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A B S T R A C T

Sand ripples, shaped by fluid flow like wind or water, are common on dunes on Earth and Mars. Their patterns 
reveal local transport conditions, offering insights into wind regimes where direct observations are lacking. Since 
manual mapping is slow and subjective, automated methods are essential for consistent large-scale analysis. This 
study presents two novel and complementary methods for mapping ripple patterns on Martian dunes using high- 
resolution imagery: a U-Net model for pattern classification and a 2D semi-variogram for measuring ripple 
spacing and orientation. Tested on 42 barchan dunes across six Martian regions, the U-Net showed reliable ripple 
classification (F1-score 79 %), while the variogram method achieved high accuracy for ripple spacing (R2 = 0.78) 
and orientation (R2 = 0.98). Together, these approaches enable efficient, large-scale analysis of ripples for 
sediment transport on any planetary surface and can be applied to other patterned features.

1. Introduction

When sedimentary surfaces composed of granular materials, such as 
sand, are exposed to sufficiently strong fluid flow (e.g., air or water), 
they develop ripples of varying sizes and patterns. On Earth, wind is 
responsible for aeolian sand transport and creating impact ripples with 
wavelengths of up to 24 cm and typically displaying a 2D morphology 
with straight, symmetrical crests (Pye and Tsoar, 2009; Rubin, 2012; 
Sharp, 1963). In subaqueous settings, waves and water currents form 
fluid drag ripples with similar wavelengths to impact ripples but 
exhibiting a range of shapes - from straight to asymmetrical forms such 
as sinuous or 3D morphologies - depending on factors like the flow ve
locity and the height above the seafloor (Allen, 1963; Wynn et al., 2002). 
Both types of ripples can be found superimposed on larger bedforms and 
numerous studies in the past have analysed ripple patterns to determine 
the fluid flow that shaped them (Allen, 1963; Tanner, 1967). Ripples 
have also been observed on the surface of Mars, and there is ongoing 
debate about whether they are formed by grain impact or fluid drag 
processes (Lorenz, 2020; Lapotre et al., 2021; Yizhaq et al., 2024). Given 
their widespread presence and their reflection of local surface flows, 
ripples can serve as a valuable reference in areas where in situ obser
vations of fluid flow are lacking, such as on Mars (Jackson et al., 2015; 
Hood et al., 2021), or to describe past flow environments from the 

sedimentary records (Vaz et al., 2023).
Determining local fluid flow requires mapping the ripples, but 

manual methods are time-consuming and subjective. As a result, in the 
last two decades, numerous researchers have explored different tech
niques, from mathematical analyses to machine learning, to automati
cally identify dunes or ripples on Earth and Mars. Earlier studies 
primarily focused on signal processing methods such as spatial cross- 
correlation (Duffy and Hughes-Clarke, 2005), Wavelet Transform 
(Cataño-Lopera et al., 2009), variogram (Robert and Richards, 1988; 
van Dijk et al., 2008), Fourier Transform (Cazenave et al., 2013; Vaz 
et al., 2023), Radon Transform (Gadhiraju et al., 2014) and neigh
bourhood analysis (Lebrec et al., 2022), or fingerprint algorithms 
(Skarke and Trembanis, 2011) to extract bedform features such as their 
crest, outline, or orientation. More recently, supervised machine 
learning models such as Random Forest and Object Based Image Anal
ysis (OBIA) from the computer vision field have gained popularity for 
mapping dunes and ripples based on their spectral and spatial properties 
(Cardinale et al., 2020; Zheng et al., 2020; Zheng et al., 2024a). Occa
sionally, OBIA is combined with Artificial Neural Networks (ANN) to 
improve either the segmentation or the classification of the bedforms in 
images (Silvestro et al., 2016). Over the last 7 years, Convolutional 
Neural Networks (CNN), a subset of ANN, have been extensively applied 
for mapping large bedforms (Rubanenko et al., 2021; Tang et al., 2023; 
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Zheng et al., 2024b) due to their ability to minimise pre-processing re
quirements. Few studies have employed unsupervised models for digi
tising and clustering large bedforms, such as K-Means clustering in 
combination with principal component analysis (Vaz et al., 2017).

Most of these approaches focused on extracting bedform features, 
such as their crestline, outline or orientation, to derive further charac
teristics about the morphology (e.g., wavelength, asymmetry, crest 

defects) and dynamics (e.g., migration rates and direction) of the bed
forms or to identify the bedform type. Therefore, the techniques devel
oped in these studies are primarily focused on bedforms and are not 
directly applicable to other fields. A more flexible method that empha
sises mapping patterns, or ‘textures,’ instead of specific traits of indi
vidual bedforms could potentially extend its applicability to other 
features, such as vegetation patterns (Tarnita, 2024; Rietkerk et al., 
2021). However, research on texture segmentation in aeolian studies has 
been limited. Only four studies have classified patterns of dunes based 
on spatial orientation (Gadhiraju et al., 2014), the morphology of the 
dune and inter-dune areas (Tang et al., 2023), and spatial arrangements 
(Zheng et al., 2024b; Zheng et al., 2020). Additionally, only two studies 
have segmented ripple patterns into two-dimensional (long and regular 
crests) or three-dimensional (shorter and irregular crests) categories 
based on their degree of straightness, using the horizontal form index 
(Silvestro et al., 2016; Vaz et al., 2017). This index corresponds to the 
ratio of ripple length to wavelength (Allen, 1968). Furthermore, these 
studies were conducted over a range of bedforms and for only two 
specific sites.

Our study quantifies ripple patterns and maps their distribution 
across barchan dunes in remote sensing imagery. Three types of patterns 
are identified for classification: straight ripples, sinuous ripples, and 
complex textures. Two texture segmentation techniques were applied to 
classify the ripple patterns based on training tiles: (1) a spatial auto
correlation analysis known as a 2D semi-variogram, and (2) a supervised 
machine learning model called U-Net, which is a type of CNN. The 
performance of both methods was evaluated for several input tile sizes 
and overlap sizes. In addition, we investigated the use of the 2D semi- 
variogram to measure ripple spacing and orientation. While this study 
focused on Mars due to the availability of free high-resolution satellite 
imagery of ripples over barchan dunes, both texture segmentation ap
proaches can be adapted for use with Unmanned Aerial Vehicle imagery 
of terrestrial aeolian bedforms, bathymetric data of subaqueous bed
forms, or for other fields of study such as spatial ecology for vegetation 
patterns.

2. Study area and data

Sand transport by wind is the dominant force shaping the contem
porary surface of Mars, yet our knowledge of these processes is still 
limited. Three-quarters of the dune fields are located in the northern 
polar region, between 70◦N and 90◦N latitudes (Hayward et al., 2014). 
Furthermore, two-thirds of Mars’ north polar dune field is covered by 
barchan dunes (Rubanenko et al., 2021), crescent-shaped dunes which 
are formed by unidirectional winds with limited sand supply (Wasson 
and Hyde, 1983), making them an ideal case study for mapping the 
superimposing ripples.

Despite the differences between the planets’ aeolian environments, 
Mars bedforms have striking similarities with those on Earth (Hayward 
et al., 2014; Sherman et al., 2024). Since the deployment of the Mars 
Reconnaissance Orbiter in 2006, the High Resolution Imaging Science 
Experiment (HiRISE) camera has been capturing ripples over Martian 
dunes that have wavelengths on the order of meters and display a variety 
of patterns. In Fig. 1A, straight ripples are found along the edges and 
stoss slope of the dune (Fig. 1B), whereas some sinuous textures are 
located on the right horn (Fig. 1C). Close to the dune’s crest, the pattern 
is indistinct (Fig. 1D), which could be due to the ripple wavelength being 
smaller than the image resolution or resulting from a complex wind 
regime, such as inconsistent wind directions preventing the formation of 
well-structured ripples. In terrestrial aeolian settings, straight ripples are 
generally the most common (Tanner, 1967; Rubin, 2012) and sinuosity 
is likely caused by a grain size differentiation between the crests and 
troughs. In subaqueous settings, ripples range in morphology from 
straight, sinuous, catenary, to linguoid, and lunate (Allen, 1963). Sinu
osity is linked to increased flow velocity, height above the seafloor, and 
whether the ripples were formed by waves or currents (Reineck and 

Fig. 1. (A) A barchan dune superimposed with ripples displaying a variety of 
patterns from HiRISE image ESP_036411_2560. (B) A zoom-in tile of straight 
ripples, (C) sinuous ripples, and (D) complex textures. (E) The six HiRISE im
ages selected for this study are located within the north polar dune field of 
Mars. The images set aside for training are represented by circles, and the one 
for testing by a red diamond. The base map is Mars Orbiter Laser Altimeter 
(MOLA) shaded relief with colourised elevation. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version 
of this article.)

L.A. Delobel et al.                                                                                                                                                                                                                               Remote Sensing of Environment 331 (2025) 115031 

2 



Singh, 1980; Wynn et al., 2002).
For this study, six HiRISE image sites with a resolution of 0.25 m/ 

pixel were selected (Table S1), each image covering on average 157.5 
km2 (McEwen et al., 2007). These sites feature at least a dozen indi
vidual barchan dunes with ripples and are located in the highly active 
sand transport area of the northern polar region, outside of craters with 
complex wind patterns (Fig. 1E). Although some HiRISE sites have 
associated Digital Terrain Models (DTMs), these DTMs do not capture 
the elevation of the ripple topography (Vaz et al., 2017); thus, we are 
restricted to using HiRISE imagery for our analysis. We downloaded the 
highest quality red band image (550 to 850 nm wavelength, McEwen 
et al., 2007) for each location, ensuring that the ripples were clearly 
distinguishable and not obscured by poor illumination or dust cover. 
Using QGIS (Long Term Release 3.34), we manually outlined and 
cropped isolated barchan dunes from the HiRISE images. This process 
resulted in two TIF versions for each dune: one cropped version, as 
displayed in Fig. 1A, and a second version in which any areas outside the 
dune outline—specifically, the surrounding bedrock—are masked. This 
masking was achieved using the Geographic Resources Analysis Support 
System (GRASS) toolbox in QGIS. 45 dunes from five of the selected 
HiRISE images (Fig. 1E, circles) were assigned to the training dataset 
(83 %), and nine dunes from the last HiRISE image (Fig. 1E, red dia
mond) to the testing dataset (17 %, Table S1).

3. Methodology

3.1. Research strategy

The overall processing sequence was as follows: barchan dunes in the 

HiRISE images were isolated and processed to improve the visibility of 
the superimposing ripples (Section 3.2). Subsequent analysis involved 
classifying three ripple textures: straight ripples, sinuous ripples, and 
complex textures (Section 3.3). This process occurred in two stages. 
First, tiles of different sizes were created to represent the various tex
tures and were used to train and test two texture segmentation tech
niques: (1) a machine learning model (Section 3.4) and (2) a 2D semi- 
variogram method (Section 3.5). In the second stage, both techniques 
were applied to entire dunes by analysing sliding windows with varying 
overlaps to produce texture maps. The performance of both segmenta
tion techniques and the impact of tile size and overlap size were statis
tically evaluated against observations (Section 3.6). Finally, to 
characterise the textures, the ripple spacing and orientation were 
calculated with the 2D semi-variogram and assessed against manual 
measurements (Section 3.5).

3.2. Preprocessing of HiRISE dune imagery

A crucial step in the processing was to remove illumination differ
ences. Due to the grayscale nature of the HiRISE images, ripple patterns 
on the sunlit side of the dune were less visible due to the lower contrast 
between the ripple crests and troughs. Furthermore, illumination dif
ferences may mislead segmentation methods in classifying images based 
on both texture and average intensity of the regions (i.e., sunlit vs 
shadows) (Karabağ et al., 2019). To equalise and standardise the ripple 
contrast in the cropped TIF, a circular 2D filter with a width of 15 pixels 
was applied and divided by the local Root Mean Square to ensure there 
were no spatial variations in the intensity range between the ripple 
crests and troughs (or any other topography). Hence, the standardised 
images are more uniform, and the only differences have to do with the 
ripple textures.

The optimal filter width was determined by applying a range of filter 
sizes (3 to 29 pixels) on several test sections from a dozen dunes from 
different images. We extracted the ripples by removing the filtered 
image from the original image and then selected the filter width pro
ducing the highest standard deviation value of the extracted ripples. 
While there were some slight variations in the optimal filter width 
among different sections of a dune and between dunes, on average, a 
filter width of 15 pixels produced the best results.

Finally, the surrounding bedrock and any remaining rock within the 
dune surface were removed, as these elements have a higher pixel in
tensity than the surrounding dark sand. The surrounding bedrock was 
masked (NaN values) in the standardised image by overlaying the TIF of 
the dune outline (see Section 2). In some cases, individual rocks were 
identified within the dunes as bright patches that interrupt the ripple 
pattern (e.g., the two white dots near the right edge of the dune in 
Fig. 2A) and were manually cropped out (Fig. S1). The resulting images 
display a variety of ripple patterns and textures across the dune’s surface 
(Fig. 2B).

3.3. Creating labelled tiles for different ripple types

After visually inspecting over 50 processed dune images, we identi
fied three common types of textures: straight ripples (Fig. 1B), sinuous 
ripples (Fig. 1C), and complex textures (Fig. 1D). Following the classi
fications from previous studies (Silvestro et al., 2016; Vaz et al., 2017; 
Hood et al., 2021), straight ripples are characterised as two-dimensional 
bedforms exhibiting elongated and uniform crests, whereas sinuous 
ripples correspond to three-dimensional forms with shorter and irreg
ular crests. A third category, termed complex textures, encompasses 
surfaces lacking discernible ripple patterns.

Subset images were manually extracted from 31 dunes in the training 
dataset, ensuring that each image clearly displayed one of the ripple 
pattern types. Samples were taken from various areas of the dunes, 
including flanks, horns, and stoss slope. For each texture, 20 labelled 
tiles were created. This resulted in a total of 60 labelled tiles for each of 

Fig. 2. (A) An isolated barchan dune from the HiRISE image ESP_036411_2560 
with the illumination differences and (B) the same dune after pre-processing.
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three tile sizes: 32 × 32, 48 × 48 and 64 × 64 pixels (Fig. 3). The 
rationale for selecting three tile sizes was to assess whether the seg
mentation approaches would recognise textures better for larger or 

smaller tile sizes, an approach already tested by Gadhiraju et al. (2014). 
Larger tile sizes might encompass more than one ripple pattern, while 
too small of a tile size might not capture enough texture information to 
determine a pattern. To evaluate the performance of the two texture 
segmentation methods on selecting the best tile size, an independent set 
of labelled tiles was created from the testing dataset. This time, however, 
only five tiles per ripple type were generated for the three tile sizes from 
nine dunes.

Fig. 3. Examples of 32 × 32 pixels labelled tiles for straight (left) and sinuous ripples (centre), and complex textures (right).

Fig. 4. Sample of composite tiles (left column) with their respective ground 
truth label (right column).

Fig. 5. The U-Net architecture for an input tile of 48 × 48 pixels and a 4-layer output, adapted from Ronneberger et al. (2015).

Fig. 6. Sample of 48 × 48 pixels composite tiles (left column) with their 
respective ground truth label (centre column) and predicted label (right col
umn) from the U-Net model’s validation set.
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3.4. U-Net model

3.4.1. Development of the U-Net model
Our first texture segmentation approach was inspired by Karabağ 

et al. (2019) study, which compared the performance of six traditional 
segmentation techniques against a supervised U-Net model to segment 

six texture composites. The results showed that the U-Net model out
performed the traditional techniques, demonstrating superior accuracy 
in segmenting the textures within the composites.

Model training requires an extensive labelled dataset, typically 
comprising thousands of samples (Ronneberger et al., 2015), to achieve 
optimal performance and mitigate overfitting, especially for complex 
tasks. Therefore, we applied data augmentation to our original dataset, 
increasing it from 60 to 64,000 tiles, as follows. In addition to the 60 
original labelled tiles of three ripple patterns, 20 tiles containing all 
zeros were created to represent masked areas around the dunes (i.e., 
where bedrock and rocks were removed), serving as a fourth label type. 
As we are interested in clearly identifying and differentiating the ripple 
patterns, we decided to create composite texture tiles as in Karabağ et al. 
(2019) study. The synthetic training data was produced by generating 
all permutation pairs (all possible arrangements of two random tiles) 
from the 80 labelled tiles, resulting in 6400 permutation pairs. Then, ten 

Fig. 7. Examples of the 2D semi-variogram ranges with their sine curves for (A) a straight ripple and (B) complex textures for tile size 32. The insets are the labelled 
tiles used to generate the respective plots. The ranges are low for straight ripples when oriented across the ripple crest but high when oriented along the crest. For 
complex textures, the ranges remain relatively the same throughout every orientation. The sine curve fits better to the periodicity of the straight ripple’s ranges than 
to the complex texture’s ranges.

Table 1 
Confusion matrix and statistical results of the U-Net model’s testing set on 400 composites from 15 new tiles for tile sizes 32, 48, and 64.

Label Tile size Predicted Precision Recall F1-score

Straight Sinuous Complex

Straight
32 0.94 0.04 0.02 0.63 0.94 0.75
48 0.96 0.01 0.02 0.64 0.96 0.77
64 0.95 0.02 0.03 0.66 0.95 0.78

Sinuous
32 0.41 0.56 0.03 0.77 0.56 0.65
48 0.44 0.51 0.06 0.90 0.51 0.65
64 0.43 0.46 0.12 0.89 0.46 0.60

Complex
32 0.14 0.12 0.74 0.93 0.74 0.82
48 0.11 0.04 0.85 0.91 0.85 0.88
64 0.06 0.04 0.90 0.86 0.90 0.88

Table 2 
Macro averages of the statistical results of the U-Net model’s testing set on 400 
composites from 15 new tiles for all tile sizes.

Tile size Macro averages

Precision Recall F1-score

32 0.78 0.74 0.74
48 0.82 0.77 0.77
64 0.80 0.77 0.75
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unique random configurations were generated for each pair, where both 
tiles from the pair are randomly cut and augmented in some way (i.e., 
flip, crop, scaling, translate, rotate, and shear) to create a new composite 
tile (Fig. 4). This process yielded 64,000 composite tiles, 90 % of which 
were set aside for training, and 10 % for validation, for each tile size (32 
× 32, 48 × 48, and 64 × 64 pixels).

In the field of machine learning, the training set is used to teach the 
model, in this case, to recognise the four label types within the com
posite tiles. The validation set tunes and controls the model, as well as 
assesses its performance, allowing for adjustments. The algorithm is 
trained and validated on a large dataset before being applied to inde
pendent data for testing which provides an impartial final evaluation of 
the model. 400 composite tiles were created for the independent test set 
from fifteen new ripple labelled tiles and five masked area tiles, 
following the method described in the previous paragraph.

The synthetic data were employed to train a modified U-Net model, 
which is a convolutional neural network developed by Ronneberger 
et al. (2015) for biomedical image segmentation. Despite being devel
oped a decade ago, the U-Net model remains in use in aeolian research 
with good performance rates, as in Daynac et al. (2024), even though 
more advanced deep learning models are available. Our U-Net model 
has a similar structure to the original but incorporates a few modifica
tions (Fig. 5). The input dimensions for each layer were adjusted to 
accommodate 32 × 32, 48 × 48 and 64 × 64 input tiles, with an initial 
32 convolutional filters, with a kernel of 3 × 3. Moreover, the overall 
size of the network was reduced, culminating in a dimension of 3x3x256 
at the base of the U-Net. The output predicted tile consists of four layers, 
one for each texture class (Fig. 5). The model was trained for 50 epochs 
using categorical cross-entropy as the loss function, and it stabilised 
quickly; therefore, no more training was required (Fig. S2). Further
more, by reviewing the U-Net model‘s label predictions on the validation 
set alongside the manually labelled tile and the original composite tile, 
the overall label prediction was deemed satisfactory (Fig. 6) and 
demonstrated that the model has reached a steady state.

3.4.2. Application of the U-Net model
Following training and testing with synthetic data, the model was 

applied to 42 whole dunes. Each dune is tiled, and every pixel within a 
sliding window is assigned to one of four classes using one-hot encoding 
(i.e., if a pixel is assigned to “straight”, the “straight” class receives a 1, 
and the other classes receive a 0). The window size corresponds to the 

Table 3 
Macro averages of the statistical results of the semi-variogram’s training set for 
five variogram parameter combinations on the 60 original tiles for all tile sizes.

Tile 
size

Parameter combination Macro averages

Precision Recall F1- 
score

32

Vertical shift/Amplitude/RMSE/ 
Adjusted R2 0.87 0.87 0.87

Vertical shift/Amplitude/RMSE 0.87 0.87 0.87
Amplitude/RMSE 0.84 0.83 0.83
Vertical shift/Amplitude 0.85 0.85 0.85
Vertical shift/RMSE 0.91 0.90 0.90

48

Vertical shift/Amplitude/RMSE/ 
Adjusted R2 0.83 0.80 0.81

Vertical shift/Amplitude/RMSE 0.81 0.80 0.79
Amplitude/RMSE 0.80 0.78 0.77
Vertical shift/Amplitude 0.87 0.87 0.86
Vertical shift/RMSE 0.89 0.88 0.88

64

Vertical shift/Amplitude/RMSE/ 
Adjusted R2 0.82 0.80 0.80

Vertical shift/Amplitude/RMSE 0.78 0.75 0.74
Amplitude/RMSE 0.74 0.70 0.69
Vertical shift/Amplitude 0.78 0.75 0.74
Vertical shift/RMSE 0.82 0.80 0.80

Fig. 8. K-means clustering of the vertical shift and RMSE for the 3 texture 
categories from the training set for tile size 48. 85 % of all straight ripple labels 
were grouped into Cluster 2 (in blue), 80 % of sinuous in Cluster 3 (in green), 
and 100 % of complex textures in Cluster 1 (in red). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.)

Table 4 
Confusion matrix and statistical results of the 2D semi-variogram’s testing set of 15 new tiles for tile sizes 32, 48, and 64.

Label Tile size Predicted Precision Recall F1-score

Straight Sinuous Complex

Straight
32 1 0 0 0.83 1 0.91
48 0.6 0.4 0 1 0.6 0.75
64 0.4 0.6 0 0.67 0.4 0.5

Sinuous
32 0.2 0.8 0 0.8 0.8 0.8
48 0 1 0 1 1 1
64 0.2 0.8 0 0.57 0.8 0.67

Complex
32 0 0.2 0.8 1 0.8 0.89
48 0 0 1 1 1 1
64 0 0 1 1 1 1

Table 5 
Macro averages of the statistical results of the 2D semi-variogram’s testing set of 
15 new tiles for all tile sizes.

Tile size Macro averages

Precision Recall F1-score

32 0.88 0.87 0.87
48 1 0.87 0.92
64 0.75 0.73 0.72
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best performing tile size (Section 4.2). The window slides by 4, 8, or 12 
pixels, referred to as the stride parameter, and the allocation process is 
repeated. This method records how many times each pixel is classified 
into a texture category, and the overlapping tile extraction helps smooth 
out edge effects in the predictions. With a tile size of 48 pixels, stride 
sizes of 4, 8, and 12 pixels result in overlaps of 92 %, 83 %, and 75 %, 
respectively.

3.5. 2D semi-variogram method

A 2D semi-variogram is a spatial autocorrelation analysis that de
termines characteristic length scales of a mapped variable in different 
orientations (Matheron, 1963). It has previously been applied to mea
sure the wavelength and height of subaqueous sand waves and ripples 
(Robert and Richards, 1988; van Dijk et al., 2008). The 2D semi-vario
gram’s ‘range’ represents the distance at which the semi-variance pla
teaus, the range will differ depending on the direction being analysed. 
Due to the nature of the ripple patterns, for straight and sinuous ripples, 
the range will be quite long when analysing along the ripple crest, but 
shorter across the crest (Fig. 7A). In other words, the minimum range is a 
proxy for the minimum pixel distance between the ripple crest and the 
trough. For complex textures, however, as there is no visual patterning, 
the ranges will be similar in all orientations (Fig. 7B).

The original 60 labelled ripple tiles for all tile sizes are referred to 
here as the training set for this method. For each labelled tile, a 2D semi- 
variogram was executed to measure the ranges for every 10◦ orientation 
(from 5◦ to 355◦) of the ripple texture. We used the ‘findpeaks’ function 
from the Signal Processing Toolbox in MATLAB (with a minimum peak 
width of 4 pixels) to record the pixel distance at which the 2D semi- 
variogram peaks or plateaus (Fig. 7). Differentiating the textures 
based on the orientation of the absolute minima (across the ripple crest) 
and maxima (along the ripple crest) from the variogram ranges per
formed poorly. Therefore, a sine curve was fitted to the ranges (Fig. 7) to 
calculate several parameters that robustly identify the phase of the 
minimum and maximum ranges: the vertical shift, the phase shift, the 
amplitude, the RMSE, and the Adjusted R-squared.

K-means, one of the simplest unsupervised learning models, was 
applied to the 2D semi-variogram parameters to classify the labelled 
tiles. It operates as an exclusive clustering algorithm, where each data 

Table 6 
Confusion matrix and statistical results of the U-Net model’s texture classification against visual inspection of 10 test locations for 42 dunes for strides of 12, 8, and 4 
pixels.

Observation Stride size Predicted Precision Recall F1-score

Straight Sinuous Complex Unclassified

Straight
12 0.87 0.06 0.03 0.04 0.71 0.87 0.78
8 0.87 0.08 0.03 0.02 0.69 0.87 0.77
4 0.86 0.07 0.03 0.04 0.69 0.86 0.77

Sinuous
12 0.34 0.58 0.01 0.08 0.81 0.58 0.67
8 0.38 0.53 0.03 0.06 0.79 0.53 0.63
4 0.38 0.54 0.01 0.07 0.80 0.54 0.65

Complex
12 0 0.06 0.89 0.05 0.97 0.89 0.92
8 0 0.04 0.91 0.04 0.95 0.91 0.93
4 0 0.06 0.89 0.05 0.97 0.89 0.93

Table 7 
Macro averages of the statistical results of the U-Net model’s texture classifi
cation against visual inspection of 10 test locations for 42 dunes for all stride 
sizes.

Stride size Macro averages

Precision Recall F1-score

12 0.83 0.78 0.79
8 0.81 0.77 0.78
4 0.82 0.77 0.78

Fig. 9. (A) Grayscale image of the cropped barchan dune from HiRISE image 
ESP_036411_2560 from the training set with the colour-coded 10 selected 
ground-truth pixels. (B) Below are the U-Net model’s predictions over 50 % of 
the ripple patterns with a window size of 48 × 48 pixels and a stride parameter 
of 12 pixels, and (C) a stride parameter of 4 pixels.
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point is assigned to only one cluster (MacQueen, 1967). The K-means 
clustering was conducted using different parameter combinations to find 
the arrangement that successfully groups the labelled tiles into their 
respective ripple pattern types. The three clusters yielded by the suc
cessful parameter combination were then used as a reference to assign 
new tiles to a ripple class. The 2D semi-variogram was also computed for 
the 15 labelled tiles from the testing set, and their parameter values were 
assigned to a ripple class based on the established K-means clusters from 
the training set.

The 2D semi-variogram was applied to 42 whole dunes following a 
sliding window approach similar to the U-Net model. The 2D semi- 
variogram ranges were calculated for the entire sliding window, fitted 
with a sine curve, and then the vertical shift, phase shift, amplitude, 
RMSE, and Adjusted R-squared parameters were saved for every pixel 
within the window. Since there were overlapping pixels, each parameter 
value was stored multiple times (up to 16 times per pixel for a stride of 
12) in a three-dimensional matrix format, resulting in five parameter 
outputs. Finally, these parameters were classified using K-means and 
assigned to a class based on the training labelled tiles’ clustering 
reference.

In addition to the ripple classification, the spacing and orientation of 
the ripples were derived from the 2D semi-variogram’s output param
eters. The 2D semi-variogram extracts a characteristic length-scale from 
the textures, but not a wavelength. For straight and sinuous ripples, this 
value can be interpreted as a spacing. However, for complex textures, 
while this value is not considered a ‘spacing,’ it still represents a char
acteristic length scale. Ripple spacings are measured from one ripple 
crest to the next; however, the 2D semi-variogram measures the distance 
between a ripple crest and its trough, i.e., the minimum range (Fig. 7). 
Therefore, we calculated the spacing by taking the average of the three y 
values of the sine curve located around the minimum range, times two. 
These spacings were converted from pixels to meters and plotted against 
manual measurements of the straight and sinuous ripple tiles to deter
mine the closest correlation. The manual measurements involved taking 
the average of three transects, with each transect being separated by 
three ripple crests. The orientation of the ripples, specifically the crest 
alignment orientation of the ripples, transverse to the assumed direction 
of ripple migration, was measured by the output phase shift from − 90◦

to +90◦. These results were evaluated against manual measurements of 
the labelled tiles.

3.6. Statistical analysis of the texture segmentation methods

3.6.1. Selection of the best labelled tile size
The accuracy of the labelled tile classification was assessed for both 

methods on the testing set, which included 400 composites for the U-Net 
model and 15 tiles for the 2D semi-variogram. Results on the validation 
data are located in the supplementary material (Tables S2–S5). These 
evaluations were done across the three different tile sizes (32 × 32, 48 ×
48, and 64 × 64 pixels) using confusion matrices. For the U-Net model, 
the confusion matrices recorded the number of times a pixel within a 
composite tile was classified as True Positive (TP), False Positive (FP), 
True Negative (TN), and False Negative (FN). For the 2D semi- 

(caption on next column)

Fig. 10. (A) Grayscale image of the cropped barchan dune from HiRISE image 
PSP_001608_2560 from the training set with the colour-coded 10 selected 
ground-truth pixels. The pixels that were misclassified by the U-Net model and 
the 2D semi-variogram are highlighted by white squares. Below are (B) the U- 
Net model’s and (C) 2D semi-variogram’s predictions over 50 % of the ripple 
patterns with a window size of 48 × 48 pixels and a stride parameter of 12 
pixels. The 2D semi-variogram’s output appears to be overly simplistic 
compared with the U-Net model’s (B). Notably, a significant number of straight 
ripples are absent from the dune’s flanks when compared to the original HiRISE 
image (A). This discrepancy may be attributed to the 2D semi-variogram’s 
substantial misclassification rates of straight and sinuous ripples (see Table 8
and Section 5.1 of the Discussion for further details).
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variogram, however, the confusion matrices recorded the number of 
times a whole labelled tile was correctly classified. The precision, recall, 
and F1-score were calculated for each pattern type from these confusion 
matrices to evaluate the influence of tile size on label predictions (Cao 
et al., 2024; Nagle-Mcnaughton et al., 2020; Tang et al., 2023). Precision 
measures the model’s reliability by determining the ratio of correctly 
predicted true positives over all positive predictions (Eq. (1)). Recall 
calculates the model’s detection rate by taking the ratio of correctly 
predicted true positives over the total number of positive samples (Eq. 
(2)). The F1-score assesses the model’s overall performance and the 
trade-offs between precision and recall by computing the harmonic 
mean of the two (Eq. (3)). Finally, the best tile size was chosen based on 
its macro average of the precision, recall and F1-score metrics by taking 
the arithmetic mean of all classes (i.e., straight ripples, sinuous ripples, 
and complex textures). 

Precision =
TP

(TP + FP)
(1) 

Recall =
TP

(TP + FN)
(2) 

F1 score = 2×
(Precision × Recall)
(Precision + Recall)

(3) 

3.6.2. Evaluation of the dune mapping
To assess the impact of overlapping ripple predictions (i.e., the stride 

parameter) on dune classification, the performance of both texture 
segmentation methods was compared against manual observations from 
42 dunes. This included all nine dunes from the testing dataset, along 
with 33 dunes from the training dataset. During the survey of each dune, 
areas exhibiting distinct ripple patterns were identified, and the pixel 
located at the centre of each identified area was manually classified. Test 
locations were carefully selected to ensure coverage across various dune 
features, including the horns, flanks, and stoss slope. Given that the 
number of distinct ripple patterns varies among the dunes, we capped 
the manually selected test locations at 10 per dune, resulting in 420-test 
classifications. In total, there were 130 test locations for straight ripples, 
131 for sinuous ripples, and 159 for complex textures. 19 dunes from the 
training dataset were previously used to create training tiles for the U- 

Net model and 2D semi-variogram; therefore, we ensured that the new 
420-test locations did not overlap with the locations of the training tiles.

Both the U-Net’s and 2D semi-variogram’s outputs recorded the 
number of times a pixel has been classified in the third dimension. A 
threshold was set to 50 % on these outputs, thus if a pixel was assigned 
over 50 % of the time to one texture category, the output would record 
that category. If a pixel has not reached that threshold, meaning that the 
allocation has not been consistent between overlaps, the output was 
categorised as ‘unclassified’. For strides of 4, 8, and 12 pixels, the 50 % 
threshold outputs from both the U-Net and 2D semi-variogram were 
checked against the 420-test locations. To determine the accuracy of the 
pixel assignments, the precision, recall, F1-score, and macro-average 
were computed from the confusion matrices.

4. Results

4.1. Classifying tile patterns

4.1.1. U-Net model’s best tile size selection
The U-Net model frequently misclassified sinuous ripples as straight 

in the testing set, occurring up to 43 % of the time for tile size 48 
(Table 1). This misclassification has significantly decreased the Preci
sion values for straight ripples and the Recall values for sinuous ripples, 
for all tile sizes (Table 1). Nonetheless, the macro averages range be
tween 74 % and 82 % for all tile sizes, with the 48-tile size achieving 
slightly better performance with 82 %, 77 %, and 77 % for precision, 
recall, and F1-score, respectively (Table 2).

4.1.2. K-means clustering on the 2D semi-variogram parameters
For the 2D semi-variogram, K-means clustering achieved the best 

outcome on the training tiles with the vertical shift and RMSE param
eters combination for all tile sizes when analysing the macro-averages of 
the precision, recall and F1-score (Table 3). Consequently, the 3 clusters 
from that K-means combination were used as the benchmark for 
assigning the testing tiles to a ripple class (Fig. 8 for the 48-tile size).

4.1.3. 2D semi-variogram best tile size selection
Straight ripples from the testing set were erroneously identified as 

sinuous 40 % and 60 % of the time for tile sizes 48 and 64, respectively, 
with the 2D semi-variogram (Table 4). These misclassifications affected 
the straight ripple recall results for both tiles 48 and 64. Despite these 
misclassifications, the macro averages range between 72 % and 100 % 
for all tile sizes, with the 48-tile size achieving slightly better perfor
mance with 100 %, 87 %, and 92 % for precision, recall, and F1-score, 
respectively (Table 5).

As both the U-Net model and the 2D semi-variogram performed 
better on the testing set with the 48-tile size, the sliding window was set 
to 48 × 48 pixels when applying the classification to whole dunes.

Table 8 
Confusion matrix and statistical results of the 2D semi-variogram’s texture classification against visual inspection of 10 test locations for 42 dunes for strides of 12 and 8 
pixels, and for 10 dunes for stride of 4 pixels.

Observation Stride size Predicted Precision Recall F1-score

Straight Sinuous Complex Unclassified

Straight
12 0.02 0.82 0.13 0.03 1 0.02 0.05
8 0.02 0.83 0.13 0.02 1 0.02 0.05
4 0.03 0.84 0.13 0 1 0.03 0.06

Sinuous
12 0 0.40 0.54 0.06 0.33 0.40 0.36
8 0 0.44 0.53 0.03 0.34 0.44 0.38
4 0 0.43 0.57 0 0.33 0.43 0.38

Complex
12 0 0.01 0.97 0.02 0.29 0.97 0.45
8 0 0.01 0.99 0 0.29 0.99 0.44
4 0 0 1 0 0.28 1 0.44

Table 9 
Macro averages of the statistical results of the 2D semi-variogram’s texture 
classification against visual inspection of 10 test locations for 42 dunes for all 
stride sizes.

Stride size Macro averages

Precision Recall F1-score

12 0.54 0.46 0.28
8 0.54 0.48 0.29
4 0.54 0.49 0.29
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4.2. Classifying patterns within a whole dune

4.2.1. Evaluation of the U-Net model’s dune mapping results
The prediction model was applied directly to 42 whole dunes for tiles 

of 48 × 48 pixels and a stride of 4, 8 and then 12 pixels. A confusion 
matrix was created for the 420-test comparisons for each stride size, and 
the precision, recall, and F1-score were computed to evaluate the impact 
of the stride on dune classification. Similar to the tile classification re
sults (Section 4.1.1), the U-Net model misclassified between 34 % and 
38 % of sinuous pixels as straight for all stride sizes, affecting recall and 
F1-score values (Table 6). In addition, instances were found where all 
three texture categories were unclassified for all stride sizes (Table 6), 
indicating inconsistencies in the U-Net model’s allocation of pixels to 
specific categories. However, the macro-averages for all stride sizes 
showed similar high precision (81–83 %), recall (77–78 %), and F1-score 
(78–79 %), with slightly higher scores observed for the 12-pixel stride 
(Table 7). This minimal difference between the macro-averages for all 
stride sizes is reflected in the dune ripple maps (Fig. 10).

Fig. 9 shows an example where the U-Net model accurately classifies 
all 10 selected pixels (Fig. 9A) for all three stride sizes. The model 
effectively located the ripple patterns on the dune, with minimal dif
ferences in the output between stride sizes (12 pixel and 4 pixel strides in 
Fig. 9B and C, respectively), beyond a slight increase in unclassified 
areas and smoother boundaries as the stride size decreased. These un
classified pixels are mainly located on the boundary between two tex
tures, and thus may reflect the transition from one ripple type to the 
next. The complex textures are primarily concentrated in a band across 
the centre of the dune, with straight ripples at the top of the image with 
some patches from the middle of the slip face to the right horn, and 
sinuous ripples mainly on the left of the slipface with patches on the 
right horn and left flank of the dune.

However, on the other hand, the U-Net model performed the worst 
with dune 1 from the HiRISE image PSP_001608_2560 (Fig. 10A), mis
classifying 6 out of 10 test locations for all three stride sizes (12 pixel 
stride in Fig. 10B). Despite this, the main areas of straight ripples and 
complex textures are still represented, but the classification is noisier 
compared to the previous dune (Fig. 9). Like in the previous case, there 
are minimal differences between the stride outputs, with a slight in
crease in unclassified areas and smoother boundaries as the stride 
parameter size decreased (Fig. S3). Due to the minimal differences be
tween the stride sizes for pixel allocation and visual outputs, a larger 
stride size, such as 12 pixels, is sufficient to accurately classify textures 
over the dunes. This also helps conserve computational time and energy 
during model execution.

4.2.2. Evaluation of the 2D semi-variogram’s dune mapping results
In line with the U-Net model, the 2D semi-variogram was applied 

directly to 42 complete dunes for a tile of 48 × 48 pixels with a stride of 
12 and 8 pixels. Due to computational cost and time constraints, a stride 
of 4 pixels was used for only 10 dunes. However, with the same allo
cation threshold of 50 %, the 2D semi-variogram method poorly clas
sified the 420-pixel observations for all three stride sizes (Table 8). The 
macro-averages were consistent across all stride sizes, with precision at 
54 %, recall ranging from 46 % to 49 %, and F1-score from 28 % to 29 % 
(Table 9). Slightly higher statistical scores were achieved with a 4-pixel 
stride (Table 9). These underwhelming results can be attributed to the 
straight ripples being correctly classified only 2–3 % of the time 
(Table 8) and being misclassified 82–84 % as sinuous (up from 40 % 
when selecting the best tile size in Section 4.1.3), an example of this 
represented in Fig. 10. Sinuous ripples were also frequently misclassified 
as complex textures, 54 % to 57 % of the time, whereas complex textures 
achieved near-perfect results with ≥97 % correct classifications 
(Table 8). There were slightly fewer instances where all three texture 
categories were unclassified for all stride sizes compared with the U-Net 
model (0–6 % in Table 8 vs 2–8 % in Table 6), indicating irregularity in 
the 2D semi-variogram’s ability to allocate the selected pixels to a single 

Fig. 11. (A) Grayscale image of the cropped barchan dune from HiRISE image 
ESP_036109_2550 from the training set with the colour-coded 10 selected 
ground-truth pixels. The pixels that were misclassified by the 2D semi- 
variogram are highlighted by white squares. (B) Below are the semi-vario
gram’s predictions over 50 % of the ripple patterns with a window size of 48 ×
48 pixels and a stride parameter of 12 pixels, and (C) a stride parameter of 
4 pixels.
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category.
Looking at specific dune examples, dune 1 of the HiRISE image 

PSP_001608_2560 (Fig. 10A) was one of the best segmented dunes by 
the 2D semi-variogram, with 6 out of the 10 selected pixels accurately 
classified for strides of 12 (Fig. 10C), and 7 out of 10 with a stride of 8. 
Due to the large size of the dune, a stride of 4 pixels was not applied as it 
was too computationally expensive. The output from stride 12 appears 
coarser and contains slightly more unclassified areas than the output 
from stride 8 (Fig. S4). The texture regions are roughly defined, but the 
majority of the straight ripples are missing from the dune’s flanks 
compared to the original HiRISE image (Fig. 10A) and the U-Net’s 
outputs (Fig. 10B).

Conversely, the 2D semi-variogram performed the worst on dune 3 
from the HiRISE image ESP_036109_2550 (Fig. 11A), misclassifying 7 
out of 10 test locations with a stride of 12 (Fig. 11B), and 6 out of 10 
pixels with a stride of 4 (Fig. 11C). Similar to the previous dune, un
classified areas decrease, and the texture region boundaries become 
smoother as the stride size decreases (Fig. 11). Straight ripples are ab
sent in the classification, even though some are visible on the right flank 
of the dune in the HiRISE imagery. Furthermore, some sinuous ripples 
are also missing on the left horn, stoss slope and right flank. Despite 
improvements in performance with smaller stride sizes, the 2D semi- 
variogram’s limitations include increased computational cost, overall 
misclassification of texture, and poor statistical results, rendering it 
unsuitable for mapping ripple patterns.

4.2.3. Consistency in the classification of neighbouring dunes
For barchan dunes located within the same region of a dunefield, as 

illustrated in HiRISE image ESP_036345_2490 (Fig. 12A), the U-Net 
model’s classification of these dunes’ texture yields very similar results 
(Fig. 12B-E). Across all four dunes, straight ripples are predominantly 
located at the top right, sinuous ripples appear near the slipface and on 
the left horn among some patches of straight ripples, and complex tex
tures are observed on the left flank, slipface, and some patches on the 
right horn. The topography of upwind dunes (Fig. 12A) would impact 
the wind flow to varying degrees and consequently influence the for
mation of ripples. It is assumed that dunes in close proximity are shaped 
by the same wind regime and thus would display similar ripple patterns. 
As the U-Net’s classification outputs showcase this consistency in the 
distribution of the ripple patterns across multiple dunes, it corroborates 
the model’s ability to identify texture in this context.

4.3. Spacing and orientation from the 2D semi-variogram

4.3.1. Evaluation against manual measurements of the labelled tiles
Due to their nature, we cannot interpret the spacing and orientation 

of the complex textures. Therefore, we focused solely on the straight and 
sinuous labelled tiles in the training set (40 tiles) and testing set (10 
tiles). The ripple crest orientations computed from the phase shift of the 
2D semi-variogram’s sine curve matched the manual measurements 
(Fig. 13A), with a correlation coefficient of 0.98 for tile size 48 
(Fig. 13B). Our method to measure the spacing was strongly correlated 

Fig. 12. (A) HiRISE image ESP_036345_2490 with four barchan dunes outlined that have been used to map ripple patterns. U-Net model’s classification of texture 
with a 48 × 48 pixel tile size and a stride of 12 pixels for (B) Dune 1, (C) Dune 2, (D) Dune 3, and (E) Dune 4. Note: these dunes have ripples on the slipface, which 
may denote a complex wind regime, despite the assumed unidirectional wind flow characteristic of barchan dunes.
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Fig. 13. (A) Samples of ripple labelled tiles with their corresponding crest alignment orientation value. 0◦ is at the top of the image (north), and +/− 90◦ corresponds 
to the sides of the image (east-west). (B) Phase shift from the semi-variogram’s sine curve against measured orientation for tile size 48. (C) Average of the minimum 
three Y values against visual spacing for tile size 48.
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with the manual spacing measurements across all three tile sizes, with a 
correlation coefficient of 0.78 for tile size 48 (Fig. 13C). Therefore, when 
applying the 2D semi-variogram to whole dunes, we were confident that 
the derived spacing and orientation were accurate.

4.3.2. Application of the spacing and orientation to whole dunes
Upon reviewing the manual spacing measurements of the ripple 

labelled tiles, we observed that straight ripples generally have smaller 
spacings than sinuous ripples (Fig. 14). At present, the physical mech
anisms and variables that control the sinuosity and spacing of meter- 
scale ripples at the local level on Mars remain poorly understood, and 
these factors may differ from those observed on Earth. However, our 
visual analysis of classification outputs revealed that sinuous ripples 
were often situated on the slipface (examples in Fig. 15), indicating that 
the slope angle and gravity likely influenced the curvature and spacing 
of the ripples.

As the U-Net model produced better results for classifying ripples, 
the spacing and orientation of ripples are only represented for the 
straight and sinuous ripples identified with the U-Net model. For the 
four dunes in HiRISE image ESP_036345_2490, which all had a consis
tent ripple pattern distribution (Fig. 12), their spacing and direction 
values are also similarly distributed over the dunes (Fig. 15). The 
greatest spacings (>2.5 m) are observed on the slipface and the left horn 
of the dunes (Fig. 15) where sinuous ripples are concentrated (Fig. 12). 
The orientation denoted here represents the alignment of the ripples; 
specifically, it is parallel to the crestline of the ripples. Due to their slow 
migration, ripples on Mars can integrate different wind directions and 
have been observed to migrate longitudinally, in contradiction to the 
transverse motion of terrestrial ripples (Silvestro et al., 2016). There
fore, we refrain from interpreting the migration direction of the mapped 
ripples and instead focus on their crestline orientation. Interestingly, the 
orientation of the sinuous ripples on the slipface shifts from − 20◦ (in 
blue) on the northern side to 30◦-40◦ (in red) on the southern side 
(Fig. 15). The left horn has less contrasting ripple orientations, ranging 

from − 10◦ to 10◦, and the right flank of the dunes, where the straight 
ripples are located (Fig. 12), orientations range from 0◦ to 40◦ (Fig. 15). 
This consistency in the spacing and orientation values for neighbouring 
dunes confirms the ability of the 2D semi-variogram to extract charac
teristics from the ripple patterns.

5. Discussion

Sand ripples are universal bedforms on the surfaces of dunes on Earth 
and Mars. They display a range of textures and patterns, indicative of the 
flow regime that shaped them. In this study, we segmented and char
acterised three ripple patterns over barchan dunes on Mars.

5.1. The classification performance between both methods

In the first stage of classifying labelled tiles to select the best tile size, 
although sinuous ripples in the testing set were misclassified as straight 
for the U-Net model (Table 1) and vice versa for the 2D semi-variogram 
(Table 4), both methods produced results ≥72 % for all tile sizes 
(Tables 2 and 5). The performance difference between the methods 
became evident in the second stage of mapping patterns over a whole 
dune. The U-Net model achieved macro-average results of 81–83 %, 
77–78 %, and 78–79 % for precision, recall, and F1-score, respectively 
(Table 7). These results are comparable to findings from other studies 
using CNN models to classify dune types on Earth (Tang et al., 2023) and 
terrestrial dune patterns (Zheng et al., 2024b), outline terrestrial dunes 
(Daynac et al., 2024) and isolated barchan dunes on Mars (Rubanenko 
et al., 2021) or extract Transverse Aeolian Ridges (Cao et al., 2024).

In Karabağ et al. (2019)’s study, some configurations of the U-Net 
model produced texture segmentation results that outperformed tradi
tional algorithms, although this was not the case for all configurations. 
As our model was inspired by Karabağ et al. (2019), we anticipated some 
differences in mapping results between the U-Net model and the 2D 
semi-variogram, but the extent of the discrepancy was unexpected. The 
macro-average results for the 2D semi-variogram only reached 54 %, 
46–49 %, and 28–29 % for precision, recall, and F1-score, respectively 
(Table 9). These outcomes are significantly lower than those reported in 
studies using other signal processing methods to segment bedforms, 
such as Radon transform to map dune field patterns (Gadhiraju et al., 
2014).

The misclassification of both straight and sinuous ripples in the dune 
mappings for each method may be attributed to the subjective nature of 
the labelled training tiles, which might overlook characteristics that are 
not visually discernible. In addition, a clear separation between straight 
and sinuous ripples is difficult, as there is a transition between these 
patterns. This transition between the patterns may also be reflected by 
the unclassified pixels that are mainly found at the boundaries between 
two textures in the U-Net model’s dune mappings (Figs. 9B-C and 10B).

The degree of segmentation between the U-Net model and 2D semi- 
variogram varies significantly. The dune mappings generated by the 2D 
semi-variogram appear overly simplistic when compared to those pro
duced by the U-Net model (Fig. 10). Furthermore, a substantial portion 
of the classifications by the 2D semi-variogram was inaccurate, with up 
to 98 % of straight ripples and 57 % of sinuous ripples misclassified 
(Table 8). In addition, slight variations were noticed in the ripple clas
sification across different iterations of the 2D semi-variogram analysis 
for the same dune. Consequently, this method is considered unsuitable 
for accurately mapping ripples. In the authors’ opinion, the U-Net model 
offers a reasonable classification of the actual distribution of ripple 
patterns across most dunes, albeit with slightly more noise, particularly 
at the transitional boundaries between different textures (Figs. 9 and 
10A-B). The high degree of fragmentation observed in the segmentations 
produced by the U-Net model could potentially be mitigated by 
smoothing the outputs to eliminate outliers (for instance, 1–4 straight 
pixels within a cluster of sinuous pixels). However, implementing this 
process would necessitate additional assumptions and parameter testing 

Fig. 14. Box plots of the manual spacing measurements and semi-variogram 
spacing of straight ripples (in red and orange, respectively) and sinuous rip
ples (in dark green and light green, respectively) in pixels for tile size 48. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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Fig. 15. (A, C, E, G) The ripple spacing in meters and (B, D, F, H) ripple orientation in degrees are computed from the 2D semi-variogram for (A-B) Dune 1, (C-D) 
Dune 2, (E-F) Dune 3, and (G-H) Dune 4 from HiRISE image ESP_036345_2490. Only the straight and sinuous ripples segmented by the U-Net model that reached the 
50 % threshold are displayed. Complex textures and unclassified areas are represented in black.
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related to ripple mapping.
The U-Net model’s ability to accurately map ripple patterns on 

multiple neighbouring dunes (Fig. 12), likely shaped by the same wind 
regime, offers the potential to analyse and compare ripple distribution 
across extensive regions of Mars. In addition, after being trained on 
labelled tiles, the U-net model only requires a few seconds to map ripples 
per dune, in contrast to the 2D semi-variogram, which took up to 3 h for 
a 12-pixel stride. Although the 2D semi-variogram did not effectively 
classify ripple patterns, its precise measurement of spacing (R2 = 0.78) 
and orientation (R2 = 0.98) of straight and sinuous ripples (Fig. 13) 
allows meaningful investigation into sand transport conditions on 
Martian dunes.

5.2. Linking the pattern parameters extracted by 2D semi-variogram with 
previous studies on Martian sand ripples

The ripple spacings determined from the 2D semi-variogram dune 
mappings (Fig. 15) range from 1.7 m to 3 m, consistent with ripple 
wavelengths measured in many other studies on Martian barchans. 
Ripples on barchan and barchanoid dunes in Herschel crater also have 
wavelengths ranging from 1.7 to 3 m (Silvestro et al., 2011; Vaz et al., 
2017), as well as in Lyot Crater (Vaz et al., 2023). At Gale Crater, ripple 
wavelengths were measured to range from 1.9 m (Silvestro et al., 2016) 
to 2.6 m (Sullivan et al., 2020), and were 2 m in Hellespontus Montes 
(Rubanenko et al., 2022). Furthermore, the two contrasting ripple ori
entations mapped on barchan dunes (~60◦ difference, Fig. 15), have 
also been measured in Herschel Crater with bidirectional ripples at 90◦

(Cardinale et al., 2020). At Meridiani Planum, the ripples displayed a 
clear square pattern with a 105◦ direction difference (Silvestro et al., 
2011), a pattern also observed in Gale Crater which may be due to the 
reworking of the ripples by a secondary wind direction (Silvestro et al., 
2016).

Five of these studies have automatically measured the wavelength 
and/or orientations of ripples. The ripple crestlines were either 
segmented and characterised through wavelet transform edge analysis 
and morphological multiscale gradient (Silvestro et al., 2011) or via an 
Object Based Image Analysis (OBIA) approach (Silvestro et al., 2016; 
Vaz et al., 2017; Cardinale et al., 2020). However, a drawback of these 
methods is the delineation of each individual ripple crestline, which 
then requires generalisation over a larger area, and can result in an 
overwhelming amount of data when analysing extensive images. In 
contrast, the 2D Fast Fourier Transform method (Vaz et al., 2023) bears 
the closest resemblance to our 2D semi-variogram, as it measures the 
wavelength of a group of ripples rather than each individual ripple, 
thereby facilitating more manageable subsequent analysis. At present, 
our 2D semi-variogram method is computationally intensive; thus, 
future work will explore the use of the 2D Fast Fourier Transform for 
measuring the spacing and orientation of ripples.

5.3. Limitations of this study

This study’s methodology was only trained and tested to recognise 
three pattern types on 42 barchan dunes from 6 locations within the 
North Polar Region of Mars. Our approach was specifically designed for 
images of sand surfaces and may not be as effective for surfaces con
taining rocks, vegetation, or other features that could be mistakenly 
identified as part of a pattern. The classification of straight, sinuous, and 
complex textures was inspired by previous ripple research conducted on 
Mars (Silvestro et al., 2016; Vaz et al., 2017; Hood et al., 2021). How
ever, we are uncertain about the efficacy of our method when applied to 
patterns not included in our current classification. For example, a square 
ripple pattern has been identified on barchanoids within craters 
(Silvestro et al., 2016), but to the authors’ knowledge, not within the 
northern polar region. Consequently, if this pattern is found to be pre
dominant among dunes in craters, it would require the creation of a 
fourth category for square patterns to optimise the classification results.

The training dataset, consisting of 60 labelled tiles, was relatively 
small and relied on our visual assessment of textures and pattern types. 
To enhance the U-Net model’s performance, permutation pairs were 
created and augmented, thereby expanding the training dataset and the 
model’s pattern recognition capabilities. This difference in training data 
size may account for the 2D semi-variogram’s limited success in classi
fying ripples over whole dunes.

5.4. Potential application of the methods

We aim to expand our methods to include more Martian sites and 
imagery from terrestrial unmanned aerial vehicles, enabling the com
parison of ripple patterns across planets and making inferences about 
sand transport conditions. Our current study uses HiRISE images with a 
resolution of 0.25 m per pixel, sufficient to identify ripples spaced 1.6 to 
3 m apart. While some HiRISE images have a resolution of 0.5 m per 
pixel, which may impede ripple detection, future research will focus on 
high-resolution Martian sites. Our methodology can also be adapted for 
drone imagery (after filtering and standardization) or coarser satellite 
imagery to map larger features, such as dune fields or vegetation pat
terns on Earth. Mapping patterns in spatial ecology has become an 
important field of study (Tarnita, 2024) to understand tipping points in 
complex systems. For example, ecosystems that have a regular spatial 
structure alternating high and low biomass are more productive and 
resilient to global change (Rietkerk et al., 2021).

Our findings show that the U-net model effectively analyses and 
segments patterns within large datasets. Furthermore, by augmenting a 
small, labelled training dataset, we can achieve high classification ac
curacy. Conversely, the 2D semi-variogram is better for extracting 
quantifiable variables like pattern spacing or orientation from smaller 
datasets, due to its higher computational cost. Both methods can work 
together in studies that categorise textures across large surfaces and 
extract variables from specific textures.

6. Conclusions

Ripple patterns provide valuable insight into local sand transport 
conditions, offering a unique opportunity to enhance our understanding 
of wind regimes on Mars and Earth, especially in areas where direct 
wind observations are not feasible. However, manually mapping these 
ripples is not only time-consuming but also subjective. Our objective was 
to quantify three types of ripple patterns - straight ripples, sinuous rip
ples, and complex textures - and map their distribution over barchan 
dunes. We present two innovative and complementary methods for 
identifying these ripple patterns on high-resolution satellite imagery 
(HiRISE) of Martian dunes. The performance of both methods was 
evaluated using 42 barchan dunes from six HiRISE sites on Mars.

The first approach, a machine learning model known as U-Net, 
demonstrated greater reliability in classifying the ripple patterns over 
whole dunes, achieving 83 % for precision, 73 % recall, and 79 % F1- 
score. The second approach, a spatial autocorrelation analysis called 
2D semi-variogram, poorly classified the ripple patterns over whole 
dunes (up to 54 % for precision, 49 % recall, and 29 % F1-score), but 
allowed for correctly measuring the ripple spacing (R2 = 0.78) and 
orientation (R2 = 0.98).

By leveraging the efficiency of the U-Net model in ripple classifica
tion and the 2D semi-variogram’s precision in measuring spacing and 
orientation, extensive analysis of ripples and local wind regimes can be 
conducted across Mars. Moreover, these methods can also be applied to 
drone imagery of terrestrial dunes or to other patterned features, of
fering a promising avenue for further research and exploration.
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