from the mid 1990s- early 2000s. However, none of the models were able to capture the 

steep decline in 2006, with the exception of the HDBN + VAR + AC model. After 2006, it was 

the HDBN + physics, followed by the second accurate model (HDBN) that were able to 

capture the inter-annual variabilities in the time series.  

 

 

 

4.2 Hidden variable 

To assist in characterizing the ecosystem state, we examine the learned hidden variables 

from the HDBN and HDBN + VAR+ AC models. The hidden variable from the HDBN model 

was relatively stable for majority of the time series: it modelled one state until 2010, followed 
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by some fluctuations in 2011 and 2018. The hidden variable from the HDBN + VAR+ AC 

model was a bit more varied than the hidden variable from the HDBN model.It still identified 

a change in the ecosystem state around the same time, even, a year earlier in 2009, 

followed by two changes in the ecosystem state in 2013-2015 and then in 2018 that 

remained until the end of the time series.  

  

 

Fig.6 The learned hidden variables from the HDBN (top) and HDBN + VAR+ AC (bottom) 

models. Note, the shorter time series in the bottom plot due to the windowing approach.  

5.0 Discussion 

5.1 Summary of model variants 

In this study, we examined whether adding variance as a measure of uncertainty to the 

CPDs of specific ecosystem components would result in a better performance of a hidden 

dynamic Bayesian network model (HDBN). The HDBN model showed consistently accurate 
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predictions of the ecosystem components. The HDBN + physics (variance added to the 

CPDs of selected physical and biogeochemical indicators) was the second-best performing 

model which was reassuring that the increased model complexity applied here has resulted 

in revealing some genuine patterns of the underlying lower and higher trophic level 

relationships identified by our approach and their heterogeneity. In addition, these results 

also suggest more insight into the relevance of physical and biogeochemical indicators, such 

as stratification, temperature and NetPP when evaluating ecosystem structure and function 

in efforts to determine the ecosystem state. It is evident that changes in the population 

dynamics of higher trophic levels are likely to reflect those of their preferred prey, which may, 

in turn, be bottom–up driven by dynamic bio-physical oceanographic processes like across 

spatial and temporal scales (Bertrand et al., 2014; Boyd et al., 2015; Cox et al., 2018). 

Temperature is another major driver of marine ecosystems and one of the key factors 

affecting the physiology and ecology of all marine organisms (Simpson et al., 2011; Edwards 

et al., 2020; Evans and Waggitt, 2020). BT was found to be a better indicator, in comparison 

to SST (Table 2a), with the mechanism for that potentially being that BT reflects steady 

changes over longer periods of time, including integrated trends in warming/cooling, whilst 

changes in SST reflect a wider range of the daily/seasonal extremes (Trifonova et al.,2022). 

NetPP was another indicator that was found to be a key driver for majority of the higher 

trophic level species dynamics. It is through energy transfer along the food web, that NPP 

provides bottom–up control on fisheries production, identified within the North Sea and 

across other large marine ecosystems around the globe (Chassot et al., 2007; Blanchard et 

al., 2012; Barange et al., 2014). NPP plays a significant role in determining habitat 

preferences and facilitating foraging for both fish prey and top predator species, highlighting 

that prey and predators are selecting aspects of the habitat type very differently and that 

might be a reflection of prey species avoiding areas with predators (Sadykova et al., 2017; 

Cox et al., 2018). With the improved understanding of the exact bottom-up (e.g. levels of 

mixing and stratification) versus top-down (e.g. predators and fishing) mechanisms that 

influence habitat use by marine animals across spatial (< 1 km through to 1000 km) and 
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temporal (days through to years) scales, the effects of biophysical interactions on 

populations and ecosystems and how these vary with climate change can be better 

understood.  

Predictions from all models were sensitive to the observed variables incorporated due to the 

complex natural processes involved in generating the ecological input data. We reported 

some higher SSEs (e.g., zooplankton functional group A6, Table 2) which could be due to 

structural uncertainties (i.e. species-specific relationships and/or colony-specific drivers used 

to build the models) but also due to empirical data uncertainties perhaps due to some 

sampling variation in the survey data. In addition, there was some similarity in accuracy of 

generated predictions from different models that might be attributed to the similar effects of 

changing climate on many species (Fernandes et al., 2013), as previous work has 

demonstrated the potential effects of continuous warming with cold-water anomalies and 

salinity changes (Trifonova et al., 2021).  

The HDBN model performed consistently well across the ecosystem components, because 

the model evaluates the relative influence of different driving factors when modelling 

ecosystem-level dynamics. Our results highlight the need to include region-specific 

ecosystem level changes and dynamics of the multiplicity of interactions when building 

predictive models of complex and heavily exploited ecosystems within shallow seas, such as 

the North Sea. The recognition of a hidden variable is important which was adopted here to 

capture unmeasured effects and changes in ecosystem components variance that are not 

purely constrained within the model structure. This is very different from mass balance 

model approaches (Christensen and Walters, 2004) whose fitting is conditioned completely 

upon the model structure.  

However, for some of the species, prediction accuracy was improved once variance was 

included by the HDBN + physics model, suggesting that accounting for additional sources of 

variation removed spurious interactions and let to a more plausible network structure (Faisal 

et al., 2010; Aderhold et al., 2012). The successful performance of the model variant 
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highlights the heterogeneous nature of the ecosystem component-specific lower and higher 

trophic level interactions (e.g., driven by physical, biological and/or combination of both) and 

gives us more accurate insights on the structure of the underlying ecological system. 

Through the applied BN approach, we were able to make tractable predictions of the true 

dynamic nature of physical, biogeochemical and biological relationships and their patterns 

across trophic levels, and their changes over time. This increases knowledge necessary to 

add to the traditional use of top predator population dynamics as separate aspects of marine 

systems and will reduce uncertainties of the level of direct and indirect effects on populations 

across a range of trophic levels. By accounting for varying variances in the CPDs of the 

drivers, the model becomes better equipped to handle uncertainty in a way that reflects the 

true underlying system (Yildirim and Liaw, 2024).  

Some dependencies between variables might be complex and non-linear. It is often 

assumed by statistical and mechanistic modelling approaches that the underlying functional 

relationships (i.e., the governing ecological processes) are assumed to be static. This 

assumption, of course, is overly simplistic, and maybe inaccurate, as ecosystems are 

subject to increasing human pressures that can lead to drastic changes, including regime 

shifts (Scheffer et al., 2009). However, the assumption of static relationships is a necessary 

feature of mechanistic models, as these models are built on the best available current 

understanding of how systems function. While this static representation reflects our best 

knowledge at the time, we are unable to account for 'unknown unknowns'.  

From the modelling and data analysis perspective, these pose a challenge, since the same 

functional forms may not describe the relationships between the variables before and after 

the change (Blenckner et al., 2015). By allowing variances in the physical and/or 

biogeochemical drivers to vary, our HDBN model + physics can better capture complex and 

nonlinear lower and higher trophic level relationships where the uncertainty might vary 

depending on certain conditions. For example, in a previous study using a larger ecosystem 

region (i.e., deep central North Sea), that enclosed the study region in this work, the region 
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was shown to be controlled by both types of forcing: bottom-up (e.g., primary production) 

and top-down (e.g., fisheries exploitation) leading to complex patterns of control on the 

ecosystem (Trifonova et al., 2023). This further explains the better performance of the 

models with added variance for some of the ecosystem components, i.e., the Firth of Forth 

region is characterized by a changeable ecosystem state prone to variability, therefore, a 

more complex model is needed to capture the underlying ecosystem dynamics. For 

example, in the case of breeding success, every bird species was better predicted by either 

the HDBN + physics or HDBN + ecology model, however, the SSE difference was still ≤ 5.0 

between the HDBN model and the model variant, except for razorbill. This suggests that 

breeding success might be influenced by more complex factors than some of the other 

ecosystem components that were better predicted by the HDBN model alone. This could 

also suggest that seabirds might be more prone to variability, thus, highlighting them as 

potentially more sensitive indicators to pressures.   

Interestingly, once the variance was added to the CPDs, the models were better able to 

capture some of the specific yearly variations in the time series. It seems that the variance 

adds to the overall model performance by specifically capturing the inter-annual variability in 

the time series. The potential explanation for this is that in some cases where variables are 

inherently noisy or more prone to variability (e.g., seabird breeding success), the more 

complex Bayesian network model applied here can help prevent overfitting by modelling the 

noise appropriately with higher variance (López et al., 2022; Ramampiandra et al., 2023). 

This prevents the model from becoming overly influenced by outliers or fluctuations in the 

data, resulting in more accurate predictions. This was particularly the case for guillemot for 

which the HDBN + VAR + AC model was the only model that was able to capture the steep 

decline in breeding success in 2006. Overall, the HDBN + VAR + AC model was able to 

capture the trends and inter-annual variations with high accuracy, including some specific 

yearly variations. The accurate performance of this model is also likely due to the inclusion 

of a rolling window that has been previously discussed as successful in detecting an 
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impending regime shift in ecosystem time series (Carpenter et al., 2014). The successful 

performance of a dynamic hidden BN model that was used in combination with variance and 

autocorrelation has been previously demonstrated, but in the context of detecting early-

warning signals of functional changes in fisheries across a range of geographic regions 

(Trifonova et al., 2014).  

 

5.2 Hidden variable 

A hidden variable was used in this study to learn and therefore, represent the ecosystem 

state, and specifically capture any changes in the ecosystem interactions that lead to 

changes in state. We compared the hidden variable from the HDBN model to the hidden 

variable from the HDBN + VAR+ AC model to identify to what extent including the statistical 

metrics impacts the expected value of the hidden variable and therefore, the expected 

ecosystem state.  

Both hidden variables modelled a change in the ecosystem state after 2010, with the hidden 

variable from the HDBN + VAR + AC modelling the change in state a year earlier in 2009, 

allowing detection of early-warning signals of functional change across different geographic 

regions (Trifonova et al., 2014). This change in the ecosystem state has been discussed 

previously for much larger ecosystem regions and it was thought to be due to changes in the 

bottom temperature (e.g., cold-water anomalies: González-Pola et al., 2018; Trifonova et al., 

2021), with the mechanism behind being the interplay between the physical indicators 

(temperature and mixing) and productivity (Capuzzo et al., 2018). Here, we were able to add 

further insight on the potential extent of the functional change, even at the smaller spatial 

scale in this study. Most importantly, with the now added uncertainty (i.e., variance) to the 

model, we were able to detect such changes earlier in the time series. The hidden variable 

from the HDBN + VAR+ AC model identified an additional change in the ecosystem state 

(i.e., 2013-2015) whilst both hidden variables modelled another change in state in 2018. The 
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period 2015-2018 has been previously identified as a period of change with relatively low 

values in net primary production, most likely attributed to changes in mixing (Capuzzo et al., 

2018; Trifonova et al., 2021). Similarly, with the added results from this study, and 

specifically, once uncertainty was included in the model, we were able to further identify the 

timing of a second potentially important period in the context of reconstructing the ecosystem 

dynamics. These results highlight that the use of a hidden variable when modelling 

ecosystem change is potentially useful in providing insights on the underlying dynamics and 

patterns in terms of ecological stability and resilience that can contribute towards the general 

advice on potential response of the system to pressure. Indeed, it is by examining the 

learned ecosystem state that allows us to conclude whether the environment is in a 

desirable (predictable) or less desirable state and during which years the state is desirable. 

Thus, the hidden variable, once set up and updated with rather low effort, could potentially 

be used to check for possible new changes in the underlying ecosystem dynamics, indicative 

of major changes in the ecosystem, which could be further investigated (Uusitalo et al., 

2018).   

 

 

6.0 Conclusion  

The dynamic Bayesian network approach is a promising method to analyse complex 

ecosystem-level interactions, and it may help reveal underlying ecological patterns. Here, we 

demonstrated that the applied hidden dynamic Bayesian network model can handle the 

increased complexity by accounting for uncertainty (i.e., variance) in the conditional 

probability distributions (CPDs) of selected physical, biogeochemical and biological 

indicators. Indeed, model performance was improved for 77% of the higher trophic level 

species (fish, seabirds and marine mammals) once variance was included in the CPDs. 

Therefore, models that account for additional sources of variation seem to better reflect on 
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the underlying ecosystem-level dynamics. These results provide real insights into the 

characteristics of the study region, which is a changeable ecosystem state prone to 

variability, and pave the route for better understanding of the ecosystem structure and 

function under different pressures. Most importantly, the methodology provides an effective 

baseline that can be used within marine spatial planning considerations of the relevant 

implications of future climate change versus anthropogenic impacts (e.g., offshore large-

scale wind developments). Our results show temporally specific ecological interactions that 

indicate a regional relationship of ecosystem components and their habitat with the 

mechanisms varying from bottom-up (e.g., primary production) through to top-down (e.g., 

fisheries). We were able to identify the consistent drivers and illuminate the likely 

mechanisms that led to consistently accurate model predictions. However, it must be noted 

that perfect reconstruction is unlikely due to the noisy input data and complex ecological 

process involved in generating such data (Faisal et al., 2010). However, our findings 

complement more traditional mechanistic (Heath et al., 2021) and statistical (Lynam et al., 

2017) approaches; and have extended our knowledge into the ecosystem-level 

understanding of this North Sea region and its ecological structure and stability. Further, the 

success of applying the HDBN + VAR+ AC model highlights the usefulness of the rolling 

window approach in combination with the use of statistical metrics in characterizing the 

temporal dynamics of this region, specifically improving predictive performance in capturing 

the inter-annual variability in the time series. The two hidden variables successfully modelled 

changes in the ecosystem state, one attributed to cold-water anomalies and a second one 

attributed to the interplay between the physical indicators (temperature and mixing) and 

productivity. The hidden variable from the HDBN + VAR+ AC model was able to capture 

these changes earlier than the hidden variable from the HDBN model.  

Future work can use the methods shown here with the hidden dynamic Bayesian network 

model and with added variance in the CPDs from selected physical and biological indicators 

to produce a range of “what-if?” scenarios to better understand the combined ecosystem-
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level effects of offshore large-scale wind developments, climate change and fisheries 

displacement. Such approaches will be useful to guide what habitats/species are more 

representative of what disturbances and what management decisions are required to steer 

towards more ecologically sustainable conditions under the influence of future changes 

(Trifonova et al., 2023). These types of outputs can be used to assess the cumulative effects 

across a range of trophic species to support the development of evidence-based policy and 

marine management.  
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Highlights 

 Dynamic, multitrophic, ecosystem-centric approaches coupled with oceanographic 

models 

 Dynamic Bayesian networks (DBNs) are pragmatic approaches to ecosystem-level 

interactions 

 Variance as a measure of uncertainty from selected physical and biogeochemical 

indicators 

 A hidden variable was incorporated to model functional ecosystem change 

 Using DBNs is highly valuable as it gains accuracy with the addition of uncertainty 


