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Scientific Significance Statement

The relationship between photosynthesis–irradiance (PI) is important in marine ecosystems and the global carbon cycle but is
difficult to predict due to multiple relevant processes interacting on different timescales. This study leverages machine learning
algorithms and an in situ PI database to predict these relationships using oceanographic data observed from satellites. We
develop a method to identify the optimal environmental integration timescale to predict PI relationships and then use the
method to estimate how PI parameters vary seasonally. We link these timescales to patterns of variability in light, temperature,
and surface chlorophyll. This study helps us better understand how photosynthesis responds to environmental variation and
will improve our ability to model marine primary production from satellite remote-sensing observations.

Abstract
Photosynthesis–irradiance (PI) relationships are important for phytoplankton ecology and quantifying carbon
fixation rates in the environment. However, the parameters of PI relationships are typically unknown across
space and time. Here we use machine learning, satellite remote-sensing, and a database of in situ PI relation-
ships to build models that predict the seasonal cycle of PI parameters as a function of satellite-observed vari-
ables. Using only surface light, temperature, and chlorophyll, we achieve an R2 of 58% for predicting

photosynthesis rates at saturating light (PB
max ) and an R2 of 78% for predicting the light saturation parameter

(Ek). Predictability is maximized when averaging environmental covariates over 30-d (PB
max ) and 25-d (Ek) time-

scales, indicating that environmental history and community turnover timescales are important for predicting
in situ PI relationships. These results will help improve the parameterization of satellite-based primary produc-
tion models and quantify emergent environmental integration timescales in photosynthetic communities.
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The relationship between the rate of photosynthesis and
environmental light availability (termed the photosynthesis–
irradiance relationship or PI relationship) is central to quanti-
fying rates of carbon fixation and forms the basis for many
models of marine primary productivity. As such, an accurate
description of the PI relationship and its response to environ-
mental variation is important for understanding marine eco-
system productivity.

The most common form of the PI relationship is given by

PB ¼ PB
max 1� e

� αB I
PBmax

� �
ð1Þ

where PB (mg C mg Chl a�1 h�1) is the chlorophyll-normal-

ized rate of photosynthesis, PB
max (mg C mg Chl a�1 h�1) is

the maximum rate of normalized photosynthesis at saturating
light, αB (mg C mg Chl a�1 s�1 [μmol photons m�2 s�1]�1) is
the slope at the origin of the PI curve, and I is the in situ irra-
diance (μmol photons m�2 s�1). The ratio of the two parame-

ters, Ek ¼ PB
max
αB (μmol photons m�2 s�1), governs the shape of

the saturating function and is referred to as the light satura-
tion parameter (Bouman et al. 2018). Since Ek is a function of

αB and PB
max , the three parameters are redundant as a set. We

focus on Ek and PB
max for our analysis due to their broad inter-

pretability. Parameters of the PI relationship are estimated by
incubating seawater samples to a range of light levels and
measuring photosynthesis (typically by 14C uptake), yielding
PI data to which the parameters are fitted by regression (Platt
and Jassby 1976; Lewis and Smith 1983; Kulk et al. 2023).

In natural phytoplankton communities, PI relationships
can be difficult to predict due to interacting factors related to
species physiology, community turnover, and their depen-
dence on environmental conditions. Photosynthesis is per-
formed by multispecies assemblages due to species
coexistence (Hutchinson 1961; Dutkiewicz et al. 2020), with
individual phytoplankton species exhibiting distinct PI rela-
tionships (Kulk et al. 2011). The physiological state of individ-
ual phytoplankton species is also time-dependent with
physiological processes regulated on timescales of microsec-
onds to days (Geider et al. 1998; Liefer et al. 2018). Despite
the complexity, predictive relationships have emerged
between environmental variables and community-level PI
relationships. For example, Bouman et al. (2005) found strong
but contrasting relationships across ocean regions, while Saux

Picart et al. (2014) found that PB
max varied positively with tem-

perature. The satellite-based vertically generalized productivity

model parameterizes the PB
max–temperature relationship with

a dome-shaped 5th-order polynomial (Behrenfeld and
Falkowski 1997). An alternative power–law relationship has
also been used in satellite-based models, sensu Eppley
(Eppley 1972; Taboada et al. 2019). Regarding timescales, Platt
and Sathyendranath (1993) found that community-level PI

relationships were better predicted using data averaged over
3 d relative to using environmental data from the day of sam-
pling, suggesting emergent environmental timescales that
integrate beyond the sampling day. Here, we leverage a data-
base of experimentally determined in situ PI relationships to
further develop predictive models of PI parameters and apply
them across regions of the global ocean.

Methods
We analyzed the database curated by Bouman et al. (2018)

and updated by Kulk et al. (2020, 2021). All measurements
analyzed here were taken using 14C uptake as a measure of
photosynthetic rate using incubations between 1.5 and 4 h in
duration (Bouman et al. 2018). The database reports parame-
ters for fitted PI relationships following either Eq. 1 when
photoinhibition was absent. When photoinhibition is pre-
sent, the PI curve does not contain an explicit asymptotic

PB
max so PB

max was derived via analytical expressions as the
maximum of the PI curve using formulae from Bouman et al.
(2018). We chose subsets of PI relationships originating from
established regional sampling programs wherein the same
locations are sampled across time and over a range of environ-
mental conditions using consistent sampling and experimen-
tal methodology. Analyzing these subsets acts to minimize
bias when collating datapoints that differ in collection meth-
odology (e.g., Britten et al. 2021). Samples were taken from
the mixed layer based on an established monthly mixed layer
depth climatology (Montegut et al. 2004) to best correspond
with satellite observations. Figure 1 gives the sampling loca-
tions of data analyzed in this study. Metadata for the chosen
subsets are given in Supporting Information Table S1.

We matched PI relationships with satellite-derived
photosynthetically available radiation (PAR), sea surface
temperature (SST), and chlorophyll a (Chl a). We used 4 km
daily-averaged surface PAR from merged MODIS and SeaWIFS
version R2018.0 (Frouin et al. 2012). Sea surface temperature
at 6 km resolution was from version 2.0 of the multi-sensor
Operational Sea Surface Temperature and Ice Analysis founda-
tion temperature product (Donlon et al. 2012). We used Chl a
from version 5.0 of the multi-sensor Ocean Color Climate
Change Initiative 4 km product (Sathyendranath et al. 2019,
2021). We also used SST and Chl a to compute an estimate of

the picophytoplankton contribution to Chl a, denoted cpico
ctotal

according to equations given in Brewin et al. (2010). We con-
structed a series of temporal averages of the variables, with
each average extending 1 d further back in time. We do this
over 100d for individual in situ sampling locations, generat-
ing 100 covariate datasets to be used in the modeling of the PI
parameters as a function of environmental integration time-
scale. Temporally averaged time series for PAR, SST, and Chl
a are shown in Supporting Information Fig. S1. e-Folding
timescales for the time-averaged covariates were estimated for
each region by finding the time lag when the autocorrelation
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of the time series drops by a factor of 1/e, yielding 7–12d,
11–15d, and greater than 60d for PAR, SST, and Chl a, respec-
tively (Supporting Information Fig. S2). We note that time

series of daily satellite-based Chl a (and therefore cpico
ctotal

) suffer

from a relatively large number of missing values due to cloud
cover on daily timescales, causing the stepwise character of
many Chl a histories (Supporting Information Fig. S1k–o).

We applied random forest regression algorithms as a robust
and easily implemented machine learning model to generate
predictions across environmental integration timescales. Ran-
dom forests were chosen over other predictive machine learn-
ing algorithms (e.g., neural networks) for ease of use,
requiring little hyperparameter tuning while rivaling neural
networks for predictive accuracy for smaller datasets (Cutler
et al. 2007; Liu et al. 2013; Grinsztajn et al. 2022). Random
forests were fitted by randomly generating bootstrap subsets
of the samples and covariates, then computing decision trees
for each subset. Predictions were then averaged across individ-
ual trees. We present results of random forests of the form

PB
max tið Þ¼RF PAR tið Þ, SST tið Þ, cpico

ctotal
tið Þ, depth, region

� �

Ek tið Þ¼RF PAR tið Þ, SST tið Þ, cpico
ctotal

tið Þ, depth, region
� �

where separate random forests are fit to PB
max and Ek as a func-

tion of satellite-estimated covariates averaged over ti preced-
ing days. RF represents a function constructed by averaging

decision trees in the random forest, PAR tið Þ, SST tið Þ, and
cpico
ctotal

tið Þ are PAR, SST, and the fraction of Chl a that is estimated

as picophytoplankton, respectively. We tested both Chl a and
cpico
ctotal

as covariates (but not both due to redundancy) and found
cpico
ctotal

to give a slightly higher R2. We also tested mixed layer-

averaged PAR using additional estimates of attenuation depth
but achieved lower R2, possibly due to the uncertainty intro-
duced using satellite-estimates of attenuation and climatologi-
cal mixed layer depth. Depth is the water column depth of
the PI sample within the mixed layer and region is a categori-
cal variable representing the geographic location of the col-
lected sample (colors in Fig. 1). depth and region do not
change with timescale so are not a function of ti. We fit a sep-
arate random forest to each temporal average, constituting
100 random forests for each parameter. All model fits and
diagnostics were performed using the randomForest package in
the R programming language (Liaw and Wiener 2002). We
computed predictability as the out-of-bag coefficient of deter-
mination (R2), where out-of-bag refers to predictions made
using trees that did not contain the given datapoint in the
training set. Fitted relationships to individual covariates were
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Fig. 1. Locations of the satellite-matched in situ photosynthesis–irradiance experiments contained within the MArine primary Production: model Parame-
ters from Space (MAPPS) database (Bouman et al. 2018; Kulk et al. 2020, 2021). Regions are given in color (purple: Scotian Shelf, light blue: Labrador Sea,
red: Iceland Shelf, green: South Pacific, orange: Southern Ocean). The full satellite-matched dataset is available on Dryad (10.5061/dryad.w6m905r1j).
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visualized using partial effects where random forest predic-
tions are plotted against a single variable after averaging (mar-
ginalizing) across all other covariates in the model (Liaw and
Wiener 2002). We also compare the random forest perfor-
mance to a linear mixed effects model using the same covari-
ate sets, including region as a categorical random effect. We
used the lme4 package in R to fit the mixed effects models
(Bates et al. 2013). To aid in interpreting results, we also con-
ducted idealized numerical simulations of a multispecies
plankton community to estimate community turnover time-
scales and help interpret statistical results. Finally, we used

the fitted models to predict maps of surface (depth¼0) PB
max

and Ek at the global scale, using global maps of input parame-

ters PAR tið Þ,SST tið Þ, and cpico
ctotal

tið Þ and the identified optimal

averaging timescale.

Results
We found that predictive performance of the fitted random

forests varied as a function of environmental averaging time-

scale, with relationships differing for parameters PB
max and Ek

(solid lines in Fig. 2). Predictive capacity was highest for Ek,,
achieving a maximum out-of-bag R2 of 78% when averaging
environmental covariates over 25d (Fig. 2b) and a maximum

R2 of 58% for PB
max when averaging over 30d (Fig. 2a). Predic-

tive capacity was lower for the mixed effects regression models
(dashed lines in Fig. 2) and was achieved on somewhat longer
averaging timescales, although the dome-shaped relationship

was consistent with predictive maxima at intermediate time-

scales: PB
max R2 maximized at 38% over 39d averaging and Ek

R2 maximized at 65% over 48 d of averaging.
Partial effects of individual covariates showed consistent

patterns across regions with all covariates driving variability
in predicted PI parameters (Fig. 3). The mean effect sizes are

given in each panel of Fig. 3 in standardized units of ΔPB
max or

ΔEk per unit standard deviation of the covariate. PAR showed
the weakest partial effects across regions with minimal vari-

ability in both PB
max and Ek within a region (Fig. 3a,e), while

SST, cpico
ctotal

, and depth showed stronger effect sizes (Fig. 3b–d,f–h).

Partial effects of SST on PB
max were regionally consistent, show-

ing a nearly linear effect across the range of observed SST
(independent of whether cpico

ctotal
or Chl a was included in the

model). Effects of cpico
ctotal

appeared nonlinear with notable thresh-

old behavior, where a nonlinear increase in PB
max occurs at

cpico
ctotal

=0.25 and at cpico
ctotal

=0.4 for Ek. In Supporting Information

Figs. S3 and S4, we show that PAR is often invoked in individ-
ual decision trees but occurs at lower nodes, meaning that
PAR became an important effect, conditional on a particular
SST and cpico

ctotal
regime. Effects estimated in the random forest are

broadly consistent with regression coefficients estimated by
the mixed effects regression model (Supporting Information
Fig. S5) but showed some differences due to the more limited
linear structure of the model. The strongest effects estimated
within the mixed effects regression was a positive effect of SST

on PB
max (Supporting Information Fig. S5a) and a positive
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Fig. 2. Predictability of PI parameters as a function of environmental integration timescale. Left figure gives model R2 values for PBmax ; right figure gives
R2 values for Ek. Solid curves give R2 for random forests; dashed curves give R2 for mixed effects regression; vertical solid and dashed lines give the time-
scale that maximizes R2 for random forests and mixed effects regression, respectively.
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effect of cpico
ctotal

on Ek (Supporting Information Fig. S5b). In

Supporting Information Fig. S6, we show partial effects from
the model fitted using an environmental integration timescale
of 10d (where R2 begins to plateau but does not yet achieve a
maximum in Fig. 2), demonstrating robust patterns in covari-
ate relationships across timescales.

Seasonal analysis at the regional-scale shows variability in
environmental covariates both within and between regions
(Fig. 4a–e). The shape of the time-integrated Chl a time series
was most variable within regions, with a temporally shifted
spring bloom present in all Chl a time series and a fall bloom
present in the Scotian Shelf, Iceland Shelf, and to a lesser
extent the Labrador Sea. Integrated SST and PAR time series
are less variable, following the latitude of individual samples.

The largest seasonal cycle predicted for PB
max occurred on the

Scotian Shelf with ΔPB
max over the seasonal predicted to be

approximately 1.8 (mg C mg Chl a�1 h�1). Less seasonal varia-
tion was observed in other regions, particularly the South

Pacific which showed no discernable PB
max cycle (ΔPB

max < 0:2
mgC mg Chl a�1 h�1). Seasonal cycles in Ek were relatively
large on the Scotian Shelf with greater than two-fold varia-
tion, followed by the South Pacific. Seasonal cycles for Ek were
approximately flat for the Labrador Sea and Iceland Shelf.

Using the fitted models, we also extrapolate the seasonal
cycle globally to assess whether interpretable patterns emerge
from a regional analysis at the global scale (Fig. 5).

Contrasting PI parameter predictions in winter and summer,

we see that PB
max follows a distinct latitudinal structure with

maxima occurring in mid-latitude winter in both northern
and southern hemispheres, along with equatorial maxima

occurring year-round (Fig. 5a,b). Lowest PB
max is predicted at

high latitudes in hemispheric summers. Predictions for Ek fol-
low a different latitudinal pattern where maxima are predicted
in subtropical summer within the oligotrophic gyres (Fig. 4c,
d). Predicted values for Ek fall by roughly 20–30% when mov-
ing from subtropical to equatorial environments and by more
than half when moving from subtropical to high latitude
environments. We note that global extrapolations are based
on limited regional coverage and therefore should be inter-
preted with inherent uncertainty.

Discussion
This study quantified the predictability of PI parameters

across environmental integration timescales as a function of
satellite-estimated covariates. We argue that environmental

integration timescales (topti �25–30d) of PI parameter predict-
ability found here are consistent with what is expected from
community turnover timescales. From basic theoretical calcu-
lations, we expect community turnover timescales to range
from 10d to 100+d (Supporting Information Fig. S7), as con-
sistent with other theoretical and empirical studies
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(Hutchinson 1961; Anderson et al. 2022; Gallego and
Narwani 2022). This result supports the broader notion that
community turnover is important for predicting community-
integrated rates (Leibold et al. 1997). We find that predictability

sharply declines on timescales less than 5d for PB
max and less

than 10d for Ek, indicating a degree of environmental ‘noise’
on these timescales. Sources of noise may include both
satellite-based measurement error and variability in the com-
munity response to environmental processes. Five to 10 d
roughly matches the synoptic meteorological timescale driv-
ing clouds, suggesting that phytoplankton communities may
buffer meteorological PAR variability with respect to their PI
parameters. The balance of environmental and community
turnover timescales relates to the Hutchinsonian solution to
the paradox of the plankton (Hutchinson 1961), where com-
munities experience perpetual turnover when environmental
and turnover timescales match. We suggest a similar balance
of timescales may be operating here.

Lower predictability of PB
max relative to Ek may be due to

several factors. For one, we note that raw correlations between

PB
max and Ek are regionally variable and generally weak,

achieving R2 values across regions of 2–37% (Supporting
Information Fig. S8) indicating that distinct processes
are controlling variation in the two parameters, consistent
with notions of Ek-dependent physiological processes
(Behrenfeld et al. 2008). Second, previous studies have identi-
fied a close association between Ek and in situ irradiance
(Sathyendranath et al. 2020), noting that community level Ek

is often measured close, but slightly lower, than in situ irradi-

ance. PB
max , on the other hand, is often a large extrapolation

at light levels much higher than those measured in situ.
We also tried fitting models to predict αB and constructing Ek

predictions from the ratio of predicted PB
max and αB (results

not shown), but generally found poorer results than those
presented here.
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While global predictions of PI parameters are extrapola-
tions, we suggest that largescale patterns of predicted PI
parameters may indicate effects of regional light limitation.
Surface nutrients are highest in winter but insufficient light
limits growth. PI experiments under nutrient replete winter-
time conditions could release communities from light limita-
tion at high experimental irradiance which would drive high

measured rates of photosynthesis and therefore PB
max . These

extrapolated patterns warrant further examination and valida-
tion to better understand the role of nutrient limitation in
driving rates of photosynthesis observed in PI experiments.
We find that Ek, on the other hand, is consistently maximized
within the oligotrophic gyres with high surface PAR and weak
light attenuation in the water column. Predicted patterns are
broadly consistent with previous empirically-derived seasonal

maps of PB
max and Ek (Kulk et al. 2020, 2021) and regional ana-

lyses demonstrating relationships with nutrient availability
(Platt et al. 1992). We also note that covariate relationships

may differ from what is expected based on single species PI
curves (e.g., Cullen et al. 1992) since community-level PI cur-
ves include seasonal changes in community composition.

Our findings have implications for the development of
satellite-based primary productivity models. Many current
algorithms implicitly assume instantaneous acclimation of
community-level PI relationships. For example, the verti-
cally generalized productivity model (Behrenfeld and
Falkowski 1997) assumes an instantaneous relationship

between temperature and a parameter related to PB
max (PB

opt),

while non-chlorophyll–based algorithms assume analogous
relationships between growth rate, light, and temperature
(Behrenfeld et al. 2005; Silsbe et al. 2016). Our findings
demonstrate that predictability emerges on longer time-
scales than considered in these models. Theoretically, these
timescales may induce error from nonlinear temporal aver-
aging of the PI curve (Bernhardt et al. 2018). We suggest
that timescales of weeks to months be considered when
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Fig. 5. Global prediction of PI parameters. Predictions for PBmax (mg C (mg Chl a)�1 h�1) are given in (a) and (b) for 01 January and 01 July, respectively.
Predictions for Ek (μmol photons m�2 s�1) are given in (c) and (d) for 01 January and 01 July, respectively. Environmental covariates are averaged over
the preceding 25d for PBmax and over the preceding 30d for Ek following results presented in Fig. 2.
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constructing satellite-based models that take PAR, SST, and
Chl a as inputs. We also note however that photosynthesis
rates inferred from short-term PI experiments may have a
complex relationship to time-integrated rates of net pri-
mary productivity due to turnover timescales of internal
carbon pools of phytoplankton (Halsey and Jones 2015).
Photosynthate produced on hourly timescales in nutrient
replete conditions may be allocated to high turnover poly-
saccharide pools rather than protein or structural biomass
which impacts the time-integrated balance of gross produc-
tion and respiration (Halsey and Jones 2015; but see Platt
and Sathyendranath 1988). We further note that the
Lagrangian transport of phytoplankton means that
satellite-based Eulerian characterizations of environmental
histories only approximate the environment experienced
by individual organisms. More advanced Lagrangian
backtracking of environmental histories is suggested for
future work (Sebille et al. 2018). Finally, satellite data
unavoidably contained missing values. Multi-sensor com-
posite products used here limited the number of missing
values for SST, PAR, and Chl a to 0%, 15% and 66%, respec-
tively, on daily timescales. We used daily observations best
match the timescale of phytoplankton growth.

In closing, we have shown predictability of in situ PI
parameters as a function satellite-observed environmental
covariates. Predictability was maximized at roughly monthly
timescales, suggesting that community turnover timescales
are important for capturing PI parameter variability. These
results help us understand how phytoplankton communities
respond to environmental variability and will improve satel-
lite models of marine primary production.
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