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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• The potential of remote sensing in 
assessing blue carbon needs further 
exploration. 

• Fewer studies from mangrove-rich 
countries (Myanmar, Bangladesh, and 
Papua New Guinea) 

• Sentinel-2 MSI (14.5 % of overall usage) 
was the most used sensor. 

• Research on below-ground carbon and 
valuation of carbon stock is limited. 

• Improvement in accuracy and precision 
based on innovative methodologies is 
needed.  

A R T I C L E  I N F O   

Editor: Yuyu Zhou  
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A B S T R A C T   

Accurate measuring, mapping, and monitoring of mangrove forests support the sustainable management of 
mangrove blue carbon in the Asia-Pacific. Remote sensing coupled with modeling can efficiently and accurately 
estimate mangrove blue carbon stocks at larger spatiotemporal extents. This study aimed to identify trends in 
remote sensing/modeling employed in estimating mangrove blue carbon, attributes/variations in mangrove 
carbon sequestration estimated using remote sensing, and to compile research gaps and opportunities, followed 
by providing recommendations for future research. Using a systematic literature review approach, we reviewed 
105 remote sensing-based peer-reviewed articles (1990 - June 2023). Despite their high mangrove extent, there 
was a paucity of studies from Myanmar, Bangladesh, and Papua New Guinea. The most frequently used sensor 
was Sentinel-2 MSI, accounting for 14.5 % of overall usage, followed by Landsat 8 OLI (11.5 %), ALOS-2 
PALSAR-2 (7.3 %), ALOS PALSAR (7.2 %), Landsat 7 ETM+ (6.1 %), Sentinel-1 (6.7 %), Landsat 5 TM (5.5 
%), SRTM DEM (5.5 %), and UAV-LiDAR (4.8 %). Although parametric methods like linear regression remain the 
most widely used, machine learning regression models such as Random Forest (RF) and eXtreme Gradient Boost 
(XGB) have become popular in recent years and have shown good accuracy. Among a variety of attributes 
estimated, below-ground mangrove blue carbon and the valuation of carbon stock were less studied. The vari
ation in carbon sequestration potential as a result of location, species, and forest type was widely studied. To 
improve the accuracy of blue carbon measurements, standardized/coordinated and innovative methodologies 
accompanied by credible information and actionable data should be carried out. Technical monitoring (every 
2–5 years) enhanced by remote sensing can provide accurate and precise data for sustainable mangrove man
agement while opening ventures for voluntary carbon markets to benefit the environment and local livelihood in 
developing countries in the Asia-Pacific region.   

1. Introduction 

1.1. Background 

Mangrove forests provide a variety of ecosystem services and func
tions including habitats for a wide variety of benthic macrofauna 
(shrimps, crabs, mollusks), shoreline stabilization, bioremediation, food 
provision, honey, timber, fuelwood, tannins, waxes, and avenues for 
sustainable ecotourism (Mukherjee et al., 2014; Dahdouh-Guebas et al., 
2021). In addition to these services, mangrove forests provide poten
tially scalable and cost-effective natural climate-change solutions with a 
global above- and below-ground carbon stock of 1.6 Pg and 10.2 Pg, 
respectively (Alongi, 2020; Kauffman et al., 2020; Macreadie et al., 
2019). This fraction of organic carbon stored in mangrove ecosystems is 
referred to as mangrove blue carbon (Macreadie et al., 2019) and re
mains trapped for long periods (centuries to millennia). The term ‘blue 
carbon’ was coined by Nellemann et al. (2009), to differentiate coastal 
ecosystems from the ‘green carbon’ of terrestrial forests. Blue carbon 
sequestration can aid in mitigating CO2 emissions from land-use change, 
especially in countries with large coastlines (Taillardat et al., 2018). The 

role of mangrove ecosystems in climate change mitigation is more sig
nificant in the tropical coastal region and effective at the national and 
regional scale compared to the global scale (Alongi, 2020; Taillardat 
et al., 2018). 

Notwithstanding the significant volume of stored carbon, mangrove 
forests also play a significant role in climate change adaptation by sta
bilizing coastal lands through their complex structure and in areas that 
permit, landward accretion of organic build-up, which significantly re
duces the impact of sea level rise (Gijsman et al., 2021). Rates of 
biodegradation of the large woody detritus (LWD) are quicker in mid- to 
low-intertidal zones (< 1 year) whereas it can take many years in high- 
intertidal zones. Therefore, if geomorphology does not permit landward 
accretion with rising sea levels, belowground carbon storage values 
could significantly decline (Hendy et al., 2022). 

The Asia-Pacific region accounts for 50.6 % of the global mangrove 
extent (147,359 km2) (Bunting et al., 2022). Despite this, the region has 
been identified as a global hotspot of mangrove deforestation due to 
anthropogenic activities such as aquaculture, agriculture, and urbani
zation (Bunting et al., 2022; Richards and Friess, 2016). From 1996 to 
2020, a loss of 3329 km2 or 4.3 % of mangrove areas was reported in the 
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Asia-Pacific region (Bunting et al., 2022), which took place mainly in 
Indonesia, Myanmar, Malaysia, Philippines, Thailand, and Vietnam 
(Goldberg et al., 2020). This highlights the need for continuous moni
toring to inform remedial action. 

Accurate measuring, mapping, monitoring, and modeling of 
mangrove ecosystems subsequently support informed decision-making 
for policy formation and regulations for the sustainable management 
of mangrove ecosystems. These measures are particularly vital for 
prioritizing locations that need immediate attention, so they can 
continue to support local livelihoods while contributing toward resil
ience to climate change. Between the late 20th and early 21st century, 
the rate of global loss in mangrove extent decreased from 2 % to <0.4 % 
per annum, which was due to improved monitoring, management, 
rehabilitation and protection, changing industrial activities, recognition 
of its significance, community-based involvement, and inaccessibility of 
remaining intact mangrove forests (Friess et al., 2016). In the Asia- 
Pacific region where mangrove ecosystems are scattered mostly in 
ecologically and socio-culturally complex areas, sustainable manage
ment decisions based on robust data collection using non-invasive 
methods such as remote sensing can be very useful. 

Remote sensing tools can help identify and efficiently quantify 
above-ground mangrove carbon stocks in a more robust manner (Pham 
et al., 2019). Multitemporal satellite imagery, integration of multi
spectral and Synthetic Aperture Radar (SAR), and airborne Light 
Detection and Ranging data (LiDAR) have been proven to be successful 
in mapping mangrove ecosystems due to their low cost, high accuracy, 
and ability to map larger areas compared to field-based methods (Hos
sain et al., 2015; Pham et al., 2019; Rondon et al., 2023). The return 
frequency of satellite data facilitates continuous mapping, monitoring, 
and assessment of mangrove blue carbon. Different attributes of 
mangrove blue carbon can be efficiently quantified from satellite and 
airborne sensors that cover large spatial extent and have automated data 
processing methods. Through linking remotely sensed data with field- 
based measurements, blue carbon estimates can be scaled to larger 
spatial extents. Recent advancements in remote sensing techniques in 
combination with machine learning and deep learning models can 
provide more accurate results while mitigating the limitations caused by 
limited airborne data and cloud cover (Pettorelli et al., 2017). The 
emergence of Unmanned Aerial Vehicles (UAVs) in recent years has 
allowed for the mapping of mangrove forests at high resolution facili
tating informed conservation decisions at local-scale and at locations 
where satellite or airborne data is either insufficient or unavailable. 

1.2. Aims and contribution of the study 

There has been a considerable amount of research in the Asia-Pacific 
region focusing on mangrove blue carbon that integrates remote sensing 
and modeling methods. However, previous reviews of the region have 
often lacked a systematic approach for compiling information that de
scribes the chronological order of research and assesses the trends using 
a holistic approach. Key milestones in remote sensing-based mangrove 
blue carbon estimation, variation in mangrove blue carbon captured by 
remote sensing, challenges, and opportunities focused on the Asia- 
Pacific region have not been well documented. Therefore, the aims of 
this study were to 1) identify trends in sensors and modeling approaches 
and their chronological development in estimating mangrove blue car
bon in the Asia-Pacific, 2) assess the attributes of mangrove blue carbon 
estimated by remote sensing, 3) characterize the variation in mangrove 
blue carbon sequestration estimates found using remote sensing, and 4) 
identify research gaps, challenges, and opportunities to improve the 
estimation of mangrove blue carbon and to provide recommendations. 
Our systematic review identifies the contribution of remote sensing in 
measuring mangrove blue carbon in the Asia-Pacific region while 
highlighting the latest approaches for enhancing the accuracy and effi
ciency of mangrove blue carbon estimations. 

2. Methods 

2.1. Study area 

The Asia-Pacific region is classified into four sub-regions: East Asia, 
South Asia, Southeast Asia, and the Pacific Ocean. This region is known 
to have the highest mangrove species diversity in the world and ac
counts for 50.6 % of global mangrove cover (74,506 km2). The highest 
mangrove cover occurs in Indonesia (29,534 km2), followed by Australia 
(10,171 km2), Myanmar (5435 km2), Malaysia (5246 km2), Papua New 
Guinea (4525 km2), Bangladesh (4484 km2), and India (4038 km2). The 
13 Pacific islands together amount to 5716 km2, and Papua New Guinea, 
Solomon Islands, and Fiji are the main contributors (Fig. 1). The greatest 
losses in mangrove areas from 1996 to 2020 have occurred in Southeast 
Asia, which lost 2457 km2 (4.8 %) of mangroves, driven by commodities 
development, and in particular aquaculture (Bunting et al., 2022). 

This region harbors approximately 75 % of the global true mangrove 
species (n = 68; SI Fig. 1). Notably, Indonesia has the most diversity with 
45 species, followed by Malaysia with 36 species, and Thailand with 35 
species (Suratman, 2008). 

2.2. Data collection 

In this study, a systematic literature review on “Measuring mangrove 
blue carbon using remote sensing in the Asia-Pacific” was carried out 
following Preferred Reporting Items for Systematic Reviews and Meta- 
analysis statements (PRISMA) (Moher et al., 2009) in alignment with 
the PICOS (Population, Intervention/Exposure, Comparator, Outcome, 
and Study design) approach (Badzmierowski et al., 2021). The search 
expressions and the workflow are presented in Table 1 and Fig. 2, 
respectively. 

Our literature search process used online databases (Scopus and Web 
of Science) and a search engine (Google Scholar) to gather sources 
published between January 1990 and June 2023. For Google Scholar, 
we used a Python-based automated literature review where the first 
hundred Google Scholar page results were considered (https://serpapi. 
com/search?engine=google_scholar). The primary list of articles 
included 2055 results, of which 229 were removed after filtering for 
duplicates. During the first phase of screening, relevant search results 
were identified based on the title and abstract considering the eligibility 
criteria, followed by full-text verification during the second phase of 
screening. Articles not explicitly mentioning “Asia-Pacific” or its con
stituent regions, “mangrove” or “remote sensing” were excluded from 
the analysis (Table 1). Non-English articles, gray literature (conference 
proceedings, book chapters, reports), and reviews were also excluded. 
Disparities that arose during the full-text review on inclusion/exclusion 
decision-making were carefully examined and resolved. Then, a 
comprehensive search was conducted by identifying relevant articles in 
the reference list of the final set of articles using citation networks and 
complementary searches in a backward and forward snowballing 
approach (Badzmierowski et al., 2021). The data required for this study 
was extracted from the final list of articles (i.e., journal and year of 
publication, study location, remote sensing platform, sensors, modeling 
approaches and statistics, main purposes of the study, mangrove carbon- 
related attributes and variation estimated by remote sensing, data re
ported on carbon sequestration for different mangrove species and in 
different countries/locations, research gaps/challenges/opportunities 
highlighted by authors, etc.) 

2.3. Data analysis 

The aforementioned extracted data were analyzed and presented as 
figures, and tables (i.e., number of articles published in each year, 
country-wise remote sensing-based publications, the timeline of the 
usage of sensors/modeling approaches, model performance statistics, 
mangrove carbon-related attributes estimated by remote sensing, 
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variation of mangrove blue carbon captured through remote sensing). 
Research gaps, challenges, and opportunities related to mangrove blue 
carbon measurement in the Asia-Pacific region were compiled from in
formation extracted from the reviewed articles. We also compiled rec
ommendations provided by authors in reviewed journals along with our 
insights to provide guidance for future research endeavors and to 
facilitate informed decision-making, and policy recommendations. 

3. Overview of the final list of articles 

A total of 105 articles were selected from the systematic screening, 
which were published in 62 peer-reviewed journals sourced from 
various publishers. These journals included Remote Sensing (10 arti
cles), Forests (5 articles), International Journal of Remote Sensing (5 
articles), Remote Sensing of Environment (5 articles), Journal of Applied 
Remote Sensing (3 articles), Remote Sensing Applications: Society and 
Environment (3 articles), with the remainder distributed among others 
(See Supplementary Material Table S1 for further details). 

To understand the interrelation of conceptual domains within the 
selected articles, a cluster analysis of the co-occurrence data of keywords 
from the selected articles was made (Piao et al., 2023). The VOSviewer 
software (v 1.6.20) was adopted to elaborate and visualize the co- 
occurrence networks of each keyword cluster. See SI Fig. S2 and SI 
Table S2 for the keyword cluster map and keyword frequency of 
occurrence, respectively. 

4. Spatio-temporal distribution of the reviewed articles 

During 1990–2023, 105 peer-reviewed English articles were pub
lished on the estimation of mangrove blue carbon in the Asia-Pacific 
region. The first peer-reviewed article on remote sensing-based 
mangrove biomass estimation in the Asia-Pacific was published in 
2007 (Li et al., 2007) and the number remained below five papers per 
year through 2013 (Fig. 3). From 2014 through 2022, there was a sig
nificant increase in the number of peer-reviewed articles published in 
English, the highest number of publications occurring in 2020 (Fig. 3). 
This could be attributed to the increase of openly accessible remotely 

Fig. 1. Distribution of mangroves in the Asia-Pacific region (2020) determined by Global Mangrove Watch 3.0 data.  

Table 1 
Search expressions used to collect literature.  

Criteria Search expression 

What (“Mangrove blue carbon” OR (“mangrove“AND (“blue carbon” OR 
“carbon“OR “biomass“OR “canopy“OR “stock“OR “forest structure” OR 
“restoration“OR “threats“OR “litter”))) 

AND (“Asia-Pacific” OR “Indo-Malayan” OR “Australasia” OR “South Asia” OR 
“Southeast Asia” OR “Indonesia” OR “Australia” OR “Malaysia” OR 
“Myanmar” OR “Bangladesh” OR “India” OR “Thailand” OR “Vietnam” OR 
“Cambodia” OR “Sri Lanka” OR “Singapore” OR “Papua New Guinea” OR 
“New Zealand” OR “Pacific Island” OR “Pakistan” OR “China” OR “Japan” 
OR “Philippines” OR “Fiji” OR “Kiribati” OR “Brunei” OR “Maldives” OR 
“Taiwan” OR “Tonga” OR “French Polynesia” OR “New Caledonia” OR 
Timor-leste OR Micronesia OR Melanesia OR Polynesia OR Tuvalu OR 
“Hong Kong” OR “Samoa”) 

How (“Remote Sensing” OR “LiDAR” OR “Satellite image*” OR “aerial image*” 
OR “GIS” OR “Drone” OR “UAV” OR “SAR” OR “hyperspectral” OR 
“multispectral” OR “UAS” OR “earth observation” OR “EO” OR “mapping” 
OR “radar” OR “Thermal” OR “ALS” OR “Light detection and ranging”) 

When January 1990 to June 2023  
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sensed images and greater computational power over the years. 
With respect to the study location in the screened articles, Indonesia 

led the list by contributing 26 articles (Fig. 3). China followed with 22 
articles, Vietnam with 19 articles, India with 12, Australia with 8, while 
Malaysia had 9 (Fig. 3). Moreover, Thailand contributed 4 articles, and 
the Philippines 3. Bangladesh, Brunei, Myanmar, Cambodia, Singapore, 
New Zealand, and Sri Lanka have 1 article each. Global studies were not 
considered when determining country-wise statistics. 

Our systematic review showed there were very few research publi
cations from Myanmar, Bangladesh, and Papua New Guinea (n = 0) 
despite the high mangrove area. In contrast, China has published 22 
articles even though the area of mangroves in China is far less (Fig. 1. 
and Fig. 3). This highlighted the significant contribution of countries 
with higher nominal Gross Domestic Product (GDP) to the remote 
sensing-based mangrove blue carbon research (i.e China- 17,700 billion 
USD) than other countries (Myanmar-74.8 billion USD; Bangladesh- 
446.3 billion USD; Papua New Guinea-31.7 billion USD) (IMF, 2023). 
Countries without publications, but with high areas of mangroves, may 
also have limited accessibility to advanced and emerging high- 
resolution remote sensing technologies which might not always be 
openly accessible. 

5. Sensors used for measuring mangrove blue carbon during 
1990–2023 

Among the different types of sensors used in the reviewed literature, 
spaceborne sensors were most commonly used, featuring in 85.5 % of 
the reviewed articles. Drone/UAV platforms, that were able to capture 
fine-scale data and provide better spatial resolution for targeted obser
vations, accounted for 7.9 %, while airborne platforms were used in 4.2 
% of the reviewed articles (Fig. 4). Terrestrial remote sensing platforms 
contributed to 2.4 %, supporting ground-based observations and vali
dations. With respect to sensor types, multispectral sensors (59.3 %) 
dominated, followed by radar (28.1 %), LiDAR (10.8 %), and hyper
spectral (1.8 %) sensors. 

Sentinel-2 MSI was identified as the most preferred sensor, ac
counting for 14.5 % of overall usage (Fig. 4). Then, Landsat 8 Opera
tional Land Imager (OLI) (11.5 %), ALOS 2 PALSAR 2 (7.3 %) and ALOS 

PALSAR (7.2 %) have also been used frequently for studying mangrove 
blue carbon followed by Landsat 7 ETM+ (6.1 %), Sentinel-1 (6.7 %), 
Landsat 5 TM (5.5 %), UAV LiDAR (4.8 %), SRTM DEM (5.5 %), airborne 
LiDAR (3 %) and multispectral UAV (3 %) (Fig. 4). Aerial photographs 
have also been used in some earlier studies. Many studies have used 
more than one remote sensing platform and incorporated a data fusion 
approach, and we provided equal weighting to each sensor when 
calculating statistics. Supplementary material Table S3 contains a 
detailed summary of all the sensors used for measuring mangrove blue 
carbon in the Asia-Pacific from 1990 to 2023. 

The European Space Agency (ESA) Sentinel-2 has been widely used 
for measuring mangrove blue carbon since its launch in 2015 (Fig. 4). 
The MultiSpectral Instrument (MSI) captures imagery in 13 spectral 
bands and its five-day revisit frequency with sensors 2-A and 2-B are 
useful for quick monitoring of mangrove ecosystems. The first study that 
used Sentinel-2 for estimating mangrove blue carbon in the Asia-Pacific 
was in 2017, and since then there has been a steady increase with 2021 
having the highest number of peer-reviewed articles (Fig. 4). Multi
spectral data from Sentinel-2 allowed for precise vegetation classifica
tion and quality evaluation, providing a method for identifying areas 
with abundant biomass (Castillo et al., 2017; Thuy et al., 2020). 
Sentinel-2 in combination with RapidEye and PlanetScope has been used 
to study mangrove biomass, with the high-resolution imagery captured 
by RapidEye (5 m spatial resolution) and PlanetScope (3 m spatial res
olution) aiding in better identification of mangroves and allowed better 
segregation of the canopy and understory (Baloloy et al., 2018). 

The Landsat satellites have also been extensively used for estimating 
mangrove blue carbon in the Asia-Pacific. NASA-USGS's Landsat 8 OLI 
sensor (launched in 2013) with its open data policy has allowed for 
frequent observations of mangrove ecosystems with 16 days revisit time 
and 9 spectral bands recording imagery at a moderate spatial resolution 
(30 m). It is the second most used multispectral sensor after Sentinel-2 
MSI (Fig. 4). Landsat 8 OLI was first used for blue carbon estimation 
in 2015, with the largest number of articles published in 2021 (Fig. 4). 
Landsat 8 OLI has facilitated the assessment of temporal dynamics in 
mangrove blue carbon across decades through the archiving of collected 
imagery (Sulistiyono et al., 2020). It has also been used in combination 
with LiDAR data for estimating mangrove height, living biomass, and C 

Fig. 2. Workflow representing the systematic literature review process.  
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stock (Hickey et al., 2018). 
The Landsat 5 TM sensor (launched in 1982) provides useful data 

with its 7 spectral bands ranging from visible to thermal infrared 
wavelengths (30 m spatial resolution; 16-day revisit time). Its data was 
first used in 2007 for estimating mangrove blue carbon in the region 
(Fig. 4). Despite being decommissioned and superseded by newer 
Landsat missions, Landsat 5 TM has provided a unique opportunity to 
analyze long-term changes in mangrove biomass and their response to 
environmental conditions. 

Landsat 7 ETM+ (30 m spatial resolution) has also played an 
important role in mapping and monitoring mangrove biomass since 
1999. The capacity of Landsat 7 ETM+ to gather both optical and 
thermal data improves our understanding of mangrove dynamics, 
allowing estimation of biomass and its response to changing climate. For 
estimating mangrove blue carbon in the Asia-Pacific, this satellite was 
first used in 2016, with the highest number of publications in 2020 
(Fig. 4). 

Other multispectral satellite data includes QuickBird (2.5 m spatial 
resolution) which has been successfully used for species identification 
(Hirata et al., 2014). Mangrove AGC and BGC were also estimated using 
ALOS AVNIR-2 data (Wicaksono et al., 2016). The use of high spatial 
resolution imagery such as WorldView-2, Pléiades, and SPOT 5 enabled 
the accurate estimation of biomass and carbon in heterogeneous land
scapes (Wicaksono et al., 2016; Wang et al., 2018a; Muhd-Ekhzarizal 

et al., 2018; Pham et al., 2020a; Zhu et al., 2020a). 
Among the synthetic-aperture radar (SAR) sensors used to study 

mangrove blue carbon, ALOS-2 PALSAR-2 was the most common, which 
showed a significant increase after its first use in 2017 (Fig. 4). Launched 
in 2014 by the Japan Aerospace Exploration Agency (JAXA), this sensor 
provides day-and-night observation capabilities regardless of the 
weather or cloud cover. With the capability of canopy penetration, SAR 
backscatter data can be used to characterize the vegetation structure and 
predict AGB even in dense tropical mangrove forests (Wicaksono et al., 
2016; Pham et al., 2017; Pham et al., 2018; Darmawan et al., 2019; 
Lucas et al., 2020; Nesha et al., 2020; Pham et al., 2020a). Integration of 
L-band SAR with a DEM can account for the changes in topography, 
which could, in turn, be used to refine the estimates of tree height and 
improve the accuracy of biomass estimation (Vu et al., 2014; Hamdan 
et al., 2014). The integration of ALOS-2 PALSAR-2 data with multi
spectral imagery from Sentinel-2 has been found to significantly 
improve model performance for estimating mangrove AGB (Pham et al., 
2020a). Sentinel-1 from ESA (launched in 2014) is also an important 
tool for assessing mangrove biomass. This satellite has a C-band SAR 
sensor which has increasingly been used to estimate mangrove blue 
carbon since its first use in 2017 (Fig. 4). The Airborne SAR (AIRSAR) 
sensor was used to identify mangrove species from Australia where 
backscatter values were found to be higher for Avicennia marina and 
Sonneratia alba than that of Rhizophora stylosa (Mitchell et al., 2005). 

Fig. 3. Number (cumulative and yearly; top) and country-wise (bottom) remote sensing based peer-reviewed articles published on mangrove blue carbon mea
surements in the Asia-Pacific region from January 1990–June 2023. Countries have been grouped into color codes based on their nominal GDP. The bar for 2023 only 
includes the first six-months of the year. 
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Radarsat images were also used for estimating mangrove biomass with 
regression models (Li et al., 2007). Dual polarization Polarimetric SAR 
(PolSAR) and Polarimetric Interferometry SAR (PolInSAR) methods 
were also used to study mangrove blue carbon (Jaya et al., 2017). The 
radar-based sensor TanDEM-X gathers interferometric data by using two 
radar satellites that fly in close formation, which makes it easier to 
create extremely precise DEMs, and has helped in distinguishing be
tween ground and vegetation layers in mangrove forests (Lucas et al., 
2020). 

Airborne LiDAR to study mangrove blue carbon in the Asia-Pacific 
was first used in Central Sumatra, providing reliable data for esti
mating AGB with linear regression models using the canopy height, 
canopy cover, and the quadratic mean canopy height (Thapa et al., 
2015). Airborne LiDAR was also used to study the effect of vegetation 
structure and species composition on soil carbon storage (Owers et al., 
2016). 

UAV-based sensors have been recently used to study mangrove blue 
carbon in the Asia-Pacific region. UAV-LiDAR data provides extensive 
information about the canopy structure in relatively smaller areas with 
complex topography (Wang et al., 2019; Li et al., 2019; Nesha et al., 
2020; Hu et al., 2020; Wang et al., 2020). Drones such as the DJI Matrice 
600 Pro (M600) and DJI Phantom 4 have been used in studies from 
China and Indonesia (Tian et al., 2022; Wirasatriya et al., 2022). The 
M600 is a professional-grade drone that has been coupled with the 

HS40P sensor which can collect LiDAR data, while the Phantom 4 is a 
rotary-wing UAV that generally carries sensors capable of collecting 
visual imagery. The EO-1 Hyperion hyperspectral sensor also showed 
promising results for species classification and mangrove carbon stock 
estimation in India (Anand et al., 2020). Terrestrial Laser Scanning (TLS) 
LiDAR data has proved to be an effective method for developing 
nondestructive allometric models to estimate mangrove blue carbon 
(Owers et al., 2018; Intarat and Vaiphasa, 2020). 

6. Modeling methods used in measuring mangrove blue carbon 

Modeling plays a crucial role in accurately quantifying mangrove 
blue carbon, and the choice depends on the specific research objectives. 
The use of a genetic algorithm for optimizing radar backscatter pa
rameters in mangrove forests dates back to a 2007 study from China (Li 
et al., 2007). During the last eight years, there has been a marked 
transition from parametric modeling (least square linear and non-linear 
regression) to the use of non-parametric machine learning models 
(Support Vector Regression (SVR), Random Forest Regression (RFR) or 
Extreme Gradient Boost Regression (XGBoost or XGBR)) (Fig. 5). In 
contrast to parametric methods, non-parametric models do not impose 
rigid assumptions around the functional form or underlying data dis
tribution and are generally seen to perform better (Luong et al., 2018; 
Meng et al., 2022). This increased flexibility often aids in capturing 

Fig. 4. Percentage of sensors used to measure mangrove blue carbon in the Asia-Pacific region from January 1990–June 2023 (top), and within each year 
(2007–2023) (bottom). Shades of purple, blue, green, and brown represent L-band ALOS PALSAR sensors, Landsat sensors, Sentinel sensors, and LiDAR-based 
sensors, respectively. The bar for 2023 only includes the first six months of the year. 
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greater complexity and improves the accuracy of blue carbon 
quantification. 

6.1. Parametric regression models 

Early studies have mostly used least square linear regression (LR) 
models using either multispectral band values, vegetation indices, or 
SAR backscatter values for estimating mangrove AGB or above-ground 
carbon (AGC) (Li et al., 2007; Hamdan et al., 2013; Hamdan et al., 
2014). Models based on the Normalized Difference Vegetation Index 
(NDVI) often have significant uncertainty in blue carbon estimations as 
the multispectral imagery derived-NDVI underestimates the biomass of 
woody mangrove forests, and SAR data is more accurate (Li et al., 2007). 
However, extraction of NDVI, and other vegetation indices, from mul
tispectral sensors such as Landsat 5 TM and SPOT-5, have been reported 
to have good accuracy (Hamdan et al., 2013). An optimized soil- 
adjusted vegetation index (OSAVI) was found to perform better than 
NDVI in Avicennia marina plantations in the Indian Sundarbans (Manna 
et al., 2014). The Mangrove Index (MI), which is a vegetation index 
combining NIR (near infrared) and SWIR (shortwave infrared) bands (i. 
e., Bands 5 and 6 of Landsat 8 OLI) has been effective in estimating 
mangrove carbon stocks (Winarso and Purwanto, 2014; Mukhtar et al., 
2021). 

Among the SAR-based studies, parametric regression models using 
backscatter from Horizontal-Vertical (HV) polarization have been 
effective in estimating the total AGB (Hamdan et al., 2014; Pham and 
Yoshino, 2017). Horizontal-Horizontal (HH) polarization is also effec
tive for some non-dominant species (Pham and Yoshino, 2017). Long- 
wavelength PolSAR data, such as the L and the P bands, are well 
correlated with mangrove forest structures (Pham et al., 2020a). AGB 
parametric regression models based on vegetation indices derived from 
Sentinel-2 data were more highly correlated to field data than indices 
extracted from the Landsat 8 OLI sensor (Nguyen and Nguyen, 2021). 

The use of species-specific localized allometric models that account 
for wood density, instead of generic pan-tropical models, showed 
increased accuracy in model estimates using airborne LiDAR in Australia 
(Salum et al., 2021). However, generic models were seen to perform 
better using WorldView-2 imagery in Indonesia (Kamal et al., 2022). 

6.2. Machine learning (ML) algorithms 

Commonly used machine learning models in association with remote 
sensing data include Support Vector Machine (SVM), Random Forest 
(RF), Gradient Boosting Machines (GBMs), and Artificial Neural 
Network (ANN). The first use of machine learning in the Asia-Pacific 
using Support Vector Regression (SVR) for mangrove blue carbon was 
reported from a Rhizophora-dominated riverine mangrove forest in 
southern Thailand, where the model showed relatively good accuracy 
(R2 = 0.66) (Jachowski et al., 2013). Since then, a large number of 
studies have used machine learning models. Many machine learning 
studies have used Python modules such as the Scikit-learn library for 
model development (Pham et al., 2020a; Pham et al., 2020b; Le et al., 
2021; Rijal et al., 2023). 

SVM has been found to be robust for handling high-dimensional data 
and generalizing (Vapnik, 1999; Hastie et al., 2009) and is widely used 
for hyperspectral image processing (Licciardi et al., 2009; Monnet et al., 
2011) and forest AGB estimations. The SVM classification algorithm 
demonstrated a high accuracy (99 %) in discriminating mangroves from 
other land cover types in the Philippines (Pillodar et al., 2023). The SVM 
regression model performed better than RF and MLR for estimating 
mangrove carbon stocks in Hainan Island, China (Meng et al., 2022). It 
also outperformed other ML regression models when mangrove plan
tation AGB was estimated in northern Vietnam using ALOS-2 PALSAR-2 
and Sentinel-2 data (Pham et al., 2018). 

The RF algorithm is based on a decision tree approach in the 
ensemble learning family, where a bootstrap sample of the training data 
is chosen to build uncorrelated decision trees to predict the dependent 
variable (Breiman, 2001). The final output is a weighted average of all 
the predictions given by individual decision trees. The performance of 
the RF algorithm is influenced by hyperparameter tuning and the se
lection of variables (Tyralis and Papacharalampous, 2017). RF classifi
cation models based on a combination of the Inverted Red-Edge 
Chlorophyll Index (IRECI) and Total Ratio Vegetation Index (TRVI) (red 
edge and NIR bands of Sentinel-2) have shown good accuracy (kappa 
coefficient of 0.96) for the classification of mangrove/non-mangrove 
forests (Suardana et al., 2023). Models based on RFR have performed 
moderately well (Table 2) in estimating mangrove blue carbon irre
spective of the sensor (Wang et al., 2019; Pham et al., 2020a; Sejati et al., 
2020; Ghosh et al., 2021; Prakash et al., 2022). 

Gradient boosting machines, that include XGBoost (XGB), CatBoost 

Fig. 5. Modeling approaches used by year for measuring mangrove blue carbon in the Asia-Pacific region during 1990–2023. LR: Linear regression, NLR: Nonlinear 
regression, SVR: Support Vector Regression, RFR: Random Forest Regression, ANN: Artificial Neural Network, GP: Gaussian Process, GBR: Gradient Boost Regression, 
LGBR: Light Gradient Boost Regression, KNN: K-nearest neighbor, ADBR: AdaBoost Regression, CBR: CatBoost Regression, XGBR: XGBoost Regression, MLPNN: 
Multilayer Perceptron Neural Network, Others: GEOBIA, InVEST, GIS-based models etc. The bar for 2023 only includes the first six months of the year. 
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(CB), and Light Gradient Boost (LGB) work by iteratively adding new 
trees to a model, with each new tree aiming to correct the errors made by 
the previous ones (Bentéjac et al., 2020). The XGB regression model 
(XGBR) with Genetic Algorithm (GA) optimization (XGBR-GA) using 
Sentinel-2, Sentinel-1, and ALOS-2 PALSAR-2 data demonstrated supe
rior performance compared to other machine learning algorithms, 
making it a promising approach for accurately estimating mangrove 
AGB (Pham et al., 2020a; Rijal et al., 2023). The XGBR model performed 
well in a study to estimate AGC using Sentinel-2 and ALOS-2 PALSAR-2 
in Indonesia (Rijal et al., 2023). CatBoost effectively processes cate
gorical features directly within the training process, avoiding the need 
for preprocessing. The CB regression model (CBR) had the highest ac
curacy among all machine learning models in the estimation of the 
exotic mangrove Sonneratia apetala in China using UAV-LiDAR data 
(Tian et al., 2022; Table 2). 

Optimization algorithms such as Genetic Algorithm (GA) and Parti
cle Swarm Optimization (PSO) have been used in machine learning 
models to improve model accuracy (Holland, 1992; Kennedy and 
Eberhart, 1995). GA aims to mimic natural selection and genetics and 
makes random changes to the model parameters to find a solution. PSO 
adjusts the positions of individual data points based on their own best 
previous positions and the best position found by the whole group, 
aiding in finding an optimal solution for the model. In North Vietnam, 
the CBR model coupled with GA optimization (CBR-GA) using Sentinel-2 
data performed better than RFR, XGBR, and SVR (Pham et al., 2020c). 
The CBR model with PSO algorithm for feature selection has been 
proven to be very effective in mangrove soil organic carbon estimation 
(Le et al., 2021). The LGB algorithm has shown good performance for 
high-dimensional data (Li et al., 2018). A study in the mangroves of 
Sonneratia apetala, Aegiceras corniculata and Kandelia candel in China 
using C-band SAR Sentinel-1 and multispectral images of Sentinel-2 
showed LGB with PSO feature selection outperformed all other ML 
models (Huang et al., 2022). 

ANN regression employs gradient-based learning to establish a 
neural network for capturing complex connections between inputs and 
outputs through feed-forward architectures (Yuan et al., 2017). In a 
study at the Can Gio Biosphere Reserve in Vietnam, ANN achieved 
higher prediction accuracy than SVR and Gaussian Process (GP) 
regression (Do et al., 2022). The multilayer perceptron neural network 
(MLPNN) model, a neural network-based model, has been seen to 
outperform other machine learning techniques in mangrove AGB esti
mation in Vietnam using ALOS-2 and PALSAR-2 backscatter coefficients 
(Pham et al., 2017). 

6.3. Other geospatial models 

Geographic object-based image analysis (GEOBIA) is commonly used 
in land-use/land-cover mapping, for example; where the entire image is 
classified spectrally into information classes such as vegetation (Radoux 
and Bogaert, 2017). The GEOBIA model has successfully classified 
mangrove species and estimated mangrove AGC stocks using high- 
resolution remote sensing imagery from WorldView-2 by incorpo
rating species-specific allometric equations, with a good level of accu
racy (84 %) for species classification (Hidayatullah et al., 2023). 

The Integrated Valuation of Ecosystem Services and Tradeoffs 
(InVEST) model is designed to assess and quantify the ecosystem ser
vices offered by various landscapes/seascapes. The Carbon module 
within InVEST enables the assessment of carbon emissions resulting 
from land use change and has been used in combination with multi
temporal Landsat data to investigate the temporal dynamics of 
mangrove blue carbon (Islam et al., 2022; Jia et al., 2022; Kadaverugu 
et al., 2022). 
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7. An overview of different attributes measured by remote 
sensing 

A variety of attributes of mangrove blue carbon have been deter
mined based on remote sensing and modeling (Fig. 6). Among the 
reviewed articles, the main blue carbon attribute estimated was AGC 
(based on remotely sensed measures including tree height, forest area, 
canopy cover, etc. and predicted based on location/species-specific 
models) while BGC (biomass and soil/sediment) was less studied. 
Similarly, the studies based on the valuation of mangrove carbon stocks 
followed by rehabilitation initiatives were limited. This highlights the 
importance of expanding research toward various blue carbon attributes 
that have not yet been extensively explored. 

7.1. Mangrove quality 

Near-real time monitoring of mangroves is critical in understanding 
their behavior, adaptability, and response to natural/anthropogenic 
stressors. Since the early 2000s, there have been remote sensing-based 
studies on mangrove productivity dynamics. Gross Primary Productiv
ity (GPP) is an important indicator of the overall productivity and vi
tality of an ecosystem. The quality of mangrove vegetation in Indian 
Sundarbans was determined based on GPP integrating field-based esti
mations of GPP (Leaf Area Index (LAI) and chlorophyll content) and 
Landsat 8 OLI data (Kumar and Kumar Das, 2023). This has led to a more 
comprehensive and reliable assessment of GPP. In addition, Landsat 5 
TM and SPOT 5 using NDVI, OSAVI, and SAVI (soil-adjusted vegetation 
index) were useful for evaluating the carbon stock and quantifying 
changes that occurred due to deforestation, wood extraction, and forest 
degradation over the years (Hamdan et al., 2013). 

7.2. Impact of disturbance on mangrove blue carbon measured by remote 
sensing 

Mangroves face several threats due to climate change impacts, 
including rising sea levels, and temperatures, and changes in the fre
quency and severity of precipitation and storm patterns. Among all these 
factors, sea level rise has been identified as the greatest threat 
(Jachowski et al., 2013; Pham et al., 2018). A remote sensing-based 
study (airborne LiDAR, RGB, and hyperspectral imagery) from 
Australia was successful in assessing the impact of hypersalinity on the 
mangrove dieback (Dittmann et al., 2022). Anthropogenic disturbances 

including deforestation (due to unlawful logging, urbanization, palm/ 
coconut cultivations, and aquaculture) have led to a degradation of 
mangrove ecosystems in the Asia-Pacific (Kadaverugu et al., 2022; 
Worthington et al., 2020; Wirasatriya et al., 2022; Bournazel et al., 
2015; Aslan et al., 2016; Wang et al., 2018b; Zhu et al., 2020a; Eddy 
et al., 2021; Nguyen et al., 2021). 

A study from Indonesia (Belitung Island) revealed the impact of land 
conversion and mining on the degradation of mangrove blue carbon 
stock (Hermon et al., 2018). Similarly, an expansion of coconut plan
tations has led to a significant destruction of mangrove forests in South 
Sumatra (Eddy et al., 2021). Aquaculture has historically replaced 
Indonesian mangroves, and Semarang's urban growth caused a 20,500- 
ton loss in just 4 years (Eddy et al., 2021). Vietnam's Can Gio biosphere 
reserve saw a change of around 9.5 % in 20 years, with the biomass 
decreasing in the core zone (Sejati et al., 2020). Industrial development 
over the years in the coastal area of Metropolitan Semarang, Indonesia 
has led to habitat fragmentation and degradation, reducing mangrove 
cover and carbon sequestration potential (Sejati et al., 2020). Similarly, 
in Indonesia (South Sumatra) extensive shrimp farming has altered the 
landscape, resulting in habitat fragmentation and disruption of migra
tory pathways for various species (Eddy et al., 2021). 

In the Indian Sundarbans, 107 km2 of mangrove area was lost in four 
decades (1975 to 2013) to various anthropogenic activities, emitting 
1567.98 ± 551.69 Gg, with a rate of emission at 41.26 ± 14.52 Gg per 
year (Akhand et al., 2017). The Puttalam lagoon in Sri Lanka witnessed 
losses of 191,584 Mg C due to the implementation of shrimp aquaculture 
in the mangrove forest area, an activity which was expanded by 2777 % 
within three decades (Bournazel et al., 2015). In China, aquaculture 
expansion has resulted in mangrove degradation and subsequent carbon 
stock decline, highlighting the importance of implementing sustainable 
coastal development (Xu et al., 2023). 

8. Variations of mangrove blue carbon sequestration capacity 
captured by remote sensing 

Mangrove carbon stocks have been recognized within global initia
tives, such as the REDD+ (Reducing Emissions from Deforestation and 
Forest Degradation) framework due to their importance in national and 
global carbon accounting. 

Fig. 6. Types of mangrove blue carbon attributes estimated using remote sensing in the Asia-Pacific over time since 2007 (AGC: Above Ground Carbon; BGC: Below 
Ground Biomass Carbon; SC: Soil Carbon; CCS: Change in Carbon Stock; SWCS: Species Wise Carbon Stock; QCS: Quality of Carbon Stock; TWCS: Typology Wise 
Carbon Stock; VCS: Valuation of Carbon Stock). The bar for 2023 only includes the first six months of the year. 

A. Dutta Roy et al.                                                                                                                                                                                                                             



Science of the Total Environment 938 (2024) 173270

11

8.1. Environmental factors 

The carbon sequestration capacity of mangroves in the Asia-Pacific 
area is inextricably tied to their geomorphology (shoreline configura
tion, elevation, and sediment dynamics), hydrology, and climate (Thom, 
1984; Duke et al., 1998; Twilley et al., 1998; Balke and Fries, 2016). 
Tidal patterns, salinity, and freshwater influx all impact mangroves, 
ultimately influencing their carbon sequestration capacity. Analysis 
from high-resolution UAV imagery has shown that the community of 
similar tree species still exhibits variations in tidal level, salinity, and 
planting patterns (Bin et al., 2022). The photochemical reflectance index 
(PRI) has been used to demonstrate that significant temporal variations 
in environmental factors (photosynthetically active radiation (PAR), air 
temperature, and vapor pressure deficit (VPD)) directly influence 
photosynthetic activity, which in turn impacts mangrove blue carbon 
dynamics (Zhu et al., 2019). 

8.2. Location 

The intricate relationship between mangrove forests and their 
environment is reflected by the wide variation in blue carbon observed 
across diverse geographical locations within the Asia-Pacific region 
(Table 3). On average, the aboveground and belowground biomass 
components contain approximately 50 % and 39 % carbon, respectively 
(Kauffman and Donato, 2012). Based on our review, the highest AGB 
was recorded from Indonesia (328 Mg ha− 1), followed by Australia 
(230.6 Mg ha− 1) and Vietnam (230.14 Mg ha− 1) (Table 3). The BGB 
(reported only in a few studies) was highest in Thailand (95 Mg ha− 1), 
followed by Australia (20 Mg ha− 1), and Indonesia (8.60 Mg ha− 1) 
(Table 3). 

8.3. Mangrove species 

Southeast Asia boasts the highest mangrove diversity globally. 
Among the screened articles explicitly mentioning mangrove species, 
Avicennia marina emerges as the most widely studied using remote 
sensing within the Asia-Pacific. Other extensively examined species 
using remote sensing include Rhizophora apiculata, Rhizophora 

mucronata, Sonneratia alba, Ceriops tagal, Aegiceras corniculatum, and 
Heritiera fomes. 

In Indonesian Papua, data from ALOS PALSAR and SRTM DEM 
showed a distinct contrast in mean standing biomass between short 
canopy stands dominated by Avicennia and Sonneratia and mature tall 
canopy stands of Rhizophora (Aslan et al., 2016). In East Java, Rhizo
phora apiculata had a higher mean AGC than Ceriops tagal, Sonneratia 
alba, and Bruguiera gymnorrhiza (Hidayatullah et al., 2023). LiDAR 
metrics have been used to determine canopy heights (converted to AGB 
using regression models) of mangrove forests of Rhizophora stylosa, 
Ceriops tagal, and Sonneratia alba in northern Australia and New Zealand 
(Salum et al., 2021; Suyadi et al., 2020). The comparisons (Table 4) may 
have been influenced by other factors including stand characteristics, 
remote sensing method, and modeling approaches. 

8.4. Carbon sequestration of planted mangroves and variation based on 
age 

Restoration and plantation of mangroves necessitate meticulous site 
monitoring. China's largest artificially planted mangroves of Sonneratia 
apetala mapped using GaoFen-2 and GaoFen-3 sensors had an average 
estimated AGB of 137.89 Mg ha− 1 (Zhu et al., 2020b). Similarly, planted 
mangroves of Avicennia marina in the Henry Island of the Indian Sun
darbans studied using ISRO's ResourceSat-2 LISS IV sensors developed 
6.64 Mg C ha− 1 (upper range) within just five years of plantation 
establishment (Manna et al., 2014). The mapping of AGB (using ALOS-2 
PALSAR-2) in degraded mangroves restored using Avicennia alba and 
Rhizophora spp. in East Kalimantan, Indonesia had an average AGB of 
181 Mg ha− 1 (Nesha et al., 2020). 

The carbon sequestration capacity of mangrove forests varies with 
the age of the mangroves, with old, contiguous mangrove patches con
taining a higher density of biomass carbon than fragmented, river- 
fringing, or restored mangroves (Friess et al., 2016). Natural 
mangrove stands may possess an AGC storage capacity of up to 250 Mg C 
ha− 1, a level of carbon sequestration that remains unparalleled by 
planted counterparts (Hamdan et al., 2013). Another study in the 
Richmond River estuary in Australia using data collected from a UAV 
exhibited a difference in AGB of up to 80 Mg ha− 1 between natural and 

Table 3 
Variation in pools of biomass and blue carbon stocks in countries of the Asia-Pacific region as measured by remote sensing (in studies published from January 
1990–June 2023). Biomass and blue carbon stocks are expressed as a min-max range and/or (mean) or (mean ± standard deviation) in brackets. AGB/BGB (Mg ha− 1); 
AGC/BGC/Soil C (Mg C ha− 1).  

Country Region AGB BGB AGC BGC Soil C Reference 

Australia East coast – – – – 74.5–88.5 Owers et al., 2016 
North-Western (semi-arid) (70) (20) – – – Hickey et al., 2018 
South – – (48) – (101.72 ±

15.97) 
Dittmann et al., 2022 

Southeastern 152.1–230.6     Navarro et al., 2020 
Bangladesh  (154.17 ± 12.84) – – – – Hu et al., 2020 
China Hainan Island  – (44.7 ± 21.1) – – Meng et al., 2022  

Kangxiling area 38.23–171.80 
(94.37)     

Tian et al., 2022  

Southeast (sub tropical)   1–153   Wang et al., 2018b 
India   – 104.72–306.70  – Anand et al., 2020 

Maharashtra   (21.7) (18.1)  Patil et al., 2015 
Kachchh, Gujarat 0.1–213     Vaghela et al., 2021 

Indonesia  8–328 (38.60 ±
20.79) 

(8.60 ±
4.24) 

2.52–123.89 
(57.16) 

– – Hastuti et al., 2018; Wirasatriya 
et al., 2022; Rijal et al., 2023 

New Zealand Auckland Region – – (40.2) – – Suyadi et al., 2020 
Papua New 

Guinea  
(148.94 ± 46.75) – – – – Hu et al., 2020 

Philippines Palawan 1.1–210 (65.1) – – – – Castillo et al., 2017 
Sri Lanka Puttalam lagoon – – (159) (199.18 ±

19.02) 
– Bournazel et al., 2015 

Thailand Suksamran subdistrict, 
Ranong Province 

(250) (95) (113) (42) – Jachowski et al., 2013 

Vietnam Hai Phong city 36.22–230.14 
(87.67) 

– – – – Pham et al., 2018  
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planted mangroves (Navarro et al., 2020), highlighting the importance 
of the conservation and restoration of natural mangrove forests. 

The growth rates of mangrove plantations are often very rapid, 
particularly during the first few years after establishment. The growth of 
the Matang mangroves in Malaysia determined using a combination of 
Landsat, ALOS PALSAR, TanDEM-X, and WorldView-2 images revealed 
the growth rate to be higher during the first few years (> 20 Mg ha− 1 

yr− 1) compared to the growth rate after 13 years (< 5 Mg ha− 1 yr− 1) 
(Lucas et al., 2020). 

9. Research gaps, challenges, opportunities and 
recommendations 

As highlighted by the reviewed articles, knowledge/research gaps 
exist in remote-sensing based mangrove blue carbon estimations across 
the Asia-Pacific region, particularly in mangrove ecosystems with 
complex vegetation structures and topography (Luong et al., 2018; Tian 
et al., 2022). Despite having high mangrove cover across Bangladesh, 
Myanmar, and Papua New Guinea, significant research gaps exist 
around use of remote sensing-based blue carbon estimations (Figs. 1 and 
3), that may be attributable to financial constraints. 

Given the species complexity in the Asia-Pacific region, further 
studies should include metrics related to species richness, community 
completeness, biodiversity, and vegetation structural characteristics 
when estimating AGB (Pham et al., 2020a; Nguyen and Nguyen and 
Nguyen, 2021, Wicaksono, 2017). In addition, further research is rec
ommended to quantify differences in species-specific biomass, and other 
biophysical properties, especially in areas with high mangrove cover 
densities such as in Indonesia (Wicaksono, 2017; Zablan et al., 2023). 
Significant knowledge gaps also exist in areas including the evidence- 
based biogeochemical carbon fluxes (in 55 % of the Asia-Pacific coun
tries), sediment-to-sea carbon exports (only reported from nine coun
tries in the Asia-Pacific region), and carbon export fluxes in Indonesian 
mangroves (Sharma et al., 2023). In addition, remote sensing based 
estimations of mangrove litter layers have a high potential for further 
research. 

The accuracy of the biomass estimates depends on the choice of 
sensor, platform, and modeling method, especially in areas with com
plex topography/canopy structure (Pham et al., 2018). Fusion of remote 
sensing data such as high-resolution WorldView-2 imagery and LiDAR 
(Pham et al., 2020b), field-based data, and best machine learning al
gorithms can greatly improve estimates of mangrove AGC (Wicaksono 
et al., 2016; Wicaksono, 2017; Pham et al., 2018; Nguyen and Nguyen 
and Nguyen, 2021). Integrating Sentinel-2 imagery with well-planned 
field surveys can provide a means of scaling estimates of mangrove 
carbon stocks to regional levels (Meng et al., 2022). The limitations 
associated with sensors should be investigated to improve their perfor
mance. One such example is the saturation of backscatter intensity in 
SAR/ PolSAR, once AGBs exceed a certain value, leading to inaccurate 

Table 4 
Above-ground biomass and carbon of different mangrove species in Asia-Pacific 
region as measured by remote sensing and reported in studies published from 
January 1990–June 2023. Values shown are expressed as a min-max range or 
and/or (mean) or (mean ± standard deviation).  

Species Country AGB (Mg 
ha− 1) 

AGC (Mg C 
ha− 1) 

References 

Aegiceras 
corniculatum 

China 11.3–122.88 – Huang et al., 
2022 

China (99.24) – Bin et al., 2022 
India – (149.90 ±

5.57) 
Anand et al., 
2020 

Avicennia marina China – (95.25) Bin et al., 2022 
China – (47.4 ± 6.2) Li et al., 2019 
New 
Zealand 

– (46.3 ± 1.5) Suyadi et al., 
2020 

New 
Zealand 

– (24.9 ± 0.9) Suyadi et al., 
2020 

Indonesia (19) – Mukhtar et al., 
2021 

Avicennia/ 
Sonneratia 
dominated 
forest 

Indonesia (237.52 ±
98.20) 

– Aslan et al., 
2016 

Bruguiera 
dominated 
forest 

Indonesia (295.09 ±
86.17) 

– Aslan et al., 
2016 

Bruguiera 
gymnorrhiza 

Indonesia – 2.19–63.11 Hidayatullah 
et al., 2023 

Cerbera odollam India – (154.78 ±
18.39) 

Anand et al., 
2020 

Cynometra iripa India – (149.90 ±
5.57) 

Anand et al., 
2020 

Ceriops tagal Indonesia 20.6–96.9 – Hidayatullah 
et al., 2023 

Australia (7.4) – Salum et al., 
2021 

Excoecaria 
agallocha 

India – (143.48 ±
17.39) 

Anand et al., 
2020 

Heritiera littoralis India  (145.55 ±
7.88) 

Anand et al., 
2020 

Heritiera fomes India  (141.95 ±
10.60) 

Anand et al., 
2020 

Intsia bijuga India  (137.87 ±
12.57) 

Anand et al., 
2020 

Kandelia candel China 4.6–43.12  Huang et al., 
2022 

Kandelia obovata China  (148.03) Bin et al., 2022 
China  (94.0 ±

25.3) 
Li et al., 2019 

Vietnam  27.6–209 Pham and 
Yoshino, 2017 

Rhizophora 
mucronata 

Indonesia  35.9–80 Hidayatullah 
et al., 2023 

Indonesia  29.8–175.8 Suardana et al., 
2023 

Rhizophora 
apiculata 

Indonesia  24.6–167.1 Hidayatullah 
et al., 2023 

Indonesia (232.7)  Mukhtar et al., 
2021 

Indonesia  31–101 Suardana et al., 
2023 

Rhizophora 
stylosa 

Australia (179)  Salum et al., 
2021 

Rhizophora 
dominated 
forest 

Indonesia (353.30 ±
98.43)  

Aslan et al., 
2016 

Sonneratia alba Indonesia  0.47–101.8 Hidayatullah 
et al., 2023 

Australia (252)  Salum et al., 
2021 

Indonesia  31.8–145.7 Suardana et al., 
2023 

Sonneratia 
apetala 

India  (137.83 ±
15.30) 

Anand et al., 
2020 

China 8.5–207  Huang et al., 
2022  

Table 4 (continued ) 

Species Country AGB (Mg 
ha− 1) 

AGC (Mg C 
ha− 1) 

References 

China  (128.6 ±
38.13) 

Li et al., 2019 

China 7.31–114.03  Tian et al., 
2022 

Sonneratia 
caseolaris 

Vietnam 2.8–299  Pham et al., 
2017 

Vietnam 2.75–161.5  Pham and 
Yoshino, 2017 

China  (111.5 ±
31.7) 

Li et al., 2019 

Xylocarpus 
granatum 

India  (150.50 ±
15.51) 

Anand et al., 
2020 

Xylocarpus 
mekongensis 

India  (130.39 ±
12.70) 

Anand et al., 
2020  
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estimations in dense forests (Jaya et al., 2017; Pham and Yoshino, 2017; 
Darmawan et al., 2019; Tu et al., 2019). The accuracy of AGC estimates 
could be improved by the appropriate use of multispectral or pan- 
sharpened imagery to generate vegetation indices such as NDVI, 
Enhanced Vegetation Index (EVI), and Ratio Vegetation Index (RVI), 
and integration of terrain variables such as slope and elevation derived 
from LiDAR data (Pham et al., 2020b). 

The recent advances in UAV-based remote sensing should be fully 
utilized to improve data accuracy in estimating mangrove blue carbon at 
a higher spatial resolution (Li et al., 2019; Hu et al., 2020). In addition, 
the flexibility offered by UAVs to control temporal resolution should be 
used to mitigate the influence of environmental factors (tides and floods) 
that usually affect the precision of mangrove blue carbon measurements 
(Li et al., 2019; Hu et al., 2020; Zhu et al., 2020a). The use of UAV- 
LiDAR with allometric equations has provided accurate and efficient 
methods to estimate AGB and map invasive species, supporting the 
conservation of native mangrove ecosystems (Tian et al., 2022). 

Uncertainties in model estimations are another limitation that occurs 
when working with multiple merged data sets, that have mixed pixel 
issues and different spatial/spectral resolutions (Zhu et al., 2022). The 
effectiveness and accuracy of models and variables have been shown to 
vary across different locations and species (Luong et al., 2018). Model 
accuracies should be improved by employing feature selection methods, 
such as Recursive Feature Elimination (RFE) and Mutual Information 
(MI) to identify the most important remote sensing variables in pre
dicting AGB of mangrove forests (Pham et al., 2020b). Once all efforts 
have been taken to improve data accuracy, it is important to quantify 
uncertainties associated with the estimation (Hirata et al., 2014). 

Advances in computing power have provided several opportunities 
to use superior machine learning algorithms (Table 2) such as SVR, RF, 
and GBR to improve the accuracy of estimations (Pham et al., 2020a; 
Pham et al., 2020b; Prakash et al., 2022; Samsu Rijal et al., 2023). As an 
example, by integrating field survey data with ALOS-2 PALSAR data, the 
Multilayer Perceptron Neural Network (MLPNN) model estimated AGB 
with high accuracy in a tropical mangrove ecosystem (Pham et al., 
2017). 

Quantification of BGC including carbon stored in soils and dead 
wood remains a challenge (Vu et al., 2014; (Wicaksono et al., 2016; Hu 
et al., 2020). The low accuracy of BGC estimates compared to AGC has 
been recognized as a significant source of error (Patil et al., 2015; 
Wicaksono et al., 2016; Hu et al., 2020). The BGC estimates are gener
ated through modeled relationships with a set of above-ground bio
physical properties (Wicaksono et al., 2016). Therefore, the availability 
and credibility of ground reference data greatly influence the accuracy 
of model predictions (Hu et al., 2020). However, some studies fail to 
conduct a thorough investigation of model accuracies in biomass esti
mation by gathering ground reference data (Pham et al., 2018). Even 
when ground reference data is collected, it is often challenging to 
maintain the quality of the data due to issues such as lack of represen
tativeness, low sample size, issues with validity and reliability of field 
data, and biases in sampling design (Wang et al., 2018b; Kadaverugu 
et al., 2022; Suardana et al., 2023). Thus, it is important to explore 
further techniques for improving the accuracy of estimating different 
carbon pools (Vu et al., 2014). 

Ecological attributes of mangroves that determine the capacity of 
provisioning (timber and NTFP), and regulating ecosystem services 
(carbon sequestration and coastal protection) should be researched 
thoroughly to obtain a better understanding (Suardana et al., 2023). 
Variation in mangrove biophysical typology across regions and ecosys
tems is not fully understood and is a function of the climate, hydrology, 
and anthropogenic impacts (Worthington et al., 2020). Long-term 
monitoring of localized mangrove carbon sequestration is needed in 
many places in the Asia-Pacific region that characterize land use change, 
ecosystem fragmentation, and underlying drivers of change (Jachowski 
et al., 2013; Sejati et al., 2020; Do et al., 2022). 

Development of standardized protocols and coordination between 

global/regional monitoring programs are needed to assess the spatio
temporal dynamics of mangrove ecosystems (Kadaverugu et al., 2022; 
Anand et al., 2020). Standardized methodologies help improve data 
quality and comparability across study regions, which would also help 
address key challenges associated with collecting accurate information 
(Anand et al., 2020). 

For climate change mitigation/adaptation, data-driven strategies 
should be implemented to protect and conserve remaining mangrove 
ecosystems (Wirasatriya et al., 2022; Gugerty and Karlan, 2018). It is 
recommended that mangrove biomass is monitored every 2–5 years, to 
track and understand the temporal dynamics of mangrove cover/C stock 
(Tu et al., 2019; Wong et al., 2020; Mahasani et al., 2021) which is useful 
in sustainable management of mangroves, and early detection of threats 
(Wong et al., 2020; Suardana et al., 2023). With the widely expanding 
voluntary carbon markets, there is a financial incentive for countries to 
improve the credibility of their data (Pham et al., 2020c). 

Overall, remote sensing-based measurement significantly enhances 
monitoring and reporting systems while providing invaluable guidance 
for sustainable and adaptive management strategies. This approach 
could form the basis for crucial policy recommendations, particularly at 
a large scale, contributing to impactful policymaking (Sakti et al., 2020). 

For sustainable management, it is imperative to implement and 
prioritize country-specific policies that address various key areas, 
encompassing i). Protected areas and reserves with varying levels of 
protection (strict no-take zones to sustainable use zones); ii). Legislation 
and regulation (to protect mangroves from deforestation, and unsus
tainable exploitation); iii). Integrated Coastal Zone Management (pol
icies involving stakeholder engagement, participatory decision-making, 
and the integration of environmental, social, and economic consider
ations into coastal planning/management); and iv) International 
agreements and initiatives (such as Ramsar Convention on Wetlands, the 
Convention on Biological Diversity (CBD), and the United Nations 
Framework Convention on Climate Change (UNFCCC)). 

The development of standardized protocols and coordination be
tween global/regional monitoring programs would allow policymakers/ 
decision-makers to work together in creating cohesive management 
strategies/policies to minimize threats at a regional level (Kadaverugu 
et al., 2022). Policy instruments such as Payments for Ecosystem Ser
vices (PES) exist in this region where mangrove forests generate benefits 
for forest conservation by assessing the value gained from preventing 
forest loss/degradation (Thuy et al., 2023). 

10. Conclusions 

The use of remote sensing data from a variety of sources in combi
nation with advanced modeling approaches has greatly contributed to 
an improved understanding of spatiotemporal dynamics of mangrove 
blue carbon in the Asia-Pacific region. Despite these advances, few 
remote sensing studies on mangrove blue carbon were identified in 
countries such as Myanmar, Bangladesh, and Papua New Guinea despite 
their high mangrove extent. During 1990–2023, openly available data 
from multispectral sensors was widely used for studying mangrove blue 
carbon. The most preferred sensor was Sentinel-2 MSI, accounting for 
14.5 % of overall usage, followed by Landsat 8 OLI (11.5 %), ALOS 2 
PALSAR 2 (7.3 %), ALOS PALSAR (7.2 %), Sentinel-1 (6.7 %), Landsat 7 
ETM+ (6.1 %), Landsat 5 TM (5.5 %), SRTM DEM (5.5 %), and UAV- 
LiDAR (4.5 %). The use of UAV-based sensors has increased consider
ably over recent years. Over time, parametric modeling approaches 
(linear/non-linear regression) have transitioned into non-parametric 
ensemble machine learning models (SVM, RF, and XGBoost), signifi
cantly improving the accuracy of estimating mangrove blue carbon. The 
carbon sequestration of mangroves was found to vary based on location, 
species, plantation type, and age. 

Our review confirms the existence of knowledge gaps and the need 
for further research on mangrove blue carbon assessment and ways to 
increase the accuracy and precision, and detailed assessment of 
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biogeochemical carbon fluxes/BGC. In addition, valuation followed by 
rehabilitation initiatives (beneficial in the voluntary carbon market) 
were less studied. 

To improve the accuracy of estimating mangrove blue carbon, it is 
vital to adopt standardized/coordinated and innovative methodologies 
accompanied by credible information and actionable data (i.e., selection 
of the most suitable technical methodology, remote sensing approach, 
choice of allometric models, and machine learning algorithms). Accu
rate and precise data on mangrove blue carbon would provide multiple 
benefits including opportunities for a voluntary carbon market, which 
would benefit the environment and local communities in the Asia- 
Pacific region. 
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Bentéjac, C., Csörgő, A., Martínez-Muñoz, G., 2020. A comparative analysis of gradient 
boosting algorithms. Artif. Intell. Rev. 54, 1937–1967. https://doi.org/10.1007/ 
s10462-020-09896-5. 

Bin, W., Wenzhu, Z., Yichao, T., Mingzhong, L., Jun, X., Guanhai, G., 2022. 
Characteristics and carbon storage of a typical mangrove island ecosystem in Beibu 
gulf. South China Sea. J. Resour. Ecol. 13 (3), 458–465. https://doi.org/10.5814/j. 
issn.1674-764x.2022.03.010. 

Bournazel, J., Kumara, M.P., Jayatissa, L.P., Viergever, K., Morel, V., Huxham, M., 2015. 
The impacts of shrimp farming on land-use and carbon storage around Puttalam 
lagoon, Sri Lanka. Ocean Coast. Manag. 113, 18–28. https://doi.org/10.1016/j. 
ocecoaman.2015.05.009. 

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A: 
1010933404324. 

Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R.M., Thomas, N., Tadono, T., 
Worthington, T.A., Spalding, M., Murray, N.J., Rebelo, L.M., 2022. Global mangrove 
extent change 1996–2020: global mangrove watch version 3.0. Remote Sens. 14, 
3657. https://doi.org/10.3390/rs14153657. 

Castillo, J.A.A., Apan, A.A., Maraseni, T.N., Salmo III, S.G., 2017. Estimation and 
mapping of above-ground biomass of mangrove forests and their replacement land 
uses in the Philippines using sentinel imagery. ISPRS J. Photogramm. Remote Sens. 
134, 70–85. https://doi.org/10.1016/j.isprsjprs.2017.10.016. 

Dahdouh-Guebas, F., Huge, J., Abuchahla, G.M.O., Cannicci, S., Jayatissa, L.P., Kairo, J. 
G., Arachchilage, S.K., Koedam, N., Mafaziya Nijamdeen, T.W.G.F., Mukherjee, N., 
Poti, M., Prabakaran, N., Ratsimbazafy, H.A., Satyanarayana, B., Thavanayagam, M., 
Velde, K.V., Wodehouse, D., 2021. Reconciling nature, people and policy in the 
mangrove social-ecological system through the adaptive cycle heuristic. Estuar. 
Coast. Shelf Sci. 248 https://doi.org/10.1016/j.ecss.2020.106942. 

Darmawan, S., Sari, D.K., Takeuchi, W., Wikantika, K., Hernawati, R., 2019. 
Development of aboveground mangrove forests' biomass dataset for Southeast Asia 
based on ALOS-PALSAR 25-m mosaic. J. Appl. Remote. Sens. 13, 4. https://doi.org/ 
10.1117/1.JRS.13.044519. 

Dittmann, S., Mosley, L., Stangoulis, J., Nguyen, V.L., Beaumont, K., Dang, T., Guan, H., 
Gutierrez-Jurado, K., Lam-Gordillo, O., McGrath, A., 2022. Effects of extreme 
salinity stress on a temperate mangrove ecosystem. Front. For. Global Change. 5, 
859283 https://doi.org/10.3389/ffgc.2022.859283. 

Do, A.N.T., Tran, H.D., Ashley, M., Nguyen, A.T., 2022. Monitoring landscape 
fragmentation and aboveground biomass estimation in can Gio mangrove biosphere 
reserve over the past 20 years. Eco. Inform. 70, 101743 https://doi.org/10.1016/j. 
ecoinf.2022.101743. 

Duke, N., Ball, M., Ellison, J., 1998. Factors influencing biodiversity and distributional 
gradients in mangrove. Glob. Ecol. Biogeogr. 7, 27–47. https://doi.org/10.1111/ 
j.1466-8238.1998.00269.x. 

Eddy, S., Milantara, N., Sasmito, S.D., Kajita, T., Basyuni, M., 2021. Anthropogenic 
drivers of mangrove loss and associated carbon emissions in South Sumatra, 
Indonesia. Forests 12 (2), 187. https://doi.org/10.3390/f12020187. 

A. Dutta Roy et al.                                                                                                                                                                                                                             

https://doi.org/10.1016/j.scitotenv.2024.173270
https://doi.org/10.1016/j.scitotenv.2024.173270
https://doi.org/10.1007/s12524-016-0567-4
https://doi.org/10.1007/s12524-016-0567-4
https://doi.org/10.3390/sci2030067
https://doi.org/10.3390/rs12040597
https://doi.org/10.1016/j.rse.2016.04.026
https://doi.org/10.1186/s13750-021-00221-3
https://doi.org/10.1002/esp.3841
https://doi.org/10.1002/esp.3841
https://doi.org/10.5194/isprs-annals-IV-3-29-2018
https://doi.org/10.5194/isprs-annals-IV-3-29-2018
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.5814/j.issn.1674-764x.2022.03.010
https://doi.org/10.5814/j.issn.1674-764x.2022.03.010
https://doi.org/10.1016/j.ocecoaman.2015.05.009
https://doi.org/10.1016/j.ocecoaman.2015.05.009
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3390/rs14153657
https://doi.org/10.1016/j.isprsjprs.2017.10.016
https://doi.org/10.1016/j.ecss.2020.106942
https://doi.org/10.1117/1.JRS.13.044519
https://doi.org/10.1117/1.JRS.13.044519
https://doi.org/10.3389/ffgc.2022.859283
https://doi.org/10.1016/j.ecoinf.2022.101743
https://doi.org/10.1016/j.ecoinf.2022.101743
https://doi.org/10.1111/j.1466-8238.1998.00269.x
https://doi.org/10.1111/j.1466-8238.1998.00269.x
https://doi.org/10.3390/f12020187


Science of the Total Environment 938 (2024) 173270

15

Friess, D.A., Richards, D.R., Phang, V.X., 2016. Mangrove forests store high densities of 
carbon across the tropical urban landscape of Singapore. Urban Ecosyst. 19, 
795–810. https://doi.org/10.1007/s11252-015-0511-3. 

Ghosh, S.M., Behera, M.D., Jagadish, B., Das, A.K., Mishra, D.R., 2021. A novel approach 
for estimation of aboveground biomass of a carbon-rich mangrove site in India. 
J. Environ. Manag. 292, 112816 https://doi.org/10.1016/j.jenvman.2021.112816. 

Gijsman, R., Horstman, E.M., van der Wal, D., Friess, D.A., Swales, A., Wijnberg, K.M., 
2021. Nature-based engineering: a review on reducing coastal flood risk with 
mangroves. Front. Mar. Sci. 8, 702412 https://doi.org/10.3389/ 
fmars.2021.702412. 

Goldberg, L., Lagomasino, D., Thomas, N., Fatoyinbo, T., 2020. Global declines in 
human-driven mangrove loss. Glob. Chang. Biol. 26, 5844–5855. https://doi.org/ 
10.1111/gcb.15275. 

Gugerty, M.K., Karlan, D., 2018. The Goldilocks Challenge: Right-Fit Evidence for the 
Social Sector. Oxford University Press, United Kingdom.  

Hamdan, O., Khairunnisa, M.R., Ammar, A.A., Mohd Hasmadi, I., Khali Aziz, H., 2013. 
Mangrove carbon stock assessment by optical satellite imagery. Forest Research 
Institute Malaysia 25 (4), 554–565. https://www.jstor.org/stable/23616997. 

Hamdan, O., Khali Aziz, H., Mohd Hasmadi, I., 2014. L-band ALOS PALSAR for biomass 
estimation of Matang mangroves, Malaysia. Remote Sens. Environ. 155, 69–78. 
https://doi.org/10.1016/j.rse.2014.04.029. 

Hastie, T., Tibshirani, R., Friedman, J.H., 2009. The Elements of Statistical Learning: 
Data Mining, Inference and Prediction, Second edition. Springer-Verlag, New York.  

Hastuti, A.W., Suniada, K.I., Islamy, F., 2018. Carbon stock estimation of mangrove 
vegetation using remote sensing in Perancak Estuary, Jembrana District, Bali. Int. J. 
Remote Sens. Earth Sci. (IJReSES) 14 (2), 137–150. https://doi.org/10.30536/j. 
ijreses.2017.v14.a2841. 

Hendy, I.W., Shipway, J.R., Tupper, M., Etxabe, A.G., Ward, R.D., Cragg, S.M., 2022. 
Biodegraders of large woody debris across a tidal gradient in an Indonesian 
mangrove ecosystem. Front. For. Global Change 5, 852217. https://doi.org/ 
10.3389/ffgc.2022.852217. 

Hermon, D., Ganefri, Putra, A., Oktorie, O., 2018. The model of mangrove land cover 
change for the estimation of blue carbon stock change in Belitung Island - Indonesia. 
Int. J. Appl. Environ. Sci. 13 (2), 191–202. 

Hickey, S.M., Callow, N.J., Phinn, S., Lovelock, C.E., Duarte, C.M., 2018. Spatial 
complexities in aboveground carbon stocks of a semi-arid mangrove community: A 
remote sensing height-biomass-carbon approach. Estuar. Coast. Shelf Sci. 200, 
194–201. https://doi.org/10.1016/j.ecss.2017.11.004. 

Hidayatullah, M.F., Kamal, M., Wicaksono, P., 2023. Species-based aboveground 
mangrove carbon stock estimation using WorldView-2 image data.Remote Sens. 
Appl.: Soc. Environ. 30, 100959 https://doi.org/10.1016/j.rsase.2023.100959. 

Hirata, Y., Tabuchi, R., Patanaponpaiboon, P., Poungparn, S., Yoneda, R., Fujioka, Y., 
2014. Estimation of aboveground biomass in mangrove forests using high-resolution 
satellite data. J. For. Res. 19 (1), 34–41. https://doi.org/10.1007/s10310-013-0402- 
5. 

Holland, J.H., 1992. Genetic algorithms. Sci. Am. 267, 66–73. https://doi.org/10.1038/ 
scientificamerican0792-66. 

Hossain, M., Bujang, J., Zakaria, M., Hashim, M., 2015. The application of remote 
sensing to seagrass ecosystems: an overview and future research prospects. Int. J. 
Remote Sens. 36, 61–114. https://doi.org/10.1080/01431161.2014.990649. 

Hu, T., Zhang, Y., Su, Y., Zheng, Y., Lin, G., Guo, Q., 2020. Mapping the global mangrove 
forest aboveground biomass using multisource remote sensing data. Remote Sens. 
12, 1690. https://doi.org/10.3390/rs12101690. 

Huang, Z., Tian, Y., Zhang, Q., Huang, Y., Liu, R., Huang, H., Zhou, G., Wang, J., Tao, J., 
Yang, Y., Zhang, Y., Lin, J., Tan, Y., Deng, J., Liu, H., 2022. Estimating mangrove 
above-ground biomass at Maowei Sea, Beibu gulf of China using machine learning 
algorithm with Sentinel-1 and Sentinel-2 data. Geocarto Int. 37 https://doi.org/ 
10.1080/10106049.2022.2102226. 

IMF, 2023. World Economic Outlook: Navigating Global Divergences. Washington, DC. 
Intarat, K., Vaiphasa, C., 2020. Modeling mangrove above-ground biomass using 

terrestrial laser scanning techniques: A case study of the Avicennia marina species in 
the bang Pu District, Thailand. Int. J. Geoinform. 16, 2. 

Islam, I., Cui, S., Hoque, M.Z., Abdullah, H.M., Tonny, K.F., Ahmed, M., Ferdush, J., 
Xu, L., Ding, S., 2022. Dynamics of tree outside forest land cover development and 
ecosystem carbon storage change in eastern coastal zone. Bangladesh. Land 11, 76. 
https://doi.org/10.3390/land11010076. 

Jachowski, N.R.A., Quak, M.S.Y., Friess, D.A., Dunangnamon, D., Webb, E.L., Zieglar, A. 
D., 2013. Mangrove biomass estimation in Southwest Thailand using machine 
learning. Appl. Geogr. 45, 311–321. https://doi.org/10.1016/j.apgeog.2013.09.024. 

Jaya, L.O.M.G., Wikantika, K., Sambodo, K.A., Susandi, A., 2017. Comparison of PolSAR 
and PolinSAR method to estimate mangrove carbon stocks in Southeast Sulawesi 
Indonesia, using ALOS PALSAR dual-polarization in the perspective of climate 
change mitigation. Int. J. Tomogr. 30, 21–34. 

Jia, P., Huang, W., Zhang, Z., Cheng, J., Xiao, Y., 2022. The carbon sink of mangrove 
ecological restoration between 1988–2020 in Qinglan Bay, Hainan Island, China. 
Forests 13, 1547. https://doi.org/10.3390/f13101547. 

Kadaverugu, R., Dhyani, S., Purohit, V., Dasgupta, R., Kumar, P., Hashimoto, S., 
Pujari, P., Biniwale, R., 2022. Scenario-based quantification of land-use changes and 
its impacts on ecosystem services: A case of Bhitarkanika mangrove area, Odisha, 
India. J. Coast. Conserv. 26, 30. https://doi.org/10.1007/s11852-022-00877-0. 

Kamal, M., Hidayatullah, M.F., Mahyatar, P., Ridha, S.M., 2022. Estimation of 
aboveground mangrove carbon stocks from WorldView-2 imagery based on generic 
and species-specific allometric equations. Remote Sens. Appl.: Soc. Environ. 26, 
100748 https://doi.org/10.1016/j.rsase.2022.100748. 

Kauffman, J.B., Adame, M.F., Arifanti, V.B., Schile-Beers, L.M., Bernardino, A.F., 
Bhomia, R.K., Hernández Trejo, H., 2020. Total ecosystem carbon stocks of 

mangroves across broad global environmental and physical gradients. Ecol. Monogr. 
90 (2), e01405 https://doi.org/10.1002/ecm.1405. 

Kauffman, J.B., Donato, D.C., 2012. Protocols for the Measurement, Monitoring and 
Reporting of Structure, Biomass and Carbon Stocks in Mangrove Forests, vol. 86. 
Bogor, Cifor, Indonesia.  

Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of 
ICNN'95-International Conference on Neural Networks, 4, pp. 1942–1948. https:// 
doi.org/10.1109/ICNN.1995.488968. 

Kumar, T., Kumar Das, P., 2023. Estimation of gross primary productivity of Indian 
Sundarbans mangrove forests using field measurements and Landsat 8 operational 
land imager data. Trop. Ecol. 64, 167–179. https://doi.org/10.1007/s42965-022- 
00256-8. 

Le, N.N., Pham, T.D., Yokoya, N., Ha, N.T., Nguyen, T.T.T., Tran, T.D.T., Pham, T.D., 
2021. Learning from multimodal and multisensor earth observation dataset for 
improving estimates of mangrove soil organic carbon in Vietnam. Int. J. Remote 
Sens. 42, 18. https://doi.org/10.1080/01431161.2021.1945158. 

Li, F., Zhang, L., Chen, B., Gao, D., Cheng, Y., Zhang, X., Yang, Y., Gao, K., Huang, Z., 
Peng, J., 2018. A light gradient boosting machine for remaining useful life 
estimation of aircraft engines. In IEEE Conference on Intelligent Transportation 
Systems Proceedings 3562–3567. 

Li, X., Gar-On Yeh, A., Wang, S., Liu, K., Liu, X., Qian, J., Chen, X., 2007. Regression and 
analytical models for estimating mangrove wetland biomass in South China using 
Radarsat images. Int. J. Remote Sens. 28, 24. https://doi.org/10.1080/ 
01431160701227638. 

Li, Z., Zan, Q., Yang, Q., Zhu, D., Chen, Y., Yu, S., 2019. Remote estimation of mangrove 
aboveground carbon stock at the species level using a low-cost unmanned aerial 
vehicle system. Remote Sens. 11, 1018. https://doi.org/10.3390/rs11091018. 

Licciardi, G., Pacifici, F., Tuia, D., Prasad, S., West, T., Giacco, F., Thiel, C., Inglada, J., 
Christophe, E., Chanussot, J., Gamba, P., 2009. Decision fusion for the classification 
of hyperspectral data: outcome of the 2008 GRS-S data fusion contest. IEEE Trans. 
Geosci. Remote Sens. 47 (11), 3857–3865. https://doi.org/10.1109/ 
TGRS.2009.2029340. 

Lucas, R., Van De Kerchove, R., Otero, V., Lagomasino, D., Fatoyinbo, L., Omar, H., 
Satyanarayana, B., Dahdouh-Guebas, F., 2020. Structural characterisation of 
mangrove forests achieved through combining multiple sources of remote sensing 
data. Remote Sens. Environ. 237, 111543 https://doi.org/10.1016/j. 
rse.2019.111543. 

Luong, V.N., Tu, T.T., Khoi, A.L., Hong, X.T., Hoan, T.N., Thuy, T.L.H., 2018. Biomass 
estimation and mapping of CG mangrove biosphere Reserve in South of Viet Nam 
using ALOS-2 PALSAR-2 data. Appl. Ecol. Environ. Res. 17, 15–31. https://doi.org/ 
10.15666/aeer/1701_015031. 

Macreadie, P.I., Anton, A., Raven, J.A., Beaumont, N., Connolly, R.M., Friess, D.A., 
Kelleway, J.J., Kennedy, H., Kuwae, T., Lavery, P.S., Lovelock, C.E., Smale, D.A., 
Apostolaki, E.T., Atwood, T.B., Baldock, T., Bianchi, T.S., Chmura, G.L., Eyre, B.D., 
Fourqurean, J.W., Hall-Spencer, J.M., Huxham, M., Hendriks, I.E., Krause- 
Jensen, D., Laffoley, D., Luisetti, T., Marbà, N., Masque, P., McGlathery, M.J., 
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