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A B S T R A C T   

Satellite-derived sea surface temperature (SST) and chlorophyll (Chl) datasets have been invaluable for esti-
mating the oceanic primary production, air-sea heat exchange, and the spatial and seasonal patterns in their 
variability. However, data gaps, resulting from clouds and other factors, reduce coverage unevenly (to just about 
20%) and make it difficult to analyze the temporal variability of Chl and SST on sub-seasonal time scales. Here, 
we present a MOving Standard deviation Saturation (MOSS) method to enable the analysis of sparse time series 
(with as little as 10% of the data). We apply the method to identify the dominating (sub-annual) timescales of 
variability, τd, for SST and Chl in every region. We find that τd values for Chl and SST are not consistent or 
correlated with each other over large areas, and in general, SST varies on longer timescales than Chl, i.e. τd(SST) 
>τd(Chl). There is a threefold variability in τd for SST and Chl even within regions that are traditionally 
considered to be biogeographically homogeneous. The largest τd for Chl is generally found on the equatorial side 
of the trade wind belts, whereas the smallest τd are found in the tropical Pacific and near coasts, especially where 
upwelling is common. If the temporal variability in Chl and SST were driven largely by ocean dynamics or 
advection by the flow, regional patterns of τd for SST and Chl should co-vary. This is seen in coastal upwelling 
zones, but more broadly, the lack of coherence between τd(Chl) and τd(SST) suggests that biological processes, 
such as phytoplankton growth and loss, decouple the timescales of Chl variability from those of SST and generate 
shorter term variability in Chl.   

1. Introduction 

In many regions of the ocean, primary production is punctuated by 
hotspots (Oliver et al., 2021) and blooms (Alkire et al., 2012) that 
exhibit high spatial and temporal variability in phytoplankton biomass 
(Zingone et al., 2010). A classic example of how periodic changes in 
primary production have profound effects on the food web and export of 
carbon is the annual North Atlantic spring bloom (Sverdrup, 1953; 
Sundby et al., 2016; Briggs et al., 2011; Behrenfeld and Boss, 2017; 
Henson et al., 2009; Stramska and Dickey, 1993; Platt et al., 2003; 
Martin et al., 2011). The suggestion that temporal changes in phyto-
plankton biomass might be as important as the mean standing stock has 
lead to increased interest in how best to evaluate the variability of 

phytoplankton over different temporal and spatial scales. Variability has 
been investigated on daily (Abbott and Letelier, 1998), intra-annual 
(Legaard and Thomas, 2007), annual (Dunstan et al., 2018), and inter- 
annual timescales (Henson et al., 2009), as well as on sub-kilometer 
spatial scales (Blackwell et al., 2008). Reviews by McClain (2009) and 
Mahadevan (2016) discuss how interactions between biological and 
physical processes occur on different temporal and spatial scales. 

Satellite-derived proxies for biomass such as Chlorophyll (Chl) and 
Particulate Organic Carbon (POC) are now available at unprecedented 
coverage in time and space, enabling better estimates of the variability 
in biomass of phytoplankton and of total organic particulates on 
different scales (McClain, 2009; Siegel et al., 2013). However, one key 
challenge when working with satellite-derived products is data gaps 
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caused by factors such as clouds, sun angle, and sun glint, all of which 
obfuscate the satellite sensor’s view of the ocean. These erroneous data 
acquired under these adverse conditions, usually flagged for removal, 
are not evenly distributed, but follow patchy irregular patterns deter-
mined by the temporal and spatial scales of synoptic weather systems or 
seasonal variability in the conditions (for example in the sun angle) in 
different regions. Consequently, only 20% of the derived Chl fields are 
on average useful (Fig. 3) (Lee et al., 2012). Such sparse and unevenly 
distributed datasets create a major challenge for common timeseries 
analysis tools, such as Fourier analysis or Empirical Orthogonal Func-
tions (EOFs), thus hindering efforts to understand the frequency distri-
bution of the data. A common and very successful approach is to 
aggregate the daily satellite fields to monthly averages to obtain full or 
almost full spatial coverage (Henson et al., 2009; Yoder and Kennelly, 
2003; Glover et al., 2018). The resulting analyses provide spatial dis-
tributions and insight about changes in phytoplankton biomass on sea-
sonal or longer timescales, but truncate high-frequency variability that 
may occur on timescales less than a month. Reviews by Blondeau- 
Patissier et al. (2014) and Zingone et al. (2010) provide a comprehen-
sive overview of statistical analyses used in time series analyses of 
phytoplankton biomass. 

To better meet these specific challenges associated with time series 
analysis of sparse satellite derived properties, we suggest a new method 
to estimate dominant timescales of variability (τd) that can detect the 
effect of processes with higher frequencies than earlier methods. The 
dominant time scale τd is a quantity that scales with the point along the 
frequency domain where 50 percent of the variability in a given time 
series is accounted for. The approach is similar to semi-variograms 
(Journel and Huijbregts, 1978; Doney et al., 2003; Glover et al., 2018) 
and the analysis of spatial patchiness described in Mahadevan and 
Campbell (2002), but describes temporal variability rather than the 
spatial autocorrelation or patchiness in the satellite field. An application 
of moving standard deviations with varying window sizes, but to esti-
mate the amplitude of short-term fluctuations over a diurnal cycle, is 
presented in Hocke et al. (2019). A separation into sub-seasonal, sea-
sonal and interannual time scales is performed by Keerthi et al. (2020); 
Prend et al., 2022 for the Mediterranean Sea and Southern Ocean. 

The technique is based on calculating the standard deviation (σ) of 
the time series data over moving windows of a set time interval, and 
repeating for different time-interval windows. The average σ for each 
time-window size (σ) increases from zero for a time window that in-
cludes just one data point, to σ of the full time series. The largest possible 
time window is in effect the full time series. The shape of the resulting 
curve of σ vs. the time-interval window size (w) is then analyzed to 
identify a dominant timescale, τd, of the time series for every pixel (or 
location). The method is developed to have specific skill in identifying 
time series where short time scales dominates over long-term, normally 
seasonal, variability. It should be noted that any noise in the time series 
has a first order effect on the estimated dominating timescale. This is a 
desirable feature since noise adds to the variability and should be 
accounted for. The method does not try to identify specific signals or 
periodicities in the data, but the timescale of variability that is most 
important. 

First, we present our proposed method of analyzing satellite time 
series to identify the dominant timescale of variability, τd. We then apply 
the method globally to satellite derived Chl and Sea Surface Tempera-
ture (SST) data to analyze significant differences in timescale variability 
of Chl and SST, as well large regional patterns in Chl and SST variability. 
Finally, we discuss how results relate to known physical drivers of 
phytoplankton production in different regions of the global oceans. 

2. Methods 

2.1. MOving Standard deviation Saturation (MOSS) 

The MOSS method is based on the concept that a small section of a 

time series only includes variability on timescales smaller or equal to the 
size of that section, while variance on longer timescales is invisible. 
Larger sections will include more variability, with standard deviation 
increasing to the point where all variance in the time series has been 
accounted for. By defining a window of a specified length (w) and 
calculating the mean of the moving standard deviation over the time 
series (σ(w)), one can estimate how much variability on timescales less 
than or equal to w contributes to the total variance. The σ calculation can 
be performed using any size of w up to the length of the full time series, 
where the result will by definition be the standard definition of the full 
time series. The σ can rapidly reach σ of the full time series with a 
smaller w if the variability is primarily concentrated at smaller 
timescales. 

The MOSS method expands on this notion by calculating σ’s using 
varying w, starting at one day and increasing the window size stepwise. 
We limit the analysis to w = 400 days to avoid inter-annual variability 
that might dominate results. Variability in Chl and phytoplankton 
biomass on interannual to decadal timescales has been thoroughly dis-
cussed in earlier studies (e.g. Henson et al., 2009) and the purpose of this 
study is to investigate variability over shorter timescales that have 
received less attention. The resulting curve of σ will start at 0 for a 
window length of one and saturate at σ of the full time series (denoted as 
σmax). We interpret the slope of the curve as reflecting how fast the 
variability included in windows smaller than or equal to a specific w 
converges to the total variability, thus providing information about 
timescales that most capture variability in the full time series. A steep 
slope shows that small window sizes can capture most of σmax and sug-
gest a time series dominated by short timescales. A more gradual slope is 
indicative of long timescales being dominant and/or the presence of 
pronounced temporal autocorrelation which would act as a low-pass 
filter. The steepness of the slope can then be used as a proxy for which 
timescales are contributing most to the variability in the time series. 
Different methods to estimate the slope is discussed in the Results 
section. 

2.2. Satellite data 

Analyses are based on daily satellite-derived fields of Chl and SST 
with a 4 km resolution for the period 2006–01-01 to 2016–12-31. Chl is 
sourced from version 4.2 of Ocean Colour Climate Change Initiative 
(Mélin et al., 2017; Sathyendranath et al., Oct. 2019, 2020, OC–CCI), 
which is a level 4 blended product. OC–CCI V4.2 merges data from the 
Sea-viewing Wide-Field-of-view Sensor (SeaWiFS), the Aqua MOderate- 
resolution Imaging Spectroradiometer (MODIS-Aqua), the MEdium 
spectral Resolution Imaging Spectrometer (MERIS), and the Suomo-NPP 
Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) into a unified 
product. SeaWiFS operated from September 1997 until December 2010, 
MERIS from March 2002 to May 2012, while MODIS-Aqua was launched 
in May 2002 and VIIRS in October 2011; the last two are still operational 
as of December 2021. Data from the different instruments are merged 
after band-shifting normalized remote-sensing reflectance (Rrs) to the 
spectral bands of SeaWIFS and correcting for inter-sensor biases. At-
mospheric correction is performed using POLYMER v3.5 (Steinmetz 
et al., 2011) for MERIS and MODIS-A, and NASA/L2Gen 7.3 for SeaWiFS 
and VIIRS. All individual grid cells are classified optically using a fuzzy- 
logic clustering approach (Moore et al., 2009; Moore et al., 2012; 
Jackson et al., 2017) and a combination of the best performing Chl al-
gorithms for each class is employed along with membership information 
for each pixel at each time to calculate the best estimate of Chl. The 
spatial mapping follows NASA protocol for level 3 processing by 
considering a 4-km bin as valid if there is at least a single 1-km valid 
pixel from at least one sensor, and taking the average if more than one 
value is valid. The resulting time series is designed to be internally 
consistent (all radiometric products band-shifted to a common set of 
bands corresponding to SeaWiFS) and stable (corrected for inter-sensor 
bias), thus providing a more extensive temporal coverage than any 
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individual instrument. 
SST is based on the ESA SST CCI Analysis Long Term Product 

(Merchant et al., 2019; Merchant et al., 2016; Good et al., 2019, SST- 
CCI), consisting of daily, spatially complete fields obtained by 
combining the data from the AVHRR and Along Track Scanning Radi-
ometer (ATSR). Gaps are filled using optimal interpolation and other 
data assimilation methods to provide SSTs where there were no mea-
surements (Merchant et al., 2019). SST-CCI provides a representative 
SST at the foundation depth, defined as the starting point of the diurnal 
cycle that will develop over a day, i.e. at 20 cm depth at 10:30 in the 
morning local time. The mean density of good-quality observations is 13 
km− 2 yr− 1 (Merchant et al., 2019). SST uncertainty is evaluated per 
datum, the median uncertainty for pixel SST being 0.18 K. Multi-annual 
observational stability relative to drifting buoy measurements is within 
0.003 K yr− 1 of zero with high confidence, despite maximal indepen-
dence from in situ SSTs over the latter two decades of the record 
(Merchant et al., 2019). The data products from SST-CCI accurately map 
the surface temperature of the global oceans over the period 1981 to 
2016 using observations from many satellites and provide indepen-
dently quantified SSTs to a quality suitable for climate research. The 
SST-CCI product was natively developed on a 0.05◦ grid with full daily 
coverage. The daily fields are re-projected to the OC-CCI grid using the 
SatPy resampling package (Raspaud et al., 2019) and any pixels that are 
invalid in the OC-CCI dataset are masked out. 

3. Results 

We begin our analysis by applying the MOSS method to synthetic 
data as a means to explore how time series relate to different estimates of 
dominant timescales. Fig. 1 shows an example of a sinusoidal time series 
(upper panel) and MOSS calculated from σ with different window sizes 
(blue line, lower panel). The resulting MOSS curve is, as expected, 

monotonic and reaches σmax when the window size is the same as the full 
period of the sine curve. The shape has superficially similar properties to 
a growth curve described by the Monod equation (Monod, 1949). 

y =
σmax⋅x
B0 + x

(1)  

which is specified by a half saturation constant (B0) controlling the slope 
of the curve and σmax analogous to maximum standard deviation. We test 
the similarity by applying a curve fit of Eq. (1) using the Lev-
enberg–Marquardt algorithm, as implemented by the scipy optimize 
package (Virtanen et al., 2020) and find a reasonable similarity (red 
dashed lines in the lower panels of Fig. 1). The main difference is that the 
fitted Monod function reaches saturation much later than the MOSS 
curve. To address this lack of saturation by the Monod fit, we investigate 
a more simplistic approach by defining the half saturation constant 
(denoted as KM) as w when σ is half of σ at w = 400. 

While a sinusoidal curve is a reasonable model of the seasonal SST 
cycle, it is too simplistic a representation of the annual Chl cycle 
(Jönsson et al., 2013; Jönsson et al., 2015). A more realistic, albeit 
crude, synthetic time series is shown in Supplementary Fig. A.1, where 
the sinusoidal curve in Fig. 1, panel A has been truncated below 0.01. 
The premise of this form of seasonality is that phytoplankton commu-
nities are dormant during winter and Chl becomes negligible. We apply 
the MOSS analysis to the time series and find that while the amplitude of 
σmax decreases, the slope of the curve and KM are similar to the full si-
nusoidal signal. In the Monod fit B0 increases by about 30 days. Fast 
Fourier Transform (FFT) for the truncated time series produces two 
significant peaks in the resulting spectrum: one at 187.5 days and 
another at 365 days. The MOSS approach is not sensitive to the the shape 
of the curve, as can be seen in Supplementary Figs. A.2–A.5 where tri-
angle and sawtooth curves have been used instead of a sinusoid. 

Fig. 1. Panel A: Time series constructed from a sinusoidal curve with a one year period. Panel B: Mean moving standard deviations (blue solid curve) calculated using 
the time series in panel A at different window sizes. The dashed red curve shows a curve-fit based on a Monod equation, green dotted line the half saturation constant 
(B0) from the Monod equation, and the purple dotted line the half-saturation constant estimated directly from the blue curve (KM). τd (orange solid line) depicts the 
dominant timescales as defined in Section 3.2. 
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3.1. Half saturation constants 

These analyses show that both B0 and KM have utility in describing 
the slope of the MOSS curve in these idealized cases. KM seems to be 
slightly more robust by providing the same value when comparing the 
two curves, which we would expect to have similar if not identical 
slopes. Since B0 requires a computationally expensive optimization 
without providing any further advantages, we hereafter choose to use 
KM to represent the slope of the MOSS curve for systematic comparisons 
between different time series. 

3.2. Scaling the half saturation constant to dominant timescales 

While the expression “seasonal timescales” is commonly used and 
intuitively understood, there is, to our knowledge, no formal definition 
of the term. Even the number of seasons varies from two to six 
depending on which world region is being discussed (Jefferson, 1938; 
Trenberth, 1983). To create a technical definition of seasonal timescales 
for the practical and illustrative purpose of exploring utility of the MOSS 
method, we expand on Trenberth (1983) and assume a simple seasonal 
cycle based on a delta function varying every six months which thus 
defines the timescale of variation as τd(season) ≡ 182.5 days. The earlier 
described full and truncated sinusoidal time series (see Fig. 1) can be 
interpreted as different representations of a seasonal cycle with two 
seasons. We find that τd of 182.5 days (presented as a solid purple line) 
falls between the two half saturation constants. It is also one of the 
spectral peaks in the FFT of the truncated sinusoidal times series. The 
full sinusodial time series shown in Fig. 1 has a spectrum with only one 
peak, at the 365 day period. 

Differences in the magnitude of KM can be used to distinguish time 
series with varying dominating time scales, but the metric has in itself no 
direct physical meaning. To address this issue, we develop a simple 
scaling factor between KM and τd. It is clear from the initial analysis that 
such a relationship is dependent on the number of values missing in the 
time series. Solid lines in Fig. 2 show the half saturation constant for a 
number of sinusoidal time series with different timescales and with 
different percentage of values missing. Each curve in the figure is based 
on a Monte-Carlo simulation where 1000 time series have been created 
but randomly replacing values with NaN’s before calculating the half 
saturation constant with the MOSS method and averaging the calculated 
KM for each C, where C is the coverage, defined as the percentage of 
valid values in the time series (i.e. a 10% coverage means that 90% of 
the values in the time series are invalid, or C = 90%). See Fig. 3 for a 
global map of C for daily merged ocean-color data. For the Monte Carlo 
simulations, the resulting curves for different coverages show a linear 
relationship at longer timescales, but with different slopes and intercepts 
depending on C. We minimize these differences by applying the linear 
relationship τd = β1KM + β0, where 

β1 =
1.38

C
+ 1.62 (2)  

and 

β0 = 1.086⋅
(
1 − 50.4⋅e− 0.092C)+ 0.14. (3) 

The influence of C on β0 is described using a Weibull Continuous 
Distribution Function with a second exponent of 1 (Weibull, 1951). All 
parameters are estimated using the Levenberg–Marquardt algorithm, as 
implemented by the scipy optimize package (Virtanen et al., 2020). Data 
used for curve fits are shown together with the resulting relationships in 
Figs. A.7 and A.8 in the Appendix. Please note that KM and τd are 
switched in Fig. 2. Dotted lines in Fig. 2 show the result of scaling KM 

(solid curves) to τd using β1 and β0 from Eqs. (2) and (3). MOSS shows 
good skill in estimating τd longer than 10 days when the coverage is 
better than 10%. We use these values as the cutoff under which data are 
discarded (as shown in Fig. 3). 

3.3. Examples of daily satellite-derived time series 

As a next step, we calculate KM, and τd based on the MOSS curves 
constructed from daily time series of Chl and SST from the OC-CCI and 
SST-CCI satellite-derived products. Fig. 4 shows time series, MOSS 
curves, KM, and τd for for seven individual locations in the Pacific Ocean 
along the 159.15◦W meridian at different latitudes (locations marked on 
Fig. 3). All locations are chosen to have a daily coverage of at least 15% 
and represent regions with significantly different physical, chemical, 
and biological conditions. Locations in temperate and subtropical re-
gions (panels A, B, F, G) show a pronounced seasonal sinusoidal cycle 
with relatively low intra-seasonal variability. For these sites, τd is close 
to 180 days. τd for SST in panel A is longer than 6 months, which should 
not be possible and is primarily caused by seasonal aliasing due to long 
periods of invalid values caused by low solar angles during the polar 
winter (Jönsson et al., 2020). The SST-CCI product is by itself not 
affected by low solar angles but uses the same mask of invalid values as 
the OC-CCI Chl product. The sinusoidal seasonal SST cycle is lagged 
compared to the astronomical year so that the coldest period occurs 
several months later than the period with the lowest light. This offset 
creates a spurious step function where the last observed fall temperate 
data point is significantly higher than the first value recorded the next 
season. The resulting discontinuity leads to an overestimate of τd from 
MOSS when a moving window larger than the seasonal scale bridges the 
winter gap and includes both fall and spring values. 

The Chl time series in Panels A, B, E, and G show a similar, albeit 
much less pronounced, seasonal variability as the SST time series in the 
temperate and subtropical regions. The higher variability over short 
timescales in combination with a lack of a sinusoidal structure in the 

Fig. 2. Panel A: Relationships between τd and KM for 
sine waves with different wavelengths and coverage 
of valid data points (solid lines), and linearly scaled 
using a coverage dependent equation for the slope and 
intercept (dotted lines). Higher coverages are iden-
tical to the 30% lines and omitted. For a sine wave, τd 
is defined as half of the period, as discussed in Section 
3.2. Panel B is identical to panel A but with axes on a 
log–log scale. Please note that the linear regression 
was performed with KM as independent and τd as 
dependent variables. The vertical lines represent the 
inflection point.   
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seasonal variability leads to significantly shorter τd than for SST. A 
notable exception is panel B (35◦N), where Chl and SST seem to show 
similar behaviors. Closer examination indicates, however, that Chl has 
more high frequency variability in seasons with low Chl and hence 
shorter τd. The Chl time series in panel G includes an episodic event with 
very high Chl during the growing season. This spike is interpreted as 
variability on short timescales by MOSS and the τd is shorter as a result. 

SST in the tropical regions (panels C-E) exhibits less regular seasonal 
patterns and larger inter-annual variability. MOSS is still able to char-
acterize the variability and the resulting τd are only slightly shorter than 
for the subtropical and temperate regions. Chl exhibits mainly stochastic 
patterns interrupted by episodic events, resulting in much shorter τd. 

3.4. Meridional segment 

All examples in the last section are located along the same meridian 
in the central Pacific Ocean, at 159.15◦W. We extend our analysis by 
calculating KM and τd for all grid cells along the line, as shown in Fig. 5. 
Data based on the SST-CCI time series (left panel) show a consistent 
global pattern with long τd at high latitudes that gradually decreases 
towards the equator. The intertropical convergence zone is clearly 
visible with small regions of longer τd, probably due to seasonal oscil-
lation where the Hadley cell terminates. The local minima at about 
20◦N, associated with a local maxima in coverage, is connected to local 
processes around the Hawaiian islands (as seen more clearly in Fig. 6). 
This tendency to shorter τd in coastal regions with be discussed in more 
detail later. The drop in τd between 40 and 60◦N is also connected to 
coastal conditions. It should be noted that coverages below 10% of valid 
datapoints in individual time series at high latitudes limits the ability for 
MOSS to consistently identify τd. 

The τd calculated from OC-CCI time series (Fig. 5, panel B) show a 
very different global pattern than the ones based on SST-CCI. The values 
are, with some exceptions, generally lower for OC-CCI and without a 
pronounced gradient from high to low latitudes. Instead, we see local 
minima at 20◦S, the equator, and 20◦N, and local maxima just north of 
40◦S, 10◦S, 10◦N, and just south of 40◦N. We will discuss these patterns 
and their global occurrence consistency in more detail next. 

3.5. Global patterns 

We expand our analysis to include the full global domain of OC-CCI 
and SST-CCI. Fig. 3 shows the global relative coverage of Chl and SST 
based on daily time series for each individual pixel in the grid. OC-CCI 
and SST-CCI has the same coverage in this analysis since a mask with 
invalid values in OC-CCI has been applied to the SST-CCI dataset. Most 
areas in the ocean fulfill the condition of at least 10% valid pixels for 
MOSS to provide reasonable results. Coverage falls below this threshold 
in polar regions where low sun angles and lack of daylight during the 
winter season limits detection (Jönsson et al., 2020) and in tropical re-
gions with extensive cloud cover. The coverage by OC-CCI is signifi-
cantly better than what is possible to attain with a single sensor such as 
MODIS-Aqua, as seen in Supplementary Fig. A.6. This is due to a com-
bination of OC-CCI blending data from different instruments to a Level 4 
product and the use of improved atmospheric correction methods 
(Steinmetz et al., 2011). 

The analysis along a single meridian described in Section 3.4 is 
expanded by applying MOSS to the daily time series at all pixels in the 
global domain. The global distributions of KM and τd for SST-CCI and 
OC-CCI are shown in Figs. 6 and 7, respectively. We find that the 
meridional distribution shown in Fig. 5, panel A for SST-CCI is repre-
sentative of the global patterns of KM and τd. Largest values are found at 
high latitudes while gradually getting smaller towards the equator. 
Some notable exceptions are the California, Humboldt, Benguela and 
Canaries Eastern boundary upwelling systems together with smaller 
regions such as the Galician coast. Highly energetic areas such as 
western-boundary currents and the Antarctic Circumpolar Current 
(ACC) have smaller τd than surrounding areas at the same latitude. The 
short τd North of the ACC and South-South-East of Africa is somewhat 
non-intuitive and is suggestive of sub-meso- and mesoscale processes 
dominating the system, something that has been discussed in earlier 
studies. The Amazon river plume is also visible as having shorter time-
scales than the surrounding region. The largest area with very short 
dominant SST-CCI timescales are found in the coral triangle, possibly 
resulting from strong variability in surface currents and low seasonal 
variability in SST. 

KM and τd calculated from OC-CCI (Fig. 5, right panel) show a very 
different global pattern than results based on SST-CCI. With some ex-
ceptions, values are lower for OC-CCI and without a pronounced 

Fig. 3. Temporal coverage (in percent) of daily data in Ocean Colour Climate Change Initiative (OC-CCI) and Sea Surface Temprature Climate Change Initiative (SST- 
CCI) for the period 2006–01-01 to 2016–12-31. Blue dots denote locations of the time series in Fig. 4. Labels A-G here correspond to the panels in Fig. 4. 
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Fig. 4. Examples of time series (left panels) and MOSS curves (right panels) for Chl (green) and SST (blue) from grid cells along the 159◦W meridian in the Pacific. 
Purple dotted lines denote KM and orange dotted lines τd. σ400 denotes σ when the window size is 400, which is used to calculate KM. The location of each time series 
is shown in Fig. 3. 
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gradient from high to low latitudes. Longest τd for Chl are generally 
found on the equatorial side of the trade wind belts, whereas lowest 
values can be found in the tropical Pacific and near coasts, especially 
where upwelling is common. We see areas with longer timescales on the 
west coast of Panama and in the Arabian Sea that seem to coincide with 
persistent wind patterns. In comparison to the earlier discussed longer 
timescales of SST in temperate regions, there is no clear seasonal signal 
from the North Atlantic spring bloom in the Chl data and a clear albeit 
less pronounced signal that follows the Gulf Stream in both KM and τd. 
The prominent bands with long τd visible just north of the Southern 
Ocean are possibly due to the seasonal progression of the boundary 
between oligotrophic waters in the gyres and surrounding areas with 
higher phytoplankton biomass. 

It is clear that the subtropical and tropical patterns seen in the OC- 
CCI dataset at the 159.15◦W meridian (Fig. 5, local minima at 20◦S, 

0◦, and 20◦N) are connected regional areas with very short τd, and not 
zonally representative. The local maxima just north of 40◦S and just 
south of 40◦N) in Fig. 5, panel B are associated to regions with long 
timescales seen in all oceans basins at similar latitudes. 

3.6. Regional maps 

MOSS not only identifies global patterns of τd but also has the po-
tential to resolve structures on small spatial scales since each pixel in the 
OC-CCI grid is treated individually. It should be noted that since SST-CCI 
is upscaled to the OC-CCI grid, there is some spatial autocorrelation and 
the SST data should be interpreted with caution on very small scales. 
Fig. 8 shows detailed maps of five different regions of the ocean. All 
regions show coherent and realistic structures of long and short τd, 
strongly suggesting that the results are based on real features and not 

Fig. 4. (continued). 
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spurious artifacts from MOSS. The earlier discussed patterns with very 
short τd in Chl near coasts, especially in upwelling regions, are even 
clearer in the regional maps. These coastal features exists for SST as well, 
just less pronounced. 

Each region has its own unique structures driven by local processes 
and conditions. The Caribbean, Gulf of Mexico, and Central American 
west coast (Fig. 8, panels A-B) generally show short timescales for OC- 
CCI, especially near the coast, possible due to advection of water 
masses with radically different Chl concentrations. Waters outside the 
west coast of Colombia have seasonal timescales, probably connected to 
monsoon driven processes. SST-CCI is significantly different, with two 
distinct upwelling cells on the west coast of Mexico and Guatemala, and 
generally longer timescales in the Caribbean. The patch of longer OC- 
CCI seasonal timescales in the Eastern Pacific discussed above occur in 
the SST-CCI data as well, together with a second center further offshore. 

The northern Indian Ocean (Fig. 8, panels C-D) have generally τd on 
the order of two months for Chl, with some notable exceptions. The 
coasts of Pakistan, India, Bangladesh, Myanmar, and easternmost Oman 
generally have very short timescales. There is no direct indication of the 
Ganges river plume, suggesting that processes connected to seasonal 
variability in water discharges do not significantly control biological 
production in the area. We find four distinct cells of longer Chl time-
scales in the region, three coastal and one on the western side of the 
Maldives. SST have generally longer timescales and a more even pattern. 
SST generally has longer timescales and a more even pattern. It is 
possible to identify the Ganges river plume as a region with longer 
timescales, due to the strong seasonality in freshwater discharge 
(Durand et al., 2011). Other regions with strong seasonality are the 
Persian Gulf and Arabian Sea. One interesting domain is the central 
southern-most region, where we observe shorter timescales than the 
surrounding areas. This is peculiar since this is a region that should be 
strongly influenced by Monsoon dynamics and thus rather seasonal 
timescales. 

Chl in the Northwestern Pacific Ocean (Fig. 8, panels E-F, which is 
the domain of the Geostationary Ocean Color Imager) show similar 
patterns to earlier discussed regions, with shorter timescales near the 

coast and intermediate values in the middle of the basins. Coastal areas 
don’t have as short timescales as the earlier discussed regions and there 
is a large cell of long timescales in the south-eastern part of the domain. 
SST generally have seasonal timescales with the exception of the coast of 
Taiwan, eastern Korea, northern China, and eastern Japan. The latter is 
probably connected to the Kuroshio current. 

The Northeastern Pacific (Fig. 8, panels E-F) shows expected pat-
terns, with distinct upwelling areas along the US West Coast being 
distinguishable in both products. Chl shows shorter timescales than SST, 
in contrast to patterns along the West Coast of Mexico and Guatemala 
discussed earlier. Shorter timescales in variability of Chl in this up-
welling area, as compared to SST, is supported by long time series data 
from the Monterey Bay Aquarium Research Institute. A shift in τd from 
longer to shorter timescales moving South to North past Point Concep-
tion is reasonable, in particular the closer to seasonal timescales in SST 
along the Southern California coastline considering the substantial shift 
between summer and winter temperatures for that region. Both Chl and 
SST have significantly shorter τd around the Hawaii islands (lower left 
corner), corresponding to where the North Pacific Subtropical Conver-
gence Zone shifts position on a seasonal basis, but this effect is much 
more prevalent in Chl. 

Chl in the Gulf of Maine (Fig. 8, panels I-J) have generally short τd 
with distinct cells of especially short values. This temperate region has 
no indications of seasonality in Chl, with the exception of individual 
pixels very close to the shore. It is not clear if these results are due to 
artifacts in the MOSS method or the processing workflow for satellite- 
derived data, thus is something that deserve further examination. The 
region around Cape Cod and Marta’s Vineyard also show high variability 
in τd on very small spatial scales. These structures, however, look 
coherent and could suggest complex patterns in bio-physical couplings 
in the area. SST show a more expected pattern, with dominant time-
scales largely following seasonal variability. This result is to be expected 
since summer and winter water temperatures are dramatically different 
in the region. The main exception is an area of shorter τd in the lower 
right corner of the panel, most likely connected to the Gulf Stream. This 
region also show the longest τd for Chl. 

Fig. 5. Temporal coverage (green line, unit in 
percent), KM (purple line, unit in window size), and τd 
(orange line, unit in days) along a meridian at 
159.15◦W for Sea Surface Temperature Climate 
Change Initiative (SST-CCI) (panel A) and Ocean 
Colour Climate Change Initiative (OC-CCI) (panel B). 
The coverage is identical for both products and has 
been omitted in panel B for clarity. The dotted line 
depicts an annual timescale of 182.5 days. Black dots 
denote the location of the time series shown in Fig. 4.   
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4. Discussion 

Our results show that the MOSS method has the ability to assess τd in 
time series where data coverage is sparse. Analysis of synthetic data sets 
suggests a threshold where estimated timescales start to diverge from 
actual ones is at about 10% coverage. The main consequences of sparse 
data is overly gentle sloping MOSS curves, which would exaggerate the 
dominant timescales. We compensate for this problem by scaling all KM 
differently for different coverage in the original data sets. The scaling 
further allows us to interpret the resulting values as timescales of 
variability. 

The MOSS method is able to detect dominant timescales longer than 
three days when the data coverage is higher than 30% and ten days 
where the coverage is between 10% and 30%. We don’t recommend 
using the method where coverage is lower than 10% since the skill for 
detection below this threshold rapidly decreases, introducing a signifi-
cant risk for spurious results. Most regions in the ocean have sufficient 
coverage above this threshold for the MOSS method to provide stable 
timescale estimates. This limitation is mostly of concern in high-latitude 
regions where winter light conditions restrict the retrieval of Chl 

observations. The seasonal cycle in Polar regions lead to confounding 
effects where the ecosystem in itself are affected by the same forcing that 
that can generate biases in Chl observations and statistical methods (see 
a more detailed discussion in Jönsson et al., 2020). 

The ability by MOSS to detect timescales of variability down to the 
order of days is a significant improvement over methods such as Fourier 
analysis or Empirical Orthogonal Functions (EOFs), where the require-
ment of continuous time series is normally fulfilled by aggregating daily 
satellite fields to monthly averages (e.g. Henson et al., 2009; Yoder and 
Kennelly, 2003; Glover et al., 2018). Using the data presented in Fig. 7, 
we find that about 9% of the global ocean’s area have Chl τd values 
below 30 days. Regions with Chl τd between 30–60 days occupy 23%, 
60–90 days 28%, 90–120 days 21%, 120–150 days 12%, and regions 
with Chl τd longer than 150 days occupy about 7% of the global ocean. 
These results suggest the dominant timescales of variability for Chl can 
often be shorter than what earlier used methods were able to detect. The 
areal distribution of τd suggests that regions were Chl are varying on 
primarily seasonal scales are quite rare outside the polar regions. It is 
intuitive to believe that most regions where coverage is less than 10% 
have seasonal timescales for Chl τd, but this assumption remains to be 

Fig. 6. Half saturation constant, KM, of Sea Surface Temperature Climate Change Initiative (SST-CCI, panel A) and Ocean Colour Climate Change Initiative (OC-CCI, 
panel B) from the MOSS analysis for each grid cell using time series between 2006–01-01 to 2016–12-31. Regions with a temporal coverage of less than 10 % are 
shaded. Blue dots denote locations of the time series shown in Fig. 4. 
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verified. 
The global maps of τd provide new insights into the variability of 

SST-CCI and OC-CCI. The patterns are robust and have physical expla-
nations, strongly suggesting that real-world processes are behind the 
observations rather than artifacts from the method. Regions that tradi-
tionally would be considered as homogenous according to biogeo-
graphical divisions, such as ecological provinces according to Longhurst 
(2007), can differ threefold in timescales. This could have profound 
effects on community composition of primary producers in the different 
regions - small organisms would benefit in regions with short dominant 
timescales since in general they can grow faster. This suggestion is 
supported by earlier studies reporting that dominant timescale of vari-
ability may be correlated with the composition of the marine microbial 
community (Berger and Wefer, Dec. 1990; Giovannoni et al., 2012). 
Variability in dominant timescales could hence help explain the vari-
ability in observed phytoplankton biodiversity in the world oceans. 
Furthermore, it is possible that zooplankton with different life strategies 
would be better adapted to specific timescales. The two main ap-
proaches could be either “winter” the variability in phytoplankton 
biomass or have the population increase and decrease with available 
food. The former could be a better strategy when short timescales are 

dominate, and the latter might be more successful for areas with longer 
timescales. These are put forward as speculations, but perhaps warrant 
further investigation. Another future use of the suggested framework to 
quantify dominant timescales would be to compare global biogeo-
chemical models with observations to evaluate how well models resolve 
different physical and biological processes that affect the variability in 
phytoplankton biomass. 

It is clear from our results that dominant timescales in OC-CCI and 
SST-CCI have very little cohesive or consistent correlation over large 
areas, and that SST generally displays longer τd than Chl. Patterns are 
geographically consistent and illustrative of well recognized regional 
processes. Chl data have shorter τd in temperate and polar regions, with 
the exception of some small areas close to the Antarctic and the Alaskan 
part of the Arctic Sea. These areas have very low coverage of valid data 
points and are possibly affected by regional ice coverage, both sug-
gesting that the results can be spurious artifacts under conditions where 
the MOSS method is less reliable. In equatorial areas with more pro-
nounced τd differences (eastern Pacific, Atlantic), coastal areas with 
with shorter Chl timescales are observed. The Amazon River plume is 
evident through less pronounced τd differences. The Gulf Stream is 
clearly detectable by having much smaller difference in τd than sur-

Fig. 7. Dominant timescales, τd, of Sea Surface Temperature Climate Change Initiative (SST-CCI, panel A) and Ocean Colour Climate Change Initiative (OC-CCI, 
panel B) for the period 2006–01-01 to 2016–12-31. Regions with a temporal coverage of less than 10 % are shaded. Blue dots denote the location of the time series 
shown in Fig. 4. 
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Fig. 8. Dominating timescales, τd, of Ocean Colour Climate Change Initiative (OC-CCI) and Sea Surface Temperature Climate Change Initiative (SST-CCI) in the 
Caribbean Sea (A-B), Indian Ocean (C-D), North-Eastern Pacific (E-F), North Western Pacific (G-H), and Gulf of Maine (I-J) for the period 2006–01-01 to 2016–12-31. 
Panels A,C,E,G, and I show Chl, and panels B,D,F,H, and J show SST. 
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rounding waters, a pattern also partially observed along the boundary 
with the Southern Ocean but that isn’t detected for the Kuroshio current. 
The only regions in the lower latitudes where SST have shorter τd than 
Chl are some distinctive cells on the west coast of Colombia and Costa 
Rica, parts of the Amazon river plume, West of the Maldives, East of Sri 
Lanka, a region in the Arabian Sea, and East of the Coral Triangle. These 
areas are controlled by different physical, chemical, and biological 
processes with the only similarity being that they are located close to the 
equator. The disconnection between τd for Chl and SST suggests that 
biological processes are decoupled from those that control SST, gener-
ating shorter term variability in Chl. This potential decoupling should be 
investigated in the future. 

Finally, we believe the MOSS method and τd estimates of dominant 
timescales of variability has a real potential to help constrain estimates 
of carbon export from the surface ocean to deeper waters. While the 
magnitude of export production and ecosystem efficiency is to a high 
degree based on physiochemical conditions and ecosystem composition, 
it has been suggested that the timescales of biomass change can play an 
important role (e.g. Brown et al., 2014; Buesseler, 1998). The hypothesis 
is that where ecosystems are characterized by gradual changes in 
autotrophic biomass, heterotrophs are able to utilize autotrophic carbon 
efficiently, resulting in tightly coupled food webs. Alternatively, systems 
dominated by shorter timescales or episodic growth tend to be more 
inefficient and likely to export a higher fraction of primary production 
(Brown et al., 2014; Buesseler, 1998; Longhurst et al., 1995; Dunne 
et al., 2007; Berger and Wefer, Dec. 1990; Fischer et al., Jan. 2000; Lutz 
et al., 2007; Henson et al., 2012). This idea is coherent with the finding 
in several studies that carbon export in itself an quite episodic with 
intense events occurring over short timescales (e.g. Muller-Karger et al., 
2001; Scharek et al., 1999; Legendre, 1990; DiTullio et al., 2000). 
Together with earlier studies that have assessed the frequency of 
episodic events in biological production using satellite-derived products 
(e.g. Brown et al., 2014; Jönsson and Salisbury, 2016), our hope is that 
the method and results presented here can provide a framework for a 
concerted approach to connect the variability in biological production 
on different scales with export production and export efficiency. 

5. Conclusions 

We have present a novel method to estimate dominant timescales of 
variability: MOving Standard deviation Saturation (MOSS). The 
approach is similar to earlier analyses of spatial patchiness using semi- 
variograms, but rather addresses temporal variability than spatial 
autocorrelation. We find that the method can assess dominant time-
scales in time series where data are very sparse. Analysis of synthetic 
data suggests a threshold at about 10% coverage. Our results reveal 
robust global and regional patterns which can be explained by physical 
or biological processes, but we find that regions traditionally considered 
to be biogeographically homogeneous can internally differ threefold in 
dominant timescales. Longest timescales for Chl are generally found on 
the equatorial side of the trade wind belts, whereas lowest values can be 
found in the tropical Pacific and near coasts, especially where upwelling 
systems are common. Dominant timescales in Chl and Sea Surface 

Temperature (SST) have very little cohesive or consistent correlation 
over large areas, with SST generally displaying longer timescales of 
variability than Chl. 

These findings, while novel by themselves, have the potential to help 
explain patterns in observed global phytoplankton biodiversity; for 
instance, small organisms might have a competitive advantage in re-
gions with short dominant timescales. Another potential use would be to 
constrain estimates of carbon export from the surface ocean for regions 
where it has been suggested that the timescales of biomass change may 
play an important role, together with physiochemical conditions and 
ecosystem composition. We believe that the MOSS method can provide a 
framework for a concerted approach to connect variability in phyto-
plankton biomass and biological production with export production and 
export efficiency. 
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Appendix A. Supplementary figures

Fig. A.1. Panel A: Time series constructed from a truncated sinusoidal curve with a one year period. Panel B: Mean moving standard deviations (blue solid curve) 
calculated using the time series in panel A at different window sizes. The dashed red curve shows a curve-fit based on a Monod equation, green dotted line the half 
saturation constant (B0) from the Monod equation, and the purple dotted line the half-saturation constant estimated directly from the blue curve (KM). τd (orange 
solid line) depicts the dominant timescales as defined in Section 3.2. 

Fig. A.2. Panel A: Time series constructed from a triangle curve with a one year period. Panel B: Mean moving standard deviations (blue solid curve) calculated using 
the time series in panel A at different window sizes. The dashed red curve shows a curve-fit based on a Monod equation, green dotted line the half saturation constant 
(B0) from the Monod equation, and the purple dotted line the half-saturation constant estimated directly from the blue curve (KM). τd (orange solid line) depicts the 
dominant timescales as defined in Section 3.2.  
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Fig. A.3. Panel A: Time series constructed from a truncated triangle curve with a one year period. Panel B: Mean moving standard deviations (blue solid curve) 
calculated using the time series in panel A at different window sizes. The dashed red curve shows a curve-fit based on a Monod equation, green dotted line the half 
saturation constant (B0) from the Monod equation, and the purple dotted line the half-saturation constant estimated directly from the blue curve (KM). τd (orange 
solid line) depicts the dominant timescales as defined in Section 3.2. 

Fig. A.4. Panel A: Time series constructed from a sawtooth curve with a one year period. Panel B: Mean moving standard deviations (blue solid curve) calculated 
using the time series in panel A at different window sizes. The dashed red curve shows a curve-fit based on a Monod equation, green dotted line the half saturation 
constant (B0) from the Monod equation, and the purple dotted line the half-saturation constant estimated directly from the blue curve (KM). τd (orange solid line) 
depicts the dominant timescales as defined in Section 3.2.  
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Fig. A.5. Panel A: Time series constructed from a sawtooth triangle curve with a one year period. Panel B: Mean moving standard deviations (blue solid curve) 
calculated using the time series in panel A at different window sizes. The dashed red curve shows a curve-fit based on a Monod equation, green dotted line the half 
saturation constant (B0) from the Monod equation, and the purple dotted line the half-saturation constant estimated directly from the blue curve (KM). τd (orange 
solid line) depicts the dominant timescales as defined in Section 3.2. 

Fig. A.6. Temporal coverage (in percent) of daily data in the NASA-AQUA Chl product for the period 2006–01-01 to 2016–12-31. Blue dots denote locations of the 
time series in Fig. 4. Labels A-G here corresponds to the panels in Fig. 4.  
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Fig. A.7. Curve fit to identify optimal values for the parameters in Eq. (2).  

Fig. A.8. Curve fit to identify optimal values for the parameters in Eq. (3).  

. 
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Prend, C.J., Keerthi, M.G., Lévy, M., Aumont, O., Gille, S.T., Talley, L.D., 2022. Sub- 
seasonal forcing drives year-to-year variations of southern ocean primary 
productivity. Global Biogeochem. Cycles 36 (7), e2022GB007329. 

Raspaud, M., Hoese, D., Lahtinen, P., Dybbroe, A., Finkensieper, S., Roberts, W., 
Rasmussen, L. Ø., Proud, S., Joro, S., Daruwala, R., Holl, G., Jasmin, T., BENR0, 
Leppelt, T., Egede, U., R.K.Garcia, Itkin, M., LTMeyer, Sigurðsson, E., Radar, S., 
Division, N., Aspenes, T., Hazbottles, ColinDuff, Joleenf, Cody, Clementi, L., 
Honnorat, M., Schulz, H., Hatt, B., Valentino, A., 2019. pytroll/satpy: Version 0.16.0. 
URL:https://zenodo.org/record/3250583. 

Sathyendranath, S., Brewin, R., Brockmann, C., Brotas, V., Calton, B., Chuprin, A., 
Cipollini, P., Couto, A., Dingle, J., Doerffer, R., Donlon, C., Dowell, M., Farman, A., 
Grant, M., Groom, S., Horseman, A., Jackson, T., Krasemann, H., Lavender, S., 
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Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., 
Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A. 
H., Pedregosa, F., van Mulbregt, P., 2020. SciPy 1.0 Contributors, 2020. SciPy 1.0: 
Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 17, 
261–272. 

Weibull, W., 1951. A statistical distribution function of wide applicability. J. Appl. Mech. 
Yoder, J.A., Kennelly, M.A., 2003. Seasonal and enso variability in global ocean 

phytoplankton chlorophyll derived from 4 years of seawifs measurements. Global 
Biogeochem. Cycles 17 (4) n/a–n/a.  

Zingone, A., Phlips, E.J., Harrison, P.J., 2010. Multiscale variability of twenty-two 
coastal phytoplankton time series: a global scale comparison. Estuaries Coast. 33 (2), 
224–229. 

B.F. Jönsson et al.                                                                                                                                                                                                                              

http://refhub.elsevier.com/S0034-4257(22)00510-7/h0085
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0085
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0085
http://catalogue.ceda.ac.uk/uuid/62c0f97b1eac4e0197a674870afe1ee6
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0095
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0095
http://onlinelibrary.wiley.com/doi/10.1029/2011GB004099/full
http://onlinelibrary.wiley.com/doi/10.1029/2011GB004099/full
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0105
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0105
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0105
https://doi.org/10.1016/j.rse.2017.03.036
https://www.tandfonline.com/doi/abs/10.1080/00045603809357169
https://www.tandfonline.com/doi/abs/10.1080/00045603809357169
https://bg.copernicus.org/articles/12/681/2015/
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jgrg.20032
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jgrg.20032
http://doi.wiley.com/10.1002/2016GL068683
http://doi.wiley.com/10.1002/2016GL068683
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL089037
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL089037
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0140
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0140
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0145
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0145
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0145
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0150
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0150
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0150
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0155
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0155
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0155
https://academic.oup.com/plankt/article-lookup/doi/10.1093/plankt/12.4.681
https://academic.oup.com/plankt/article-lookup/doi/10.1093/plankt/12.4.681
http://plankt.oxfordjournals.org/cgi/doi/10.1093/plankt/17.6.1245
http://plankt.oxfordjournals.org/cgi/doi/10.1093/plankt/17.6.1245
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0170
http://links.isiglobalnet2.com/gateway/Gateway.cgi?GWVersion=2&amp;SrcAuth=mekentosj&amp;SrcApp=Papers&amp;DestLinkType=FullRecord&amp;DestApp=WOS&amp;KeyUT=000250220100001
http://links.isiglobalnet2.com/gateway/Gateway.cgi?GWVersion=2&amp;SrcAuth=mekentosj&amp;SrcApp=Papers&amp;DestLinkType=FullRecord&amp;DestApp=WOS&amp;KeyUT=000250220100001
http://links.isiglobalnet2.com/gateway/Gateway.cgi?GWVersion=2&amp;SrcAuth=mekentosj&amp;SrcApp=Papers&amp;DestLinkType=FullRecord&amp;DestApp=WOS&amp;KeyUT=000250220100001
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0180
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0180
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0185
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0185
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0190
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0190
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0190
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0195
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0195
https://doi.org/10.1016/j.rse.2017.03.039
http://catalogue.ceda.ac.uk/uuid/c65ce27928f34ebd92224c451c2a8bed
http://catalogue.ceda.ac.uk/uuid/c65ce27928f34ebd92224c451c2a8bed
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0210
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0210
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0210
https://doi.org/10.1146/annurev.mi.03.100149.002103
https://doi.org/10.1016/j.rse.2009.07.016
https://doi.org/10.1016/j.rse.2009.07.016
https://doi.org/10.1016/j.rse.2011.10.001
http://onlinelibrary.wiley.com/doi/10.1029/1999JC000291/abstract
http://onlinelibrary.wiley.com/doi/10.1029/1999JC000291/abstract
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0235
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0235
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0235
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0240
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0240
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0245
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0245
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0245
https://zenodo.org/record/3250583
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0255
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0255
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0255
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0255
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0255
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0255
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0255
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0255
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0255
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0255
https://catalogue.ceda.ac.uk/uuid/d62f7f801cb54c749d20e736d4a1039f
https://catalogue.ceda.ac.uk/uuid/d62f7f801cb54c749d20e736d4a1039f
http://www.int-res.com/abstracts/meps/v182/p55-67/
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0270
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0270
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0270
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0270
https://doi.org/10.1364/oe.19.009783
https://doi.org/10.1364/oe.19.009783
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0280
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0280
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0285
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0285
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0290
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0290
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0295
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0295
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0300
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0300
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0300
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0300
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0300
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0300
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0300
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0300
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0305
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0310
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0310
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0310
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0315
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0315
http://refhub.elsevier.com/S0034-4257(22)00510-7/h0315

	Dominant timescales of variability in global satellite chlorophyll and SST revealed with a MOving Standard deviation Satura ...
	1 Introduction
	2 Methods
	2.1 MOving Standard deviation Saturation (MOSS)
	2.2 Satellite data

	3 Results
	3.1 Half saturation constants
	3.2 Scaling the half saturation constant to dominant timescales
	3.3 Examples of daily satellite-derived time series
	3.4 Meridional segment
	3.5 Global patterns
	3.6 Regional maps

	4 Discussion
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A Supplementary figures
	References


