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Abstract 
High-throughput sequencing has provided unprecedented insights into microbial biodiversity in marine and other ecosystems. 
However, most sequencing-based studies report only relative (compositional) rather than absolute abundance, limiting their application 
in ecological modeling and biogeochemical analyses. Here, we present a metagenomic protocol incorporating genomic internal 
standards to quantify the absolute abundances of prokaryotes and eukaryotic phytoplankton, which together form the base of the 
marine food web, in unfractionated seawater. We applied this method to surface waters collected across 50◦N  to  40◦S during the 
29th Atlantic Meridional Transect. Using the single-copy recA gene, we estimated an average bacterial abundance of 1.0 × 109 haploid 
genome equivalents per liter. Leveraging a recent report that the psbO gene is typically single-copy in phytoplankton, we also quantified 
eukaryotic phytoplankton. Metagenomic estimates closely aligned with flow cytometry data for cyanobacteria (slope = 1.03, Pearson’s 
r = 0.89) and eukaryotic phytoplankton (slope = 0.72, Pearson’s r = 0.84). Compared to flow cytometry, taxonomic resolution for nano-
and picoeukaryotes was greatly improved. Estimates for diatoms, dinoflagellates, and Trichodesmium were considerably higher than
microscopy counts, likely reflecting microscopy undercounts and potential ploidy variation. These findings highlight the value of
absolute quantification by metagenomics and offer a robust framework for quantitative assessments in microbial oceanography.
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Introduction 
Absolute quantification of microorganisms has long been a crit-
ical aspect of microbiology for many decades, and as all aspects 
of environmental and biomedical microbiology have moved more 
and more towards molecular sequencing approaches, the need for 
absolute quantitation has not abated. It should be clear that in 
microbial ecological and biological oceanographic studies, abso-
lute quantification of microorganisms is particularly advanta-
geous, e.g. in ecosystem modeling and s tudies of microbially-
mediated biogeochemical processes. Of particular interest are
marine phytoplankton, which form the basis of the marine food
web and whose identities and abundances set the tone for the
entire ecosystem [1, 2]. 

Microbial 16S/18S ribosomal RNA (rRNA) gene sequencing has 
revolutionized environmental microbiology by advancing our 
understanding of microbial diversity and community structure. 
However, a key limitation of this approach is that it p rovides
only relative abundance data, making it difficult to infer absolute
cell numbers across samples [3]. To address this limitation, a 
known amount of synthetic or genomic DNA, referred to as 
“internal standard” or “spike-in”, can be added to samples prior to

sequencing [4]. By relating read counts to these internal standards 
(ISDs), it becomes possible to estimate the absolute abundance 
of genes and, potentially, cells, assuming that gene copy number 
(GCN) per genome and ploidy are known. Howe ver, rRNA GCN
remains unknown for a large fraction of naturally occurring
prokaryotes [5] and eukaryotes [6], and PCR artefacts may further 
confound interpretation. These uncertainties complicate the 
accurate estimation of absolute cell abundances from amplicon-
based sequencing data even when ISDs are used [7]. 

Shotgun metagenomics offers a promising alternative for esti-
mating absolute microbial abundances by leveraging single-copy 
genes in environmental DNA. These genes, which, as the name 
implies, are t ypically present as one copy per genome, have been
widely used in phylogenetic analysis [8, 9]. For example, the recA 
gene, which is highly conserved among bacteria species, involved 
in DNA repair, and readily r ecognizable informatically, is often
used for taxonomic annotation and functional gene normaliza-
tion [10, 11]. Since it generally occurs as a single copy per genome, 
recA-based metagenomics provides a way to estimate bacterial 
identities and cell counts (actually genome equivalents, because
most bacteria are thought to be haploid). The archaeal homolog
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radA gene serves the same purpose [12]. Despite the concept of 
using ISDs in metagenomics is straightforward and elegant, it has 
only been applied in a limited number of marine studies to date. 
Notably, Gifford et al. used this approach to quantify prokaryotes
in the eastern equatorial Pacific during an El Niño event [13], while 
Sharpe et al. showed a strong correlation between the recA-based 
estimates of Synechococcus and flow cytometry (FCM) data [14]. 
These studies demonstrated how this approach can be used for 
prokaryotes in marine environments.

While obtaining absolute abundances of prokaryotes metage-
nomically is extremely valuable, community and ecosystem-level 
ecological and biogeochemical studies require information on 
eukaryotes as well. Of special interest a re marine phytoplankton,
which contribute about half of the Earth’s primary production and
oxygen generation [15]. Globally, marine phytoplankton produc-
tion is roughly split between cyanobacteria and a broad variety
of protists [16]. Traditionally, 18S rRNA gene sequencing has been 
the primary tool for profiling the community composition of 
protists. However, when trying to extrapolate to cell abundances 
(even relative ones) a major complication is that 18S rRNA gene
copy number vary enormously, ranging from 1 to over 500 000
among known protists [6], especially high in dinoflagellates [17]. 
Growth phases and physiological states can also influence GCN
[18]. To date, FCM remains an important method for rapidly 
counting smaller phytoplankton (“pico” and “nano” size ranges, up
to ∼20 μm diameter), whereas larger taxa classically require more 
laborious microscopy analyses or advanced imaging platforms
such as the Imaging FlowCytoBot [19]. Only very recently has a 
“single-copy” gene been characterized for phytoplankton. Lever-
aging Tara Oceans data, Pierella Karlusich et al. pointed to the psbO
gene [20], which encodes a subunit of the photosynthetic appara-
tus found in both cyanobacteria and eukaryotic phytoplankton. 
The psbO gene generally lacks non-photosynthetic homologs and 
is typically present as a single copy per haploid genome. How-
ever, many taxa, particularly diatoms and dinoflagellates, may
exhibit diploid or polyploid states, with ploidy levels that can
vary depending on life stage or environmental conditions [21]. 
The original paper showed its utility for estimating the relative 
abundance of taxa within whole phytoplankton [20]. However, 
this groundbreaking paper could only report relative abundances 
within size fractions, due to the a bsence of ISDs in the Tara Oceans
multi-omics datasets.

Taking advantage of a new sampling opportunity, our goal 
here was to simultaneously quantify the absolute abundances of 
both prokaryotes (via radA, recA,  and  psbO for cyanobacteria) and 
eukaryotic phytoplankton (via psbO) in seawaters in units of hap-
loid genome equivalents per liter. Samples were collected from 
unfractionated near-surface seawater during the 29th Atlantic 
Meridional Transect (AMT29) research cruise. T he AMT cruises
cover a similar transect year after year, traversing from near
the United Kingdom to waters off Argentina, and pass through
multiple oceanic provinces with contrasting environmental con-
ditions and biology (https://amt-uk.org/). To our knowledge, this 
is the first study to use metagenomics with ISDs to quantify both 
prokaryote and eukaryotic phytoplankton as genome equivalents 
per liter in whole, unfractionated seawater. Our approach provides
a robust framework for future quantitative metagenomics in
aquatic ecology.

Materials and methods
Sample collection 
Samples were collected during the AMT29 cruise aboard the RRS 
Discovery, which sailed from Southampton (UK) to Punta Arenas

(Chile) from October 13 to November 25, 2019 (Fig. 1). The ship 
stopped twice daily (around 4 a.m. and 12:30 p.m. local time) along 
the transect, and sampling was conducted from surface waters (2– 
5 m) using a rosette equipped with 24 Niskin bottles (Fig. 1A). At 
each station, ∼1 L of seawater was collected fr om a Niskin bottle
and pumped through a 0.22 μm Sterivex filter (PVDF, Millipore, 
SVGVL10RC). After filtering, 0.5 ml RNA Later Solution (Invitrogen 
by Thermo Fisher Scientific) was added to the Steriv ex filter for
sample preservation, and filters were stored at −80◦C until extrac-
tion. The temperature, salinity and chlorophyll-a fluorescence  
(Chla) in the upper 200 m were measured using a conductivity-
temperature–pressure probe (SeaBird, SBE, 911plus/917) (Cruise
report of AMT29, https://dx.doi.org/10.17031/t8ed-w534). In addi-
tion, phytoplankton pigment concentrations along the transect 
were analyzed using High Performance Liquid Chromatography
(HPLC) [22]. 

DNA extraction and internal standards
First, RNAlater was removed from the Sterivex filter by brief 
centrifugation with inlet side down. The Sterivex filter was then 
rinsed with TE buffer, and any suspended DNA was desalted and 
recovered from the RNAlater plus TE rinse by centrifugal ultra-
filtration (Centricon, three cycles). Preliminary studies showed 
this recovery was necessary because we often found DNA in the 
RNAlater. This desalted nucleic acid fraction was added back to 
the crude extract for further purification. Sterivex filters were 
aseptically opened using sterile pliers in petri dishes. The filter
was removed from plastic housing, cut into small strips using
sterile blades and forceps, and added to bead beating tubes along
with the liquid nucleic acid fraction and RLT lysis buffer from the
AllPrep DNA/RNA mini kit (Qiagen, Valencia, CA, USA).

Cells were lysed using bead beating with 0.1–0.5 mm zircon 
beads, followed by total nucleic acid purification with the All-
Prep DNA/RNA mini kit (Qiagen, Valencia, CA, USA). For quan-
titative analysis, three genomic standards (Thermus thermophilus 
ATCC BAA-163, Blautia producta ATCC27340, Deinococcus radiodurans 
A TCC13939) were added to the lysis buffer after bead beating
(crude DNA extraction), targeting ∼1% of total DNA content as
internal standards [13]. DNA extraction and purification generally 
followed manufacturer instructions, with full details available at
https://www.protocols.io/workspaces/fuhrman-lab. 

Metagenome sequencing and absolute 
quantification
A total of 53 AMT29 samples were spiked with ISDs and 
sequenced. DNA libraries w ere prepared and barcoded using
the NEBNext® Ultra™ II FS DNA Library Prep Kit (New England 
Biolabs). The metagenomic libraries were sequenced on an 
Illumina NovaSeq platform at the Tufts University Core Facility 
(Boston, MA, USA) using 2 × 250 bp paired-end sequencing. When 
we later recognized during the study that we desired deeper 
coverage to obtain more psbO hits than in the original sequencing
outputs, 10 samples from AMT29 were re-sequenced using an
AVITI sequencer (2 × 300 bp mode) at the University of Minnesota
Genomics Facility (UMGC).

For metagenomic estimation of absolute gene abundances, 
we followed the approach outlined by Gifford et al. [13]. Briefly, 
raw reads were quality-trimmed using Trimmomatic v0.39
[23]. Paired-end reads were assembled using PEAR v0.9.6 [24]. 
Reads from the internal genomic standards were identified via 
BLASTn (e-value <0.001, %id >95%, alignment length 50%, bit 
score > 50), followed by BLASTx searches (e-value <0.001, %id 
>98%, bit score > 50). Bacterial recA and archaeal radA proteins
were downloaded from the RefSeq protein database (2024.11),
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Figure 1. Broad agreement between metagenomics-based estimates of cyanobacterial absolute abundances and those made by FCM, as well as 
pigment patterns. (A) The AMT29 cruise track across the Atlantic Ocean is shown (see sampling stations in Fig. S1). The background color map 
represents the mean surface chlorophyll a concentration for October–November 2019 [22]. (B) Cell counts of cyanobacteria estimated using spike-in 
metagenomics and flow cytometry (FCM) methods. (C) Concentrations of cyanobacterial pigments zeaxanthin and divinyl chlorophyll a (DVChl-a) 
measured in surface samples. (D) Scatterplot between cyanobacterial abundances estimated by recA-metagenomics and FCM. Pearson’s correlations 
are presented for all samples (slope = 1.10) and separately for the first 33 stations (slope = 1.03) (darker dots only, red correlation statistics). 
(E) Scatterplot of cyanobacterial haploid genome equivalents based on recA and psbO (slope = 0.72; Pearson’s r = 0.99) gene markers through spike-in
metagenomics.

and metagenome reads were compared to the databases using
DIAMOND v2.1.9 [25]  (BLAST  x, −e 0.001, −k  1,  %id  >80%, bit 
score > 50) [13]. Proteins sequences were also verified with 
GhostKOALA against the Kyoto E ncyclopedia of Genes and
Genomes webserver [26]. The taxonomies of recA and radA genes 
were determined by aligning the sequences to the NCBI nr
database (2024.11) using DIAMOND (BLASTx, −e  1e-5, −k 20), 
and the outputs were summarized using MEGAN v7 community
edition [27] with the GTDB taxonomy. For the psbO gene, 
assembled reads were searched against the database generated 
from Tar a Oceans datasets using BLASTn (e-value <0.001, %id
>80%, bit score > 50) [20]. 

Recovery of internal standards in the metagenomics was used 
to estimate gene volumetric abundances for each sample using
calculations partly derived from Gifford et al. [13]: 

(1) Sr = SS 
S P (2) R = Sr 

S a (3) Ga = Gs 
R (4) Geuk = GrecA_cya no × PsbOeuk 

PsbOcyan o.

(1) Sr: Copies of internal standard genome recovered from 
sequencing in the sample.

SS: all reads matching protein-coding internal standard genes 
in the sample (BLASTx against genes used for Sp).

Sp: all protein-coding genes in the internal standard r eference
genome.

(2) R: Recovery ratio. The proportion of added standard 
molecules that were reco vered through sequencing in the
sample.

Sa: Copies of internal standard genome added to the sample.

(3) Ga: Molecules of a given gene (e.g. recA gene from a particular
organism).

Gs: total reads of the same gene (as used for Ga) in the sample.

(4) Geuk: Haploid genomes of a particular photosynthetic 
eukaryote (or aggregated into broader groups) in the sample.

GrecA_cyano: Total cyanobacterial recA reads in the sample (i.e. Ga 

where a is recA from all cyanobacteria).
PsbOeuk: Reads of a particular eukaryotic psbO in the sample

(same identity as Geuk).
PsbOcyano: Total cyanobacterial reads identified as psbO in the

sample.
The volumetric abundance of each single-copy gene (e.g. radA 

or recA) was determined by dividing gene counts by the volume of 
seawater filtered. The psbO gene is encoded by both cyanobacteria 
and eukaryotic phytoplankton, enabling cross-domain analysis. 
We employed two approaches to estimate haploid genome equiv-
alent of photosynthetic eukaryotes. The first applied the recovery 
ratio dir ectly to psbO reads, as done for recA (Equation 3). However,
this method underestimated cyanobacterial (Prochlorococcus and
Synechococcus) abundances, with a slope of 0.72 (Pearson’s r = 0.99)
compared to recA-based estimates (Fig. 1). As an alternative, we 
calculated the ratio of taxon-specific eukaryotic psbO reads to 
cyanobacterial psbO reads and then multiplied it by the abso-
lute cyanobacterial abundance based on recA (Equation 4). This 
assumes an accurate recA cyanobacteria count and that psbO -
based underestimation similarly affects both cyanobacteria and
photosynthetic eukaryotes, likely due to sequencing depth and
limitations in the psbO reference database (see Discussion).

Amplicon sequencing and da ta analysis
DNA samples from AMT29 with internal standards were 
sequenced for amplicons targeting the V4-V5 hypervariable 
region of the 16S and 18S rRNA gene using the universal primers
515Y/926R [28], as described in the protocol at doi.org/10.17504/ 
protocols.io.vb7e2rn. The primers amplify prokaryotes, eukary-
otes, and chloroplasts simultaneously. The amplicon library was 
sequenced using an AVITI sequencer at UMGC using 2 × 300 bp 
mode. The sequences were demultiplexed and denoised to
amplicon sequence variants based on DADA2 [29] incorporated 
within QIIME2 [30] with a special protocol that captures 18S
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sequences, all of whose forward and reverse reads do not overlap 
and are lost with standard protocols [31]. 

Cell counting by microscopy and flow cytometer
Microscopy was used to identify cells with an equi valent spherical
diameter (ESD) ≥ 10 μm, while the flow cytometer targeted 
smaller cells with ESD < 10 μm  (Table S 1). For each sampling 
site, 200 ml samples were collected in amber glass bottles and 
fixed with neutral Lugol’s iodine solution. In the laboratory, cell 
identification and counting were performed using a Zeiss Axiovert 
200 inverted microscope with 10 × 40 magnification. Major 
eukaryotic species from diatoms, autotrophic and heterotrophic 
dinoflagellates were identified and counted. For Trichodesmium
(filamentous Cyanobacteria), cell counts were estimated for
each filament, giving an average number of 100 cells per
filament [22]. Fresh samples were also analyzed for smaller-celled 
phytoplankton abundances using a Becton Dickinson FACSort 
flow cytometer. Within the analysis window, six different groups 
w ere enumerated: Prochlorococcus, Synechococcus, picoeukaryotes
(PEUK), nanoeukaryotes (NEUK), coccolithophores within 5–
10 μm, and cryptophytes, as previously reported [22]. 

Results 
Quantitative metagenomics compared to FCM
and pigments
The AMT29 cruise spanned >6200 km the northern and southern 
Atlantic between the United Kingdom and Argentina (Fig. 1A, 
Fig. S1). Lowest Chla concentrations occurred in oligotrophic 
gyres, moderate levels in the tropics (especially the northern 
tropics, closest to Africa on this transect), and highest values at 
higher latitudes. Cyanobacterial absolute abundance, inferred
from the recA sequences and recovery ratio of ISDs (Fig. S2, 
Tables S2), exhibited a 140-fold variation across stations, peaking 
at 6.7 × 108 cells L−1 in the tropics (Fig. 1B). Similarly, the 
pigment biomarker zeaxanthin, indicative of Synechococcus and 
Prochlorococcus, peaked in the northern tropics (Fig. 1C). Divinyl 
chlorophyll-a,  a  marker  for  Prochlorococcus, follo wed the same
trend (Fig. 1D). 

A strong linear correlation with a slope near 1 was found 
between cyanobacterial cell counts derived from recA-based 
metagenomics and FCM, most strongly for the first 33 stations
(slope = 1.03; Pearson’s r = 0.89) (Fig. 1D, Table S3); we calculated 
separately for these 33 because the FCM data was unusable 
for Prochlorococcus between 12◦S  and  40◦S, and data from six 
stations closest to those show worse correlation and may be 
suspect. Cyanobacterial psbO and recA genes correlated strongly
(slope = 0.72; Pearson’s r = 0.99), though the slope indicates an
average of 28% fewer psbO hits detected compared to recA (Fig. 1E, 
Fig. S3), possibly due to some psbO fragments not being clearly 
recognized as such informatically.

Relative and absolute profiling of prokaryotes 
along the AMT29 transect
SSU rRNA gene sequencing using three-domain universal primers 
(515Y/926R), revealed average relative rRNA gene abundance of 
arch aea (1.8%), bacteria (82.8%), and eukaryotes (15.4%) across
the AMT29 transect (Fig. 2A). The most abundant prokaryotic taxa 
included SAR11, Synechococcales, Flavobacteriales, Pseudomonadales, 
Puniceispirillales,  and  Rhodobacterales, with marine group II (MGII)
dominating the archaeal community (Fig. 2A). 

Quantitative metagenomics estimated bacterial cell counts 
(genome equivalents from recA) ranged 3.0 × 108 to 2.5 × 109 cells

L−1, while archaeal counts (from radA) varied between 5.7 × 10 5

and 1.5 × 108 cells L−1 (Fig. 2B, Table S4). Prokaryote abundance 
broadly paralleled the changes in Chla concentrations (Fig. 2B); 
lowest abundances were observed in both Southern and Northern 
oligotrophic gyres, and highest in the tropics, whic h on this
transect had moderate chlorophyll levels (Fig. 1A). Abundance 
patterns of major taxa were strongly consistent between metage-
nomic and rRNA amplicon-based microbial profiling (Fig. 2), 
though some differences were evident when the metagenomic 
data were viewed as relative abundance; this may be expected due 
to variable rRNA GCN and possible DN A extraction and PCR biases
(Fig. S4A). The highest correlation coefficient between the relative 
abundances by the two measures was observed for Synechococcales 
(Pearson’s r = 0.95), while the lowest was for Puniceispirillales
(SAR116) (Pearson’s r = 0.72) (Fig. S4B). The average cell counts for 
Prochlorococcus and Synechococcus were 2.3 × 108 and 8.4 × 106 cells
L−1, respectively. Prochlorococcus dominated the cyanobacterial 
community from 46◦N  to  35◦S, whereas Synechococcus peak ed
particularly strongly at the southernmost station (40◦S) (Fig. S5A). 
Metagenomics resolved to the ecotype level, unlike FCM (Fig. S5B). 
Microbial community composition varied more distinctly when 
assessed using absolute abundance (68%) compared to relative 
abundance (53%), as shown by mor e of the variance explained in
the PCoA of the Bray–Curtis dissimilarity matrix (Fig. S6). 

Quantifying eukaryotic phytoplankton along the 
AMT29 transect
Diatoms and dinoflagellates were counted via microscopy, 
while coccolithophores, cryptophytes, NEUK, and PEUK were
quantified by FCM (Table S1). Along the transect, PEUK (86.0%), 
and NEUK (13.2%) together accounted for over 99% of eukaryotic
phytoplankton (Fig. 3A), with peak abundances near 40◦S 
latitude. Dinoflagellate and diatom microscopy abundances 
peaked at stations around 48◦N  and 40◦S, respectively (Fig. 3B). 
Coccolithophores peaked (2.4 × 104 cells L−1)  by  FCM  a  t 40◦S
(Fig. 3B, Table S1). Coccolithophores and dinoflagellates exhibited 
elevated abundances in the tropics as well as northern and 
southern extremes o f the transect, and lowest in the subtropical
gyres (Fig. 3B). Amplicon sequencing indicated that chlorophytes, 
dinoflagellates and haptophytes, along with Metazoa, tended to 
dominate the eukaryotic community by this measure, v ery likely
affected by 18S rRNA gene copy number variations (Fig. S7). 

Metagenomic analysis of the AMT29 dataset yielded 22 388 
psbO sequences, comprising 22 077 from cyanobacteria and 311
from eukaryotes in the initial round of sequencing (Table S5)  (note  
we re-sequenced 10 samples to increase eukaryote coverage, 
see below). We differentiated six eukaryotic phytoplankton 
groups: chlorophytes, c hrysophytes, diatoms, dinoflagellates,
haptophytes, and pelagophytes (Fig. 3C). The metagenomics-
derived abundances of photosynthetic eukaryote (assuming one 
psbO gene per haploid genome) showed strong correlation with 
total cell counts by microscopy and FCM (slope = 0.72; Pearson’s
r = 0.84) (Fig. S8). Chlorophytes and haptophytes dominated 
the phytoplankton community, with peaks near 40◦S latitude. 
Among chlorophytes, Bathycoccus, Micromonas , and Ostreococcus
were the most abundant genera (Table S6). Haptophytes included 
the coccolithophore Emiliania and non-coccolithophore genera 
Chrysochromulina and Prymnesium. The pelagophyte Pelagomonas 
also showed higher abundance at higher latitudes in both 
hemispher es. Diatoms and dinoflagellates were also detected,
with cell counts exceeding 1 million cells L−1 from 15◦N  t  o
10◦N (Fig. S9). A relatively high abundance of chrysophyte-like 
sequences (∼70% BLAST identity) was observed from 20◦N to
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Figure 2. Relative and absolute abundance estimates in AMT29 samples. (A) Relative abundance of major taxa at the domain (left) and order (right) 
levels derived from universal 3-domain rRNA amplicon sequencing. (B) Absolute abundance of major prokary otic taxa at the domain (left) and order 
(right) levels estimated using quantitative metagenomics via recA for bacteria and radA for archaea.

Figure 3. Comparison of abundances of eukaryotic phytoplankton show metagenomics broadly agrees with FCM of nano-and pico-eukaryotes, but 
metagenomics-based abundances of dinoflagellates and diatoms were much higher than microscopy. (A) Total eukaryotic haploid genome 
equivalents, estimate of cell counts via equation (4)—see text, calculated using psbO-based metagenomics, alongside nano- and pico-eukaryote counts 
determined by FCM. (B) Eukaryotic cell counts derived from FCM for coccolithophores and from microscopy for dinoflagellates and diatoms. (C) Cell 
counts of major eukaryo tic groups identified using psbO genes, i.e. the same metagenome results as in panel A, broken down by major groups. Note 
the numerically dominant groups from metagenomes are expected to be largely in the pico and nano size range, with cell diameters <20 μm  (see  text).  
Samples marked with circular dot were resequenced. (D) Total eukaryotic cell count estimates in the 10 resequenced samples. The resequencing effort 
yielded 26 289 psbO sequences, comprising 25 079 from cy anobacteria and 1210 from eukaryotes. (E) Absolute abundance estimates from (D) divided 
into major of eukaryotic groups.

10◦N. Resequencing of 10 samples yielded 13-fold higher co verage
(Table S7), yet community composition and absolute abundance 
remained remarkably consistent between the two sequencing
runs (Fig. 3D-E). 

Discussion 
Metagenomic methods incorporating internal standards for abso-
lute quantitation of prokaryotes were developed over a decade ago

[32], and in recent years have been applied to estimate genome 
equivalent (or haploid equivalent) cell counts with the analysis of
single-copy genes in some marine studies [11, 13]. Nevertheless, 
the vast majority of metagenomic studies still reported only 
relative abundances. Until this past year there was no recognized 
single-copy gene allowing for genome equivalent quantification of 
phytoplankton, and still no known general protistan single-copy 
gene to assess heterotrophic protist abundances. By integrating
ISDs with single-copy recA and psbO genes, our study establishes
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a robust workflow for estimating cell counts, more specifically 
counts of haploid genome equivalents, across all three domains of 
life, and we applied it along the Atlantic Meridional Transect. The 
strength of this approach is supported by the strong correlations 
and similar absolute estimates observed between phytoplank-
ton abundances derived from quantitative metagenomics and
those obtained using FCM and microscopy measurements: for
cyanobacteria, Pearson’s r = 0.89; for photosynthetic eukaryotes,
Pearson’s r = 0.84.

Historically, microscopy, FCM and quantitative PCR (qPCR) have 
been the primary methods for estimating absolute cell abun-
dance. While qPCR is highly sensitive and specific for microbial 
detection, its limitations include usually targeting only specific 
groups, variability in PCR efficiency, primer specificity, and the
common presence of multiple gene copies per cell [33]. FCM, 
on the other hand, provides high-throughput cell counts but 
requires supervised denoising/differe ntiation and offers very lim-
ited taxonomic resolution [34]. In this study, spike-in metage-
nomics revealed cyanobacterial cell estimates highly correlated to 
and numerically equivalent to those obtained via FCM. Note that a 
recent paper reported virtually identical FCM and rRNA amplicon-
based estimates of Prochlorococcus and Synechococcus counts in a 
North Pacific transect when these same kind of spike-ins were 
used and it was assumed that Prochlorococcus has one rRNA gene
copy while Synechococcus has two [35]. In our study only a few 
moderate discrepancies were observed between FCM and recA 
gene analyses of cyanobacterial abundance, and it was in the 
tropics, where intense sunlight and low cellular pigment con-
centrations may have led to an underestimation of near-surface
marine cyanobacteria by FCM [36]. So in addition to being very 
versatile, detecting all taxa with good phylogenetic resolution, 
quantitative metagenomics may help make up for the possible
deficiencies in FCM.

In our study, prokaryotic community profiles showed broad 
quantitative agreement between amplicon sequencing and
metagenomics in terms of relative abundance (Fig. S4). We find 
this encouraging in that it means that carefully planned SSU 
rRNA amplicon studies (e.g. vetted with mock communities and 
metagenomic comparisons as is the case for the primers and
protocols used here [28, 37]) in marine plankton investigations 
like this yield relative abundances that reasonably reflect cell 
abundances. But we do recognize that variations in rRNA GCN
among prokaryotes would need to be considered for specific
comparisons [38], e.g. it is thought to be 1 in most Prochlorococcus 
and SAR11, 2 in most Synechococcus,  1–6  in  Rhodobacter,  and  1–  
12 in Flavobacterium etc. Our study also highlights the challenge 
of directly comparing prokaryotes and eukaryotes even when 
the relative abundances of rRNA genes are measured with a 
single denominator. Eukaryotes accounted for around 10% of all 
SSU rRNA amplicons, ∼30-fold higher than the ∼0.3% eukaryote
proportion of the total haploid genome equivalents (∼cells) from
the metagenomic data. This almost certainly reflects the higher
rRNA GCN in eukaryotes as reported in a previous study (up to
hundreds) [39]. Providing protist GCN in field samples remains 
very challenging. So because ecologists and modelers are much 
more interested in cell abundances than gene copy numbers 
alone , “single-copy” gene quantification like the ones we report
here have clear advantages.

By being an all-taxon approach, our single analysis was able 
to indicate cell abundances, as haploid genome equivalents, of 
all prokaryotic and phytoplankton taxa (that exceed detection 
limits), something new for large ocean transects. Among 
prokaryotes, members of the SAR11 clade, the most abundant

plankton group in marine systems, were uniformly high through-
out this surface transect, averaging 3.6 × 108 cells L−1, accounting 
for approximately one-third of the prokaryotes. Synechococcales 
(Prochlorococcus and Synechococcus), the most abundant primary 
producers, averaged 2.4 × 108 cells L−1, or 21.9%, particularly dom-
inant in warm waters as expected. The MGII archaea av eraged
2.9 × 107 cells L−1, 2.6% of the total prokaryotes, and peaked in 
abundance at the highest latitudes . Marine diazotrophs, crucial
for nitrogen cycling [40], were also quantified. Notably, we report 
the diazotroph Trichodesmium at eight stations exhibited an aver-
age abundance of 1.5 × 106 genome equivalents L−1 between 1◦N 
and 22◦N (Fig. S9), a 325-fold increase compared to micr oscopy-
based estimates [22] from the same cruise. Microscopy estimates 
for Trichodesmium were based on filaments, using an average of
100 cells per filament [22]. Previous studies also reported high 
Trichodesmium abundances in the Atlantic Ocean between 0◦N 
and 15◦N across AMT1–8, estimating an average of 300 ± 100
filaments per liter [41]. The much higher metagenomic estimates 
may reflect high abundance of small filaments or single cells that 
were missed microscopically. However, it could in part reflect that 
Trichodesmium may sometimes be polyploid, reportedly containing
up to 100 genome copies per cell [42]. Another important 
marine diazotroph, the symbiotic unicellular cyanobacterium 
Candidatus Atelocyanobacterium thalassa, or “nitroplast” [43], was 
abundant (∼1.3 × 106 cells L−1) between 10◦S  and  35◦S  i  n the
South Atlantic Ocean (Fig. S10), within the reported range fr om
prior work [44]. Unlike microscopy and qPCR [44] methods, our 
approach provides direct quantification of marine diazotrophs 
along with every other organism (with no extra effort or cost), 
providing particularly valuable ecological context about the entire
community at once.

Traditional identification of large marine phytoplankton, such 
as diatoms and dinoflagellates, relies on light microscopy, with 
highly sensitive detection thresholds as low as 20 cells L−1.  How-
ever, this method is time-intensive and requires specialized exper-
tise. With the decreasing costs of sequencing, metagenomic detec-
tion thresholds can be significantly improved. For example, our 
resequencing of 10 AMT29 samples greatly enhanced psbO gene 
recovery, reducing the average detection threshold from 0.58 mil-
lion to 68 000 haploid genome equivalents L−1. Notably, metage-
nomics showed >1 million diatom and dinof lagellate haploid
genome equivalents L−1 at stations between 10◦N  and  15◦N, rep-
resenting a ∼100-fold increase compared to microscopy cell count 
estimates. This finding supports earlier studies suggesting that
substantial numbers of nano-sized diatoms and dinoflagellates
exist in some coastal and ocean areas [45, 46]. Due to the small 
size and detection challenges, they remain poorly characterized. 
Discrepancies may also stem from resistance of some organisms 
to cell lysis and DNA extraction (e.g. some archaea, cysts, or others 
with rigid cell walls) and preservation biases such as cell lysis 
in RNAlater, which we accounted for but may be overlooked in 
other protocols. Also note we used a fairly harsh bead beating
step in our extractions to maximize lysis. Diatoms are generally
thought to be diploid in their vegetative state, whereas most
dinoflagellates follow haplontic life cycles [21], potentially leading 
to overestimation of phytoplankton abundances by psbO genes 
(i.e. for diploid organisms, the number of cells is half the haploid
genome equivalents).

We also noted that for cyanobacteria, the annotated metage-
nomic psbO read counts were beautifully correlated but consis-
tently only ∼72% as high as recA based counts (Fig. 1E, regression 
slope 0.72), while recA counts of cyanobacteria closely matched 
flow cytometry and thus appeared accurate. We used this
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information to develop a second way of estimating eukaryotic 
phytoplankton haploid genome equivalents, beyond the one 
based solely on psbO absolute abundance (via Equation 3), to 
compensate somewhat for the likely psbO undercount. This 
alternative calculation (Equation 4) takes the ratio of taxon-
specific eukaryotic psbO reads to total cyanobacterial psbO 
reads within a given sample and multiplies this by the total 
cyanobacterial recA genes in the sample, leveraging the accurate 
recA cyanobacterial estimates. It basically assumes the eukaryotic 
psbO undercount is the same as that observed for prokaryotes. We 
speculate the undercount is largely from the diff iculty matching
short reads to the currently sparse psbO database at high identity.
Further improvements in the spike-in metagenomics, including
increased sampling volume, deeper sequencing, expanded psbO
gene reference databases, determination of ploidy levels and
cell cycle stages, and possibly alternate lysis methods, are
expected to enhance the accuracy of absolute quantification for
eukaryotes [47]. 

Nano- and pico-eukaryotes play critical roles in marine ecosys-
tem diversity and functionality. Over recent decades, microscop y
and FCM studies have demonstrated their high abundances [48]. 
In the Atlantic Ocean, the latitudinal distributions of NEUK and 
PEUK were largely consistent between FCM and metagenomics, 
and in fact these organisms made up 99% of the total psbO 
sequences. Notably, quantitative metagenomics significantly 
improved taxonomic resolution, enabling the detection of orders 
such as Isochrysidales and Prymnesiales (nanoeukaryotes), and 
Pelagomonadales and Mamiellales (PEUK). The psbO sequences also 
showed uncultivated haptophytes (∼80% identity) related to
Chrysochromulina, Emiliania (Gephyrocapsa), and Prymnesium. Abso-
lute abundances of pelagophytes, chlorophytes and haptophytes
peaked in high-latitudes, where some are known to make massive
blooms visible from space [49]. Haptophytes, including toxin-
producing members of genera such as Prymnesium and Chrysoc hro-
mulina, can cause harmful algal blooms [50], so determining 
absolute abundances of potentially toxic genera metagenomically 
(and examining the corresponding metagenomes more closely for 
indicators of potential toxicity) can help understand their ecology. 
Genera of green algae, such as Bathycoccus, Micromonas,  a  nd
Ostreococcus, are important contributors to primary production
and are abundant globally, including in Arctic waters [51, 52]. 
Thus, quantitative estimation of taxonomically identified pico-
and nano-eukaryotes is particularly important in the context of 
understanding primary production and biogeochemical cycling, 
and how it may be influenced by global warming, especially in
climate-sensitive polar regions [53]. 

Although photosynthetic eukaryotes accounted for an average 
of only 0.3% of the haploid genome equivalents, their individual 
cell biovolumes (and corresponding biomasses) can be several 
orders of magnitude larger than that of prokaryotes, so their 
potential contribution to biomass is significant. Spike-in meta ge-
nomics would facilitate the phytoplankton carbon biomass esti-
mates when augmented with taxon-specific estimates of biomass
per cell, which have been used for decades in classical microscopy
methods [9]. However, this approach would require substantial 
additional effort, as well as some speculation at this time , so it
is beyond the scope of this report.

In summary, quantitative metagenomics now provides a robust 
framework for estimating taxonomically resolved absolute cell 
counts by integr ating ISDs with single-copy genes such as recA and
psbO [13]. This dual-gene strategy enables simultaneous absolute 
quantification of plankton across domains by a single assay. 
Our study extends previous spike-in metagenomics by providing 
a quantitative assessment of prokaryotes and photosynthetic 

eukaryotes across the Atlantic Meridional Transect. Future 
applications can include taxonomically resolved estimates of 
carbon biomass by incorporating cell-specific biomass data, 
as well as absolute quantification of specific viruses. Combin-
ing satellite-derived global surface Chla concentrations with
taxonomically resolved metagenomics presents a promising
approach to improve estimates of primary productivity on a global
scale [54]. 
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