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Abstract

With the global rapid expansion of offshore renewable energies, there is an urgent need to
assess and predict effects on marine species, habitats, and ecosystem functioning. Doing so
will require dynamic, multitrophic, ecosystem-centric approaches coupled with
oceanographic models that can allow for physical and/or biogeochemical indicators of
marine ecosystem change to be included. However, in such coupled approaches, indicators
carry uncertainties that can propagate and affect species higher up the trophic chain.
Dynamic Bayesian networks (DBNs) are pragmatic approaches that probabilistically
represent ecosystem-level interactions. They allow for uncertainties to be better estimated
than mechanistic models that only account for expected values. In this study, we calculated
variance as a measure of uncertainty from selected indicators and used them to build DBN
models. A hidden variable was incorporated to model functional ecosystem change, where
the underlying interactions dramatically change, following a disturbance. We wanted to
assess whether propagating uncertainty into the modelling process affects the predictive
accuracy of the models in the context of reconstructing the time series of the ecosystem
dynamics. Model accuracy was improved for 60% of the species once variance was added.
The models were better in capturing the temporal inter-annual variability, once variance was
calculated with a rolling window approach. The hidden variable successfully modelled

previously identified ecosystem changes, however, now with the added uncertainty, the



changes that implicated the ecosystem state were identified earlier in the time series. The
results indicate that using DBNs is highly valuable as it gains accuracy with the addition of

uncertainty.

1.0 Introduction

Marine ecosystems consist of complex dynamic interactions among species and the
environment, the understanding of which has significant ecological and societal implications
for predicting nature's response to changes in climate and biodiversity (Barange et al., 2014;
Molinos et al., 2016). Such interactions are further exacerbated by spatial and temporal
variation of the ecosystem and its components (Polis et al 1996, Hunsicker et al 2011,
Doney et al 2012). Stressors such as, climate change, fishing, and resource exploitation
have also been shown to modify the driving forces in ecosystems (Blanchard et al 2012,
Cheung et al 2019; Lotze et al 2019). Understanding and disentangling the drivers of
ecosystem change can be challenging because of the variability in observations, for example
due to imperfect methods of observation and uncertainty in potential associations due to
external forces like climate change (Link et al., 2012). Such complexities are a major
challenge for modellers, particularly as data are often rather scarce due to the relatively high
costs of collecting field data, the practical difficulties of collecting samples from all parts of
the ecosystem, and the lack of scientific understanding about the entire range of factors that

may be relevant to the ecosystem functioning.

Significant progress has been made in developing ecosystem models that use traditional
statistical approaches to understand the relationships between several variables (Lynam et
al., 2017), including “end-to-end” ecosystem models to predict impacts of environmental
change on the structure and function of marine food webs and the services they provide
(Heath et al., 2021). However, all these models assume that the underlying functional

relationships do not change their form over time. This assumption might not be true, as



ecosystems are known to sometimes undergo relatively fast structural changes that have a
major effect on the ecosystem dynamics (Mollman et al., 2008). Further, it is possible that
the changes are driven by unobserved components, i.e. ecosystem variables that we do not
have data for. Allowing for uncertainties in the modelling process rather than just accounting
for expected values is also an improvement to deterministic models which might remain
fraught with errors when applied to problems with real data (Wikle, 2003). Thus, it is
recommended that ecosystem models develop fuller non-mechanistic appreciation of
ecological interactions across space and over time due to changing pressures at different

levels of the trophic chain (Uusitalo et al., 2018).

Approaches using time series of multispecies population characteristics, as well as both
physical and biological ecosystem components are useful methods to understand the drivers
of ecosystem change, such that patterns of species population change can be quantified
across space and over time, under different climate and/or anthropogenic scenarios (Lynam
et al., 2017). In particular, coupling physical dynamics from high resolution oceanographic
models (e.g., Finite Volume Community Ocean Model (FVCOM)) into ecosystem models can
allow for critical physical (e.g., temperature) and/or biogeochemical (e.g., oxygen) indicators
of marine ecosystem change to be included. However, all modelled and to some extent
observed physical variables carry inherent biases and uncertainties. Additionally, model
resolution and boundary forcing may contribute further to these errors (Powley et al., 2020).
In coupled physics-ecosystem models, these errors can propagate through dependent
physical and/or biogeochemical parameters and may affect variables higher up the trophic

chain.

Other sources of error could come from data being assembled from different spatial and
temporal scales, for example, fish stock data in one-year resolution, whilst climate data, such
as sea surface temperature available on a daily resolution. The spatial and temporal scale of
physical and biological indicators is a challenging issue with respect to understanding the

multiplicity of mechanisms underlying observed patterns and variability changes (Wiens,



1989, 1990; Levin, 1992) and especially the trophic interactions of highly mobile marine
animals (fish, seabirds, and marine mammals) within dynamic marine environments.
However, the inclusion of physical and biological indicators is essential as they can be
significant drivers of variation, or direction of change, in either behaviours, distributions
and/or population dynamics of the highly mobile top predator marine species, thus delivering
an understanding of the indicators of habitat and ecosystem change (Trifonova et al., 2022).
For example, one of several possible physical indicators to measure stratification is the
potential energy anomaly (PEA, J/m®). PEA represents the amount of work required to bring
about complete vertical mixing per unit of volume (Simpson and Bowers, 1981) and indicates
the strength of stratification and mixing rate (De Boer et al., 2008; De Dominicis et al., 2018).
The seasonal cycle of stratification underpins primary production cycles. Recent modelling
outcomes reveal that PEA plays a significant role in predicting the abundance changes of
both lower (e.g., sandeel larvae) and higher trophic level (e.g., harbour porpoise, black-
legged kittiwake) marine species on a regional spatial scale (Carroll et al., 2015; Trifonova et
al., 2021) and to a lesser extent, in determining habitat preferences on a North Sea scale
(Sadykova et al., 2017; Wakefield et al., 2017). PEA can reflect more subtle spatial and
temporal changes within a habitat type (van Leeuwen et al., 2016) and season (Simpson
and Bowers, 1981), thus further highlighting the importance of spatial and seasonal
distribution of physical processes as good indicators up through the entire trophic chain and

any changes that are affecting ecosystem functioning.

Being able to propagate uncertainty into ecosystem models can be very useful when applied
to environmental challenges with real data. Understanding how levels of uncertainty affect
the predictive accuracy of the ecosystem models could provide more insight into which
variables are the causes and even if certain variables are relevant at all in efforts to
reconstruct ecosystem dynamics. Most importantly, explicit accounting for uncertainty can
add substantial practical insight to many real-life problems that can aid communicating

theories and results to industry and policy (Uusitalo, 2007).



One way of dealing with uncertainty in environmental domains is using statistical indicators
related to variability, autocorrelation and recovery time (Carpenter et al., 2011; Scheffer et
al., 2009). Such approaches have been demonstrated as new tools for understanding
nonlinear dynamics in ecosystems, thus revealing new indicators of vulnerability and
improving ecosystem management in a rapidly changing environment. Previous studies
have demonstrated the use of variance and autocorrelation in the early detection of data
patterns that govern the temporal ecological dynamics (e.g., ecosystem shift: Scheffer et al.,
2009). Specifically, studies have used an increase in the mean and increase in the variance
in the Quickest detection method to account for the expected ecosystem shift and
uncertainty, respectively (Carpenter et al., 2014). Also, it has been demonstrated that such
metrics can improve the predictive accuracy of ecosystem models when trying to predict
functional changes, i.e., regime shifts (Trifonova et al., 2014). To understand and predict
ecosystem response to perturbation, it is necessary to unravel the ecological networks
underlying ecosystem’s stability and fragility (Dunne et al., 2002). However, identifying all the
interactions and quantifying all the unexpected effects and interactions due to external
pressures within complex real ecosystems can be rather challenging and beyond the scope

of traditional fieldwork (Aderhold et al., 2012).

Computational inference of ecological interactions presents an alternative route to unravel
ecosystem dynamics. Specifically, one way forward of dealing with these issues is to use
probabilistic methods such as Bayesian networks (BNs) that can be used to capture
ecological patterns between variables (Hui et al., 2022) and reveal spatiotemporal trends
(Tucker and Duplisea 2012), without requiring specific information on mechanisms and vast
amounts of observational data used in traditional ecosystem models (Uusitalo 2007).
Modelling time series is achieved by using an extension of the BN known as the Dynamic
Bayesian Network (DBN) which allow predictions to be made across different spatial and
temporal scales and with a range of indicator species or functional groups representing all

trophic levels (Trifonova et al., 2015). A hidden variable can be used to enable the modelling



of non-stationary dynamics (Tucker and Liu, 2004), which is potentially highly useful in
ecological analyses where complex ecological interactions change in time due to changing
pressures at different levels of the trophic chain. Its value depends on all the observed
variables it is linked to, and a change in the pattern of the hidden variable indicates a change
in the system interactions. BNs use probability as a measure of uncertainty: beliefs about
values of variables are expressed as probability distributions, and the higher the uncertainty,
the wider is the probability distribution. As information accumulates, knowledge of the true
value of the variable usually increases, i.e., the uncertainty of the value diminishes and the

probability distribution grows narrower (Gelman et al., 1995; Sivia, 1996).

In this study, we focused on providing a method to propagate uncertainty (i.e., calculated as
variance) from a set of physical and biological indicators that included critically important
factors of ecosystem change (e.g. stratification, primary production, temperature; Trifonova
et al., 2021). Understanding how levels of uncertainty affect the predictive accuracy of the
ecosystem models could provide more insight into which indicators are more relevant when
evaluating ecosystem structure and function in efforts to determine the ecosystem state. In
this way, we wanted to provide a pragmatic yet powerful methodology that can be used
within marine spatial planning considerations of the relevant implications of future climate
change versus anthropogenic impacts (e.g., offshore large-scale wind developments).
Firstly, the indicators were used to build dynamic hidden BN models, and we wanted to
assess whether bringing in uncertainty into the modelling process would affect the predictive
accuracy of the models in the context of reconstructing the ecosystem dynamics. To be able
to do so, we used a machine learning optimization technique to find the data-driven
estimates of interactions among the physical and biological indicators. We used the learned
data-driven interactions to construct a dynamic BN, i.e. one that explicitly represents the
behaviour of the system over time, that incorporates a hidden variable to enable the
modelling of non-stationary dynamics. A hidden variable was incorporated in the model to

see whether we can detect a change in the interactions of the observed variables over time.



Therefore, we wanted to see whether the hidden variable can be used to model changes in
the ecosystem state. We then calculated the variance as a measure of uncertainty for
selected physical and biological indicators and used it to define their conditional probability
distributions when learning the model variants of the hidden dynamic BN model. We used a
rolling window approach to calculate variance and autocorrelation for all the ecosystem
components to build a separate model variant. We examine the models' accuracy in terms of
their ability to reproduce observations of the trends (increases versus decreases) in all the
ecosystem components. We evaluate the potential usefulness of Bayesian inference for
ecosystem-level interactions by examining whether using statistical metrics, such as
variance and autocorrelation, improves the predictive accuracy and modelling of the

ecosystem state.

2.0 Materials and Methods

2.1 Study region and ecosystem components

Focus of the study are UK coastal waters and specifically the region of Firth of Forth, as
defined by the spatial boundaries in Figure 1, which currently contains Scotland’s largest
operational offshore wind farm. The marine environment in this area is very complex due to
a composite bathymetry exhibiting localized shelf banks, suggesting that the region might be
subjected to small-scale processes defining a “mosaic” of heterogenous hydrodynamic
conditions (Zampollo et al., 2025). The Forth is known to support overwintering populations
and juveniles of estuarine fish communities and represents a significant percentage of the
commercial activity in the North Sea (Elliott et al., 1990). The Isle of May, located about 40
km east of the Firth of Forth, is known to be a National Nature Reserve hosting > 250,000
breeding seabirds and a population of breeding grey seals that feed upon eastern productive

offshore waters (Harris and Wanless, 1998).
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Fig.1 The spatial boundaries of the study region: Firth of Forth.

The time series input data consisted of annual values (1990-2022) as either seasonal mean
values of physical variables (e.g. temperature) or cumulative values of biological variables
(e.g. net primary production), or maximum values of physical and biological variables:
current speeds and maximum Chl-a, respectively. Biological variables for population
dynamics included total annual abundance, recruitment or mean breeding/pupping success
(Table 1). Individual zooplankton species were grouped by summing up the abundance into
assemblages, based on the geographical distribution and ecological characteristics of the
underlying species, based on Beaugrand et al., 2004. All other trophic levels (fish, seabirds
and mammals) were not grouped but used as individual species in the ecosystem models
(Table 1). We refer to all the variables in the study as “ecosystem components” but
distinguish components based on them being either physical (e.g. horizontal currents speed)
or biological (e.g. sandeel recruitment) indicators. The ecosystem components in the study
were chosen as they cover the main physical and biological variables that have been shown
to be important to marine mammals and seabirds and their prey (Carroll et al. 2015,
Wakefield et al. 2017, Chavez-Rosales et al. 2019). These will alter with climate change

(Wakelin et al. 2015, Holt et al. 2016, Sadykova et al. 2017), and with the next biggest



change to our shallow seas: very large number of new structures and substantial (100’s

GWs) extraction of energy from ORE (van der Molen et al. 2014, Boon et al. 2018, De

Dominicis et al. 2018; Daewel et al., 2022; Dorrell et al., 2022). Previous studies were also

conducted on a larger spatial scale (i.e., > 1000 km?) identifying the indicators used here as

key regarding ecosystem change (Trifonova et al., 2021) and assessing both ecosystem

status and resilience to natural and anthropogenic changes (Trifonova et al., 2023).

Table 1. Summary of physical and biological data.

Category Ecosystem Explanation Source
component
Physical Bottom temperature  Annual summer (May- Atlantic-European
(BT) August) mean bottom North West Shelf-
temperature (°C) Ocean Physics
Reanalysis provided
by E.U. Copernicus
Marine Service
Information using
the Nucleus for
European Modelling
of the Ocean
(NEMO) model
(CMEMS-NWS
physics)
Physical Sea surface Annual summer (May- CMEMS-NWS
temperature (SST) August) mean sea physics
surface temperature
(‘C)
Physical Potential Energy Annual summer (May- CMEMS-NWS
Anomaly (PEA) August) mean potential  physics
energy anomaly (J/m?3).
The energy required to
mix the water column
completely and
commonly used as an
indicator for the strength
of stratification (De
Dominicis et al., 2018)
Physical Horizontal current Annual summer (May- CMEMS-NWS
speed (HSpeed) August) mean maximum physics

depth averaged
horizontal currents
speed (m/s)



Physical

Primary
production

Primary
production

Physical

Biogeochemical

Abundance

Abundance

Abundance

Abundance

Vertical current
speed (VSpeed)

Chlorophyll-a (max
Chl-a)

Net primary
production (NetPP)

Mixed Layer Depth
(MLD)

Oxygen within the
Bottom Mixed Layer

(Oxy)

A2 zooplankton
assemblage

A4 zooplankton
assemblage

A5 zooplankton
assemblage

A6 zooplankton
assemblage

Annual summer (May-
August) mean maximum
depth averaged
horizontal currents
speed (m/s)

Annual summer (May-
August) mean maximum
chlorophyll-at any depth
(mgC/m3)

Annual summer (May-
August) mean depth
averaged net primary
production (gC m-

2 year™)

Annual summer (May-
August) mean mixed
layer depth (m). The
deepest layer affected
by surface turbulent
mixing; indicator for the
variations of primary
production

Annual summer (July-
October) mean
minimum oxygen (umol
L™)

Annual summer (May-
August) total sum count
of zooplankton species
(e.g. Calanus
helgolandicus)

Annual summer (May-
August) total sum count
of zooplankton species
(e.g. Para-
Pseudocalanus spp.)
Annual summer (May-
August) total sum count
of zooplankton species
(e.g. Acartia spp.)
Annual summer (May-
August) total sum count
of zooplankton species

CMEMS-NWS
physics

Atlantic-European
North West Shelf-
Ocean
Biogeochemistry
Reanalysis provided
by E.U. Copernicus
Marine Service
Information using
the European
Regional Seas
Ecosystem Model
(ERSEM) (CMEMS-
NWS
biogeochemistry)
CMEMS-NWS
biogeochemistry

CMEMS-NWS
physics

CMEMS-NWS
biogeochemistry

Continuous plankton
recorder (CPR)
survey

CPR Survey

CPR Survey

CPR Survey



Recruitment

Recruitment

Recruitment

Recruitment

Recruitment

Recruitment

Human
pressure

Human
pressure

Human
pressure

Human
pressure

Human
pressure

Sandeel

Herring

Sprat

Mackerel

Haddock

Cod

Catch of pelagic fish
species (herring,
sandeel, sprat,
mackerel; Catch
PEL)

Catch of demersal
species (cod,
haddock; Catch
DEM)

Catch of shellfish
species (scallops,
Nephrops; Catch
Shell)

Landings of pelagic
fish species (herring,
mackerel; Landings
PEL)

Landings of
demersal fish
species (cod,
haddock; Landings
DEM)

(e.g. Calanus
finmarchicus)

Annual number of
individuals to enter the
fished component of the
stock

Annual number of
individuals to enter the
fished component of the
stock

Annual number of
individuals to enter the
fished component of the
stock

Annual number of
individuals to enter the
fished component of the
stock

Annual number of
individuals to enter the
fished component of the
stock

Annual number of
individuals to enter the
fished component of the
stock

Annual total sum of
nominal catches (tonnes
live weight)

Annual total sum of
nominal catches (tonnes
live weight)

Annual total sum of
nominal catches (tonnes
live weight)

Annual summer (May-
August) total sum of
landed fish (tonnes live
weight)

Annual summer (May-
August) total sum of
landed fish (tonnes live
weight)

ICES Stock
Assessment

ICES Stock
Assessment

ICES Stock
Assessment

ICES Stock
Assessment

ICES Stock
Assessment

ICES Stock
Assessment

ICES Historical
Nominal Catches
(1950-2010) and
Official Nominal
Catches (2006—
2022)

ICES Historical
Nominal Catches
(1950-2010) and
Official Nominal
Catches (2006—
2022)

ICES Historical
Nominal Catches
(1950-2010) and
Official Nominal
Catches (2006—
2022)

Marine Management
Organization
(MMO)’s annual UK
Sea Fisheries
Statistics

MMO Fisheries
Statistics



Human

Landings of shellfish

Annual summer (May-

MMO Fisheries

pressure species (scallops, August) total sum of Statistics
Nephrops; Landings  landed shellfish (tonnes
Shell) live weight)

Breeding Northern Annual summer mean Seabird monitoring

success gannet (Morus number of chicks programme
bassanus) fledged per pair

Breeding Black-legged Annual summer mean Seabird monitoring

success kittiwake (Rissa number of chicks programme
tridactyla) fledged per pair

Breeding Common Annual summer mean Seabird monitoring

success guillemot (Uria number of chicks programme
aalge) fledged per pair

Breeding Razorbill (Alca torda) Annual summer mean Seabird monitoring

success number of chicks programme

fledged per pair

Abundance Harbour Annual summer (May- Waggitt et al.,
porpoise (Phocoena  August) mean of (2020).
phocoena) encounter rate

Productivity Grey Annual summer mean Special Committee
seal (Halichoerus estimates of pup on Seals (SCOS,
grypus) production 2022)

Abundance Harbour seal (Phoca Annual summer SCOS, 2022

vitulina)

(August) total sum count
of harbour seals

2.2 Bayesian networks

Formally, a Bayesian network (BN) describes the joint distribution (a way of assigning
probabilities to every possible outcome over a set of variables, X1...Xn) by exploiting
conditional independence relationships, represented by a directed acyclic graph (DAG)
(Friedman et al., 1999). The conditional probability distribution (CPD) associated with each
variable X encodes the probability of observing its values given the values of its parents and
can be described by a continuous or a discrete distribution. In this case, the CPD is called a
Conditional Probability Table (CPT) and all the CPTs in a BN together provide an efficient

factorization of the joint probability:
n
p@ = [pGulpad
i=1

where pa; are the parents of the node x; (which denotes both node and variable).



The DAG consists of nodes (or variables) and edges (or links) between the nodes. “Parent”
nodes are those from which arrows originate, and “child” nodes are those to which arrows
are pointing. Edges between nodes represent dependency relationships. Each node in the
DAG is characterized by a state which can change depending on the state of other nodes
and information about those states propagated through the DAG. By using this kind of
inference, one can change the state or introduce new data or evidence (change a state or
confront the DAG with new data) into the network, apply inference and inspect the posterior
distribution (which represents the distributions of the variables given in the observed
evidence). The graphical structure of BNs is particularly convenient when we aim to describe
an ecological network to model all the interactions between species and their environment
that also provides a user-friendly framework to communicate the results (Chen and Pollino,
2012). It is relevant to think of the BN as a “graph”, describing species as the “nodes” within

the graph, and interactions as the links or “edges” that join the nodes (Faisal et al., 2010).

2.3 Dynamic Bayesian networks

Modelling time series is achieved by using an extension of the BN known as the Dynamic
Bayesian Network (DBN), where nodes represent variables at time slices. DBNs are directed
graphical models of stochastic processes that characterize the unobserved and observed
state in terms of state variables, which can have complex interdependencies (Murphy, 2001).

DBNs can model the dynamics of a dataset using a hidden variable.

This hidden variable is used to model unobserved variables and missing data and can infer
some underlying state of the series when applied through an autoregressive link that can
capture relationships of a higher order (Murphy, 2001). The hidden variable allows us to
examine unmeasured effects that would bring further insight on the importance of ecosystem
dynamics to better understand community structure and resilience in an exploited ecosystem
(Trifonova et al., 2015, Uusitalo et al., 2018). In most domains, the observed variables
represent only some characteristics of a system, which can have a negative effect on the

learning procedure. For example, the apparent complexity of a predicted variable can be



explained imagining it is a result of two simple processes, the “true” underlying state, which
may evolve deterministically, and our measurement of the state, which is often noisy
(Murphy, 2002). We can then “explain away” unexpected outliers in the observations, as

opposed to strange fluctuations in “reality”.

A hidden variable can be linked to one, multiple, or all, of the observed ecosystem
components in the model. Then, the hidden variable value depends on all the observed
ecosystem components it is linked to, and a change in the pattern of the hidden variable
indicates a change in the system interactions. This is highly useful in ecological analyses
where nonstationary dynamics are common and complex ecological interactions change with
time due to changing pressures e.g., climate change (Chen and Pollino, 2012). In this work,
the hidden variable was included in the models, to capture complex interdependencies
between and among ecosystem components that might represent something external to the
community, which is not purely constrained within the model structure. We use the hidden
variable in this study, to represent a change in the underlying ecosystem dynamics (i.e.
ecosystem state), following a natural or anthropogenic disturbance to the system interactions

in the study region.
2.4 Uncertainty propagation

We used the variance as a measure of uncertainty (i.e., a high variance meaning greater
uncertainty about the outcome of X given its parents or a low variance meaning that Xis
more tightly constrained by its parents). For example, in the case of two variables X and Y,
with Y influencing X. The conditional distribution P (X]Y) can be modelled as a Gaussian

distribution with mean (uy(Y)) and variance (o7 (Y)):

PIXIY) = N (ux (1), 03 (1))

In a Bayesian network, uncertainty about a variable propagates through the network from the
parent nodes to the child nodes. We defined variance in the CPD which reflects the

uncertainty associated with predicting the value of a variable given its parents. When set up



in this way, the uncertainty, in turn, influences the accuracy and reliability of the model
predictions (i.e., if the conditional variance of a node is high, the distribution of possible
outcomes for that node will be wide). The accuracy of a Bayesian network model can be
affected by how well it handles uncertainty and variance, especially in terms of its predictive

performance.

However, a more complex model which accounts for varying variance in different parts of the
network (e.g., different variances for different conditional distributions), can sometimes
improve predictions by allowing the model to better reflect the underlying uncertainties in the
system (Nabney and Cheng, 1997; Simoen et al., 2015; Lopez et al., 2022). If variance is
assumed to be constant or ignored in certain parts of the model, it may lead to overly

simplistic models that fail to capture important nuances in the data.

There is copious literature that addresses statistical metrics, such as variance and
autocorrelation and their use as indicators of an approaching regime shift (Jiao et al., 2009;
Carpenter et al., 2014). In previous work, they have been used to identify a functional
collapse (i.e., regime shift) by modelling early-warning signals in the time-series (Trifonova et
al., 2014). However, here, we use them as an alternative approach to account for uncertainty
and examine whether their inclusion influences the model accuracy. We are also interested
in identifying to what extent including them in our model impacts the expected values of the
hidden variable. Previous work has shown that after the addition of the metrics in the model,
the hidden variable was more stable and more likely to reflect the underlying ecosystem

dynamics (i.e., capture a regime shift) (Trifonova et al., 2014).



3.0 Experiments

3.1 Learning Bayesian networks

We learn the Bayesian network structure for each of the spatial regions by applying a hill-
climb optimization technique. The hill-climb search begins with an empty network. In each
stage of the search, networks in the current neighbourhood are found by applying a single
change to a link in the current network such as “add arc” or “delete arc” and choose the one
change that improves the score the most. We used the Bayesian Information Criterion (BIC)

for scoring candidate networks:

BIC = logP(0) + logP(6|D) — 0.5klog(n)

where O represents the model, D is the data, n is the number of observations (sample size)
and k is the number of parameters. log P(©) is the prior probability of the network model O,
log P(O|D) is the log likelihood whilst the term k log(n) is a penalty term, which helps to
prevent overfitting by biasing towards simpler, less complex models. The learned Bayesian
network links represent dependence, these are spatial relationships that are predictive in an
informative, not causal aspect (Milns et al., 2010, Trifonova et al., 2015). The method
identifies similarity in the temporal trend of the paired variables (i.e. both variables increase,
or as one increases, the other decreases over time). We performed the hill-climb with
random restart (n = 10), which conducts several hill-climbing runs, perturbing the result of
each one as the initial network for the next. Then, we apply the learning for 1300 iterations.
The maximum number of “parent” nodes (learned from the hill-climb) was limited to three to
avoid over-fitting (Trifonova et al., 2015). This hill-climb approach produces a probabilistic
dependency output per year (i.e., value from 0 to 1) and for all the possible combinations of
paired relationships between the observed variables. We define a confidence threshold - the
minimum confidence (estimate of the probability of finding a relationship) for a relationship to
be accepted in the learned network structure. We defined relationships of high confidence in

time as those in which we have the greatest mean confidence (calculated from all the years



per identified relationship) of being in the generated network (threshold = 0.25). We use the
confidence value to represent the strength of each dependency relationship between a pair
of two variables. The confidence of the identified relationship represents the level of
similarity in the temporal trend of the paired variables. In addition, to learn the network
structure for each year in the time window, the hill-climbing was conducted on a window of
data (size of window = 10). In this way, we would be able to capture any significant
interactions over the previous 10 years. Based on the level of confidence and the number of
the identified relationships between the observed indicators and between the observed
indicators with the hidden variable, we define “best” indicators, which represent the most
confident data-driven estimates of indicators of ecosystem dynamics and their changes

across space and time.

3.2 Ecosystem models comparison

3.21 HDBN ecosystem model

The modelling approach is a dynamic Bayesian network model with a hidden variable
(HDBN) that is a modified version of the model developed in Trifonova et al. (2015, 2017).
The model was developed from the identified consistent physical and biological indicators
from Section 3.1. From the strongest relationships, up to three indicators (i.e. “parent”
nodes) were selected that drive each target ecosystem component (i.e. “child” node) and
were used to build the modelling structure. Therefore, in this way the HDBN ecosystem
model captures the spatial and temporal variability of multiple biophysical interactions
throughout the trophic chain, ensuring that the strongest relationships (i.e. relationships of
high dependency that are predictive in an informative, not causal aspect), and so the most
consistent indicators of ecosystem change, are the ones identified in this process. The
model included a single hidden variable that was modelled as a discrete node with two

states.



When the model parameters are fitted with data, the value of the hidden variable is set so
that it maximizes the fit of the model to the data (e.g. the log-likelihood). If the patterns of the
observed variables change in the time series, e.g. the slope of a dependency between two
variables changes, the value of the hidden variable linked to these variables’ changes. Thus,
we use the hidden variable in this study, to represent a change in the underlying ecosystem
dynamics (i.e. ecosystem state). To do this, the hidden variable was linked to all the

ecosystem components in the model.

We want to compute P (H|X!, X'~ "), where H' represents the hidden variable and X'
represents all observed variables at times t. We use the predicted variable states from time ¢t
to infer the hidden state at time £. The hidden variable was parameterized using the

Expectation Maximization (EM) algorithm (Bilmes, 1998). In this case, the log-likelihood is:

L(6) = logP(X|©) = logZ P(X,H|O)
Jj

where } 4 is the sum over the set of hidden variables H, required to obtain the marginal
probability of the data. In the first step of the EM, the hidden variable is inferred using the
predicted states, whilst in the second step the estimated likelihood function is maximized.
When the algorithm converges to a local maximum, the parameters are estimated. We used

an exact inference method: the junction tree algorithm (Murphy, 2001).
3.22 HDBN + physics and HDBN + ecology ecosystem models

The variance (i.e., the square root of the standard deviation) was calculated for all the
physical and biogeochemical drivers and used to populate their CPDs (i.e., gaussian
distributions) when building the first model variant, the HDBN + physics ecosystem model. In
the second ecosystem model variant (HDBN + ecology), the variance was calculated for the
biological indicators (i.e., zooplankton abundance, fish recruitment, birds breeding success
and mammals’ abundance and/or harbour porpoise encounter rate) and was used to

populate their CPDs when building the HDBN + ecology ecosystem model. In this way, we



can account for varying variance in different parts of the network (e.g., different variances for
different conditional distributions), which will potentially improve predictions by allowing the
models to better reflect the underlying uncertainties in the system. In contrast, parameters
for the HDBN model were not specifically assigned. In the case of gaussian nodes, the
following was assumed: if node is called Y, its continuous parents (if any) are called X, and

its discrete parents (if any) are called Q. The distribution on Y is defined as follows:

YIX=x, Q=i ~ N(mu(:,i) + W(:,:,0) *x, Sigma(:,:,i)),

where N (mu, Sigma) denotes a normal distribution with mean mu and covariance Sigma

(Murphy, 2001).

3.23 HDBN + VAR + AC ecosystem model

Finally, variance and autocorrelation were calculated on a window of data, set to size 10, so
that each metric captures the value of interest over the previous 10 years. The size of the
window was found to be optimum due to the length of the time series Note, the predictions
from this model variant will be available for a shorter time series due to the windowing
approach. The metrics were included in another ecosystem model variant (HDBN + VAR +
AC), and they were both linked to all the remaining ecosystem components. We explore to
what extent including the two statistical metrics in our model impacts the expected values of
the hidden variable but also whether including the two metrics influences the model
accuracy. This model will not be addressed as a competing model in the results and
discussion, we simply wanted to state the overall predictive accuracy during the learning
process using a windowing approach, however, the learned value of the hidden variable will

be discussed in the following sub-section.

We examine the models’ (i.e., HDBN, HDBN + physics, HDBN + ecology and HDBN + VAR
+ AC, Table 2) accuracy in terms of their ability to reproduce observations of the trends
(increases versus decreases each year of the time series) in all the ecosystem components

(oceanographic processes as well as species/functional groups at all trophic levels). The



same modelling structure (learned from the identified relationships from Section 3.1) was
used for all the model variants, except for the HDBN + VAR +AC model, where variance and
autocorrelation were both linked to all the remaining ecosystem components. In the HDBN +
physics and HDBN + ecology models, the difference was the added variance to the CPDs,
but the graphical structure was identical. Model performance, in terms of sum of squared
error (SSE), was assessed for each model and predictions were compared on a year-to-year
basis versus the original input data. Non-parametric bootstrap (re-sampling with replacement
from the training set, (Friedman et al., 1999) was applied 250 times for the model and its
variants to obtain statistical validation in the predictions. The data were standardised prior to
conducting the experiments to a mean of 0 and standard deviation of 1. We conduct all

experiments using the Bayes Net Toolbox in MATLAB (Murphy, 2001).
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Fig.2 (a) General structural form of the dynamic Bayesian network model with a hidden
variable (HDBN) where X;...Xn represents the set of variables and arrows denote conditional
independence relationships. (b) The strongest data-driven relationships, that were used to
build the ecosystem models, however, only some illustrative ecosystem components are
shown, to maximise visual clarity. The same illustrative ecosystem components are
presented in sub-section 4.12. Blue-coloured links indicate relationships with the physical
indicators, red with fisheries catch and landings, green with primary production components,
orange with zooplankton assemblages and purple with higher trophic levels. Symbols used

to denote the ecosystem components are next to the relationships.

Table 2. Summary of HDBN models

Models Name Comments




HDBN

HDBN +
physics

HDBN +
ecology

HDBN +
VAR + AC

4.0 Results

Hidden Dynamic Bayesian
network model

Hidden Dynamic Bayesian
network model with conditional
variance on physical and
biogeochemical indicators
Hidden Dynamic Bayesian
network model with conditional
variance on biological indicators

Hidden Dynamic Bayesian
network model with statistical
metrics: variance and
autocorrelation

4.1 Model Comparison

4 11 Lowest SSE values

A hidden dynamic Bayesian network model
with no variance specified in the CPDs
Variance was calculated for BT, SST, PEA,
max Chl-a, NetPP, MLD, Hspeed, Vspeed,
Oxygen and was used to populate their
CPDs

Variance was calculated for zooplankton
abundance, fish recruitment, birds
breeding success and mammals’
abundance and/or productivity and was
used to populate their CPDs

Variance and autocorrelation were
calculated on a rolling window of data

SSE per species, per model were compared to assess how well each model performed

against the annual input data values. The HDBN model reported the highest number of

ecosystem components (n=9, 47%) predicted most accurately (least SSE per species),

closely followed by the HDBN + physics (n=6, 32%). These results are reassuring that the

inference scheme can handle the increased model complexity. The model with the least

accurately predicted ecosystem components was the HDBN + ecology (n=4, 21%) with

some SSEs higher than 30.00, which highlights the importance of the level of variance when

running these types of models. We found the threshold of 30.00 to be most appropriate

based on examining the range of SSE values across models as well as across ecosystem

components. Although the general improvement in predictive accuracy of the HDBN model

over the competing models, there is a similar level of accuracy (i.e., least SSE difference:

less than 5.00 between the generated overall predictions of two models) for most of the

ecosystem components. Two exceptions to that were haddock and razorbill. For these

species, the SSE difference across the competing models was always higher than 5.00.

Some ecosystem components (e.g., the zooplankton functional group A6), were generally



predicted with higher SSEs values from two of the competing models (i.e., SSE higher than
30.00) in comparison to the remaining ecosystem components. Overall, the HDBN + VAR +
AC also performed well, specifically reporting some low SSE values for the lower trophic
levels (e.g., A2 zooplankton group) and higher trophic level species like haddock and
harbour seal (i.e., SSE less than 10.00). At the same time, a higher SSE (i.e., SSE higher

than 30.00) was reported for the seabirds (e.g., razorbill).

Overall, for higher trophic levels of fish and above (i.e., seabirds and mammals) the addition
of either physical or biological variance saw a better fit (decrease in SSE) for 77% of those
13 species (10/13). When comparing predictions across the ecosystem components,
mammal species were most accurately predicted by either the HDBN + physics or HDBN
model. The seabird species were most accurately predicted by either the HDBN + physics or
HDBN + ecology, highlighting the importance of including variance in the case of these
higher trophic level ecosystem components. Across the fish species, it was harder to find
any specific patterns in terms of which model reported most accurate performance per
species, however, some patterns were identified based on what specific indicators (physical
vs biological) were driving the fish recruitment in the models. For example, sandeel and
herring were both most accurately predicted by the HDBN + physics model and their levels
of recruitment are both driven by a combination of physical and biogeochemical indicators,
whilst the sprat, which was most accurately predicted by the HDBN was driven by biological

indicators and catch.

Table 2. Sum of squared error (SSE) of the ecosystem components predictions generated by
the HDBN and its variants (a). The component-specific interactions that are used to build the
HDBN models are shown inside the brackets. The * symbol indicates most accurate
predictions for ecosystem components across the three models (values of SSEs that are
less than 30.00). (b) shows SSE of the ecosystem components generated by the HDBN +
VAR + AC. In a separate table as the values are not directly comparable to the other three

models.



a)

Ecosystem components HDBN HDBN + HDBN +
physics ecology
Max Chl-a (PEA, Hspeed, MLD) 22.48* 29.85 25.39
NetPP (Oxy, Hspeed) 6.34* 6.92 6.43
A2 (Hspeed, Vspeed) 29.96* 31.14 30.99
A4 (PEA, NetPP, Vspeed) 10.08* 10.13 11.33
A5 (PEA, Vspeed) 9.63* 10.47 9.85
A6 (BT, NetPP, Hspeed) 29.35* 32.50 41.32
Sandeel (BT, A4, Catch DEM) 20.15 17.59* 19.52
Herring (MLD, NetPP, Land PEL) 26.85 25.80* 29.50
Sprat (A2, A6, Catch PEL) 26.99* 27.96 29.46
Mackerel (BT, A2) 30.99 30.50 27.94*
Haddock (NetPP, Catch DEM) 26.01 20.03 18.03*
Cod (MLD, Max Chl-a, Land DEM) 14.64* 24.68 14.92
Kittiwake (Vspeed, Sandeel, Sprat) 291 27.04* 43.13
Guillemot (MLD, NetPP, Sandeel) 29.79 24.36* 30.57
Gannet (A6, Herring, Sprat) 2944 36.13 29.84*
Razorbill (Mackerel, Haddock, Cod) 29.71 31.90 21.48*
Grey seal (BT, NetPP, A6) 14.80 13.12* 20.93
Harbour seal (Max Chl-a, A5, Cod) 29.41* 31.55 42.90
Harbour porpoise (Max Chl-a, Oxy, 15.51 11.55* 13.44
Sprat)
b)
HDBN + VAR + AC

Max Chl-a 22.34

NetPP 16.72

A2 9.31

Ad 16.17

A5 26.88

A6 22.52

Sandeel 17.07

Herring 26.69

Sprat 38.38

Mackerel 14.38

Haddock 9.1

Cod 23.87

Kittiwake 29.65

Guillemot 32.66

Gannet 10.39

Razorbill 37.64

Grey seal 10.92

Harbour seal 9.68

Harbour porpoise 11.87




4.12 Temporal trends

We compared example ecosystem components and their population trend predictions in time
across the three model variants. We want to visually demonstrate how well the model
variants performed in reproducing the inter-annual variability and long-term patterns (always
shown as blue lines) versus the original input data (red lines). Note, we only show some
illustrative examples, with their 95% confidence intervals calculated from the bootstrap
predictions' mean and standard deviation, shown in the Supporting information (SI). The
models were able to capture many of the changes (increases versus decreases) of the
ecosystem components across over time, predicting the general trends in population
dynamics for all lower trophic level functional groups and higher trophic level species using

three or fewer indicators.
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Fig.3 Model predictions (blue line) from the HDBN and its model variants (HDBN + physics,
HDBN + ecology and HDBN + VAR + AC) versus real data (red line) for sandeel recruitment.

SSEs are shown under the panels.



For sandeel, the HDBN and HDBN + physics were better able to capture the declining trend
in the early 2000s, in comparison to the HDBN + ecology. The HDBN + physics (least SSE
value) in comparison to the HDBN was better in modelling some of the individual yearly
variations (e.g., years 2014, 2019), however, the declining trend (from the 1990s to early
2000s) over time was better captured by the HDBN model. The HDBN + VAR + AC model

variant performed well in capturing some of the individual yearly variations (e.g., 2005).
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Fig.4 Model predictions (blue line) from the HDBN and its model variants (HDBN + physics,
HDBN + ecology and HDBN + VAR + AC) versus real data (red line) for cod recruitment.

SSEs are shown under the panels.

Similarly, the two best performing models (least SSE values) were able to capture the long-
term trend in the case of cod recruitment, specifically, the declining trend from the early
2000s, whilst the HDBN + physics model was better in capturing some of the specific yearly
variations (mid to late 2000s). Similarly, to the sandeel, the HDBN + VAR + AC model for

cod, was able to capture well a lot of the individual yearly variations.
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Fig.5 Model predictions (blue line) from the HDBN and its model variants (HDBN + physics,
HDBN + ecology and HDBN + VAR + AC) versus real data (red line) for guillemot breeding

success. SSEs are shown under the panels.

In the case of guillemot, all three model variants were able to capture the declining trend
from the mid 1990s- early 2000s. However, none of the models were able to capture the
steep decline in 2006, with the exception of the HDBN + VAR + AC model. After 2006, it was
the HDBN + physics, followed by the second accurate model (HDBN) that were able to

capture the inter-annual variabilities in the time series.

4.2 Hidden variable

To assist in characterizing the ecosystem state, we examine the learned hidden variables
from the HDBN and HDBN + VAR+ AC models. The hidden variable from the HDBN model

was relatively stable for majority of the time series: it modelled one state until 2010, followed



by some fluctuations in 2011 and 2018. The hidden variable from the HDBN + VAR+ AC
model was a bit more varied than the hidden variable from the HDBN model.lt still identified
a change in the ecosystem state around the same time, even, a year earlier in 2009,
followed by two changes in the ecosystem state in 2013-2015 and then in 2018 that

remained until the end of the time series.
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Fig.6 The learned hidden variables from the HDBN (top) and HDBN + VAR+ AC (bottom)

models. Note, the shorter time series in the bottom plot due to the windowing approach.

5.0 Discussion

5.1 Summary of model variants

In this study, we examined whether adding variance as a measure of uncertainty to the
CPDs of specific ecosystem components would result in a better performance of a hidden

dynamic Bayesian network model (HDBN). The HDBN model showed consistently accurate



predictions of the ecosystem components. The HDBN + physics (variance added to the
CPDs of selected physical and biogeochemical indicators) was the second-best performing
model which was reassuring that the increased model complexity applied here has resulted
in revealing some genuine patterns of the underlying lower and higher trophic level
relationships identified by our approach and their heterogeneity. In addition, these results
also suggest more insight into the relevance of physical and biogeochemical indicators, such
as stratification, temperature and NetPP when evaluating ecosystem structure and function
in efforts to determine the ecosystem state. It is evident that changes in the population
dynamics of higher trophic levels are likely to reflect those of their preferred prey, which may,
in turn, be bottom—up driven by dynamic bio-physical oceanographic processes like across
spatial and temporal scales (Bertrand et al., 2014; Boyd et al., 2015; Cox et al., 2018).
Temperature is another major driver of marine ecosystems and one of the key factors
affecting the physiology and ecology of all marine organisms (Simpson et al., 2011; Edwards
et al., 2020; Evans and Waggitt, 2020). BT was found to be a better indicator, in comparison
to SST (Table 2a), with the mechanism for that potentially being that BT reflects steady
changes over longer periods of time, including integrated trends in warming/cooling, whilst
changes in SST reflect a wider range of the daily/seasonal extremes (Trifonova et al.,2022).
NetPP was another indicator that was found to be a key driver for majority of the higher
trophic level species dynamics. It is through energy transfer along the food web, that NPP
provides bottom—up control on fisheries production, identified within the North Sea and
across other large marine ecosystems around the globe (Chassot et al., 2007; Blanchard et
al., 2012; Barange et al., 2014). NPP plays a significant role in determining habitat
preferences and facilitating foraging for both fish prey and top predator species, highlighting
that prey and predators are selecting aspects of the habitat type very differently and that
might be a reflection of prey species avoiding areas with predators (Sadykova et al., 2017;
Cox et al., 2018). With the improved understanding of the exact bottom-up (e.g. levels of
mixing and stratification) versus top-down (e.g. predators and fishing) mechanisms that

influence habitat use by marine animals across spatial (< 1 km through to 1000 km) and



temporal (days through to years) scales, the effects of biophysical interactions on
populations and ecosystems and how these vary with climate change can be better

understood.

Predictions from all models were sensitive to the observed variables incorporated due to the
complex natural processes involved in generating the ecological input data. We reported
some higher SSEs (e.g., zooplankton functional group A6, Table 2) which could be due to
structural uncertainties (i.e. species-specific relationships and/or colony-specific drivers used
to build the models) but also due to empirical data uncertainties perhaps due to some
sampling variation in the survey data. In addition, there was some similarity in accuracy of
generated predictions from different models that might be attributed to the similar effects of
changing climate on many species (Fernandes et al., 2013), as previous work has
demonstrated the potential effects of continuous warming with cold-water anomalies and

salinity changes (Trifonova et al., 2021).

The HDBN model performed consistently well across the ecosystem components, because
the model evaluates the relative influence of different driving factors when modelling
ecosystem-level dynamics. Our results highlight the need to include region-specific
ecosystem level changes and dynamics of the multiplicity of interactions when building
predictive models of complex and heavily exploited ecosystems within shallow seas, such as
the North Sea. The recognition of a hidden variable is important which was adopted here to
capture unmeasured effects and changes in ecosystem components variance that are not
purely constrained within the model structure. This is very different from mass balance
model approaches (Christensen and Walters, 2004) whose fitting is conditioned completely

upon the model structure.

However, for some of the species, prediction accuracy was improved once variance was
included by the HDBN + physics model, suggesting that accounting for additional sources of
variation removed spurious interactions and let to a more plausible network structure (Faisal

et al., 2010; Aderhold et al., 2012). The successful performance of the model variant



highlights the heterogeneous nature of the ecosystem component-specific lower and higher
trophic level interactions (e.g., driven by physical, biological and/or combination of both) and
gives us more accurate insights on the structure of the underlying ecological system.
Through the applied BN approach, we were able to make tractable predictions of the true
dynamic nature of physical, biogeochemical and biological relationships and their patterns
across trophic levels, and their changes over time. This increases knowledge necessary to
add to the traditional use of top predator population dynamics as separate aspects of marine
systems and will reduce uncertainties of the level of direct and indirect effects on populations
across a range of trophic levels. By accounting for varying variances in the CPDs of the
drivers, the model becomes better equipped to handle uncertainty in a way that reflects the

true underlying system (Yildirim and Liaw, 2024).

Some dependencies between variables might be complex and non-linear. It is often
assumed by statistical and mechanistic modelling approaches that the underlying functional
relationships (i.e., the governing ecological processes) are assumed to be static. This
assumption, of course, is overly simplistic, and maybe inaccurate, as ecosystems are
subject to increasing human pressures that can lead to drastic changes, including regime
shifts (Scheffer et al., 2009). However, the assumption of static relationships is a necessary
feature of mechanistic models, as these models are built on the best available current
understanding of how systems function. While this static representation reflects our best

knowledge at the time, we are unable to account for 'unknown unknowns'.

From the modelling and data analysis perspective, these pose a challenge, since the same
functional forms may not describe the relationships between the variables before and after
the change (Blenckner et al., 2015). By allowing variances in the physical and/or
biogeochemical drivers to vary, our HDBN model + physics can better capture complex and
nonlinear lower and higher trophic level relationships where the uncertainty might vary
depending on certain conditions. For example, in a previous study using a larger ecosystem

region (i.e., deep central North Sea), that enclosed the study region in this work, the region



was shown to be controlled by both types of forcing: bottom-up (e.g., primary production)
and top-down (e.g., fisheries exploitation) leading to complex patterns of control on the
ecosystem (Trifonova et al., 2023). This further explains the better performance of the
models with added variance for some of the ecosystem components, i.e., the Firth of Forth
region is characterized by a changeable ecosystem state prone to variability, therefore, a
more complex model is needed to capture the underlying ecosystem dynamics. For
example, in the case of breeding success, every bird species was better predicted by either
the HDBN + physics or HDBN + ecology model, however, the SSE difference was still < 5.0
between the HDBN model and the model variant, except for razorbill. This suggests that
breeding success might be influenced by more complex factors than some of the other
ecosystem components that were better predicted by the HDBN model alone. This could
also suggest that seabirds might be more prone to variability, thus, highlighting them as

potentially more sensitive indicators to pressures.

Interestingly, once the variance was added to the CPDs, the models were better able to
capture some of the specific yearly variations in the time series. It seems that the variance
adds to the overall model performance by specifically capturing the inter-annual variability in
the time series. The potential explanation for this is that in some cases where variables are
inherently noisy or more prone to variability (e.g., seabird breeding success), the more
complex Bayesian network model applied here can help prevent overfitting by modelling the
noise appropriately with higher variance (Lopez et al., 2022; Ramampiandra et al., 2023).
This prevents the model from becoming overly influenced by outliers or fluctuations in the
data, resulting in more accurate predictions. This was particularly the case for guillemot for
which the HDBN + VAR + AC model was the only model that was able to capture the steep
decline in breeding success in 2006. Overall, the HDBN + VAR + AC model was able to
capture the trends and inter-annual variations with high accuracy, including some specific
yearly variations. The accurate performance of this model is also likely due to the inclusion

of a rolling window that has been previously discussed as successful in detecting an



impending regime shift in ecosystem time series (Carpenter et al., 2014). The successful
performance of a dynamic hidden BN model that was used in combination with variance and
autocorrelation has been previously demonstrated, but in the context of detecting early-
warning signals of functional changes in fisheries across a range of geographic regions

(Trifonova et al., 2014).

5.2 Hidden variable

A hidden variable was used in this study to learn and therefore, represent the ecosystem
state, and specifically capture any changes in the ecosystem interactions that lead to
changes in state. We compared the hidden variable from the HDBN model to the hidden
variable from the HDBN + VAR+ AC model to identify to what extent including the statistical
metrics impacts the expected value of the hidden variable and therefore, the expected

ecosystem state.

Both hidden variables modelled a change in the ecosystem state after 2010, with the hidden
variable from the HDBN + VAR + AC modelling the change in state a year earlier in 2009,
allowing detection of early-warning signals of functional change across different geographic
regions (Trifonova et al., 2014). This change in the ecosystem state has been discussed
previously for much larger ecosystem regions and it was thought to be due to changes in the
bottom temperature (e.g., cold-water anomalies: Gonzalez-Pola et al., 2018; Trifonova et al.,
2021), with the mechanism behind being the interplay between the physical indicators
(temperature and mixing) and productivity (Capuzzo et al., 2018). Here, we were able to add
further insight on the potential extent of the functional change, even at the smaller spatial
scale in this study. Most importantly, with the now added uncertainty (i.e., variance) to the
model, we were able to detect such changes earlier in the time series. The hidden variable
from the HDBN + VAR+ AC model identified an additional change in the ecosystem state

(i.e., 2013-2015) whilst both hidden variables modelled another change in state in 2018. The



period 2015-2018 has been previously identified as a period of change with relatively low
values in net primary production, most likely attributed to changes in mixing (Capuzzo et al.,
2018; Trifonova et al., 2021). Similarly, with the added results from this study, and
specifically, once uncertainty was included in the model, we were able to further identify the
timing of a second potentially important period in the context of reconstructing the ecosystem
dynamics. These results highlight that the use of a hidden variable when modelling
ecosystem change is potentially useful in providing insights on the underlying dynamics and
patterns in terms of ecological stability and resilience that can contribute towards the general
advice on potential response of the system to pressure. Indeed, it is by examining the
learned ecosystem state that allows us to conclude whether the environment is in a
desirable (predictable) or less desirable state and during which years the state is desirable.
Thus, the hidden variable, once set up and updated with rather low effort, could potentially
be used to check for possible new changes in the underlying ecosystem dynamics, indicative
of major changes in the ecosystem, which could be further investigated (Uusitalo et al.,

2018).

6.0 Conclusion

The dynamic Bayesian network approach is a promising method to analyse complex
ecosystem-level interactions, and it may help reveal underlying ecological patterns. Here, we
demonstrated that the applied hidden dynamic Bayesian network model can handle the
increased complexity by accounting for uncertainty (i.e., variance) in the conditional
probability distributions (CPDs) of selected physical, biogeochemical and biological
indicators. Indeed, model performance was improved for 77% of the higher trophic level
species (fish, seabirds and marine mammals) once variance was included in the CPDs.

Therefore, models that account for additional sources of variation seem to better reflect on



the underlying ecosystem-level dynamics. These results provide real insights into the
characteristics of the study region, which is a changeable ecosystem state prone to
variability, and pave the route for better understanding of the ecosystem structure and
function under different pressures. Most importantly, the methodology provides an effective
baseline that can be used within marine spatial planning considerations of the relevant
implications of future climate change versus anthropogenic impacts (e.g., offshore large-
scale wind developments). Our results show temporally specific ecological interactions that
indicate a regional relationship of ecosystem components and their habitat with the
mechanisms varying from bottom-up (e.g., primary production) through to top-down (e.g.,
fisheries). We were able to identify the consistent drivers and illuminate the likely
mechanisms that led to consistently accurate model predictions. However, it must be noted
that perfect reconstruction is unlikely due to the noisy input data and complex ecological
process involved in generating such data (Faisal et al., 2010). However, our findings
complement more traditional mechanistic (Heath et al., 2021) and statistical (Lynam et al.,
2017) approaches; and have extended our knowledge into the ecosystem-level
understanding of this North Sea region and its ecological structure and stability. Further, the
success of applying the HDBN + VAR+ AC model highlights the usefulness of the rolling
window approach in combination with the use of statistical metrics in characterizing the
temporal dynamics of this region, specifically improving predictive performance in capturing
the inter-annual variability in the time series. The two hidden variables successfully modelled
changes in the ecosystem state, one attributed to cold-water anomalies and a second one
attributed to the interplay between the physical indicators (temperature and mixing) and
productivity. The hidden variable from the HDBN + VAR+ AC model was able to capture

these changes earlier than the hidden variable from the HDBN model.

Future work can use the methods shown here with the hidden dynamic Bayesian network
model and with added variance in the CPDs from selected physical and biological indicators

to produce a range of “what-if?” scenarios to better understand the combined ecosystem-



level effects of offshore large-scale wind developments, climate change and fisheries
displacement. Such approaches will be useful to guide what habitats/species are more
representative of what disturbances and what management decisions are required to steer
towards more ecologically sustainable conditions under the influence of future changes
(Trifonova et al., 2023). These types of outputs can be used to assess the cumulative effects
across a range of trophic species to support the development of evidence-based policy and

marine management.
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Highlights

o Dynamic, multitrophic, ecosystem-centric approaches coupled with oceanographic
models

e Dynamic Bayesian networks (DBNs) are pragmatic approaches to ecosystem-level
interactions

e Variance as a measure of uncertainty from selected physical and biogeochemical
indicators

¢ Ahidden variable was incorporated to model functional ecosystem change

¢ Using DBNs is highly valuable as it gains accuracy with the addition of uncertainty



