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A B S T R A C T

The North Sea hosts numerous man-made structures, some recently installed and others nearing end-of-life, with 
decisions about their decommissioning at the centre of current debate. Further there are plans for significant 
expansion of structures relating in particular to offshore wind energy. Here, using a combination of hydrody-
namic modelling, particle tracking, and graph network analysis, we evaluate connectivity under two scenarios: 
existing structures – releasing particles from cells where structures are currently present – and “everything is 
everywhere” – releasing particles from every cell in the domain. Additionally, we introduce a Connectivity 
Importance Index (CII) to assess both current and potential future connectivity within the region. The CII under 
the ‘everything is everywhere’ scenario revealed cells with high potential connectivity that align with, but also 
extend beyond, those identified under the existing structures scenario, pointing to potentially valuable regions 
for future structure placement. The relocatable methodology described in this paper allows for the quantification 
of potential networks, applicable with or without existing habitat data, offering valuable insights for ecologically 
coherent marine spatial management strategies.

1. Introduction

Larval dispersal and connectivity play crucial roles in the structure & 
functioning of marine communities (Boulanger et al., 2020; Gilg and 
Hilbish, 2003; Weersing and Toonen, 2009). Consequently, they are 
central to conservation policy undertaking on-going efforts to maintain 
healthy and biodiverse ecosystems and promote the sustainable man-
agement of resources (e.g. the Marine Strategy Framework Directive 
(DEFRA, 2019), the UK Marine Policy Statement (UK Government, 
2011), the Blue Belt Programme (UK Government, 2023a), Natura 2000 
(European Commission, 2023), and the Convention on Biological Di-
versity (United Nations, 1992)).

Globally, coastal waters are home to a plethora of man-made struc-
tures such as artificial reefs, harbours, offshore wind turbines, oil and 
gas platforms, and large stretches of concrete sea defences (Firth et al., 

2016). While these structures provide valuable services, they can also 
have a profound impact on connectivity by modifying dispersal path-
ways (Mayorga-Adame et al., 2022; McLean et al., 2022). The presence 
of these structures can function as ‘stepping stones’ (Adams et al., 2014; 
Airoldi et al., 2015; Bishop et al., 2017; Coolen et al., 2020), creating 
bridges between patches of habitat that were previously unconnected 
(Degraer et al., 2020; Gates et al., 2019). While this enhanced connec-
tivity may be considered valuable in efforts to counteract the negative 
effects of habitat fragmentation on ecological network functioning 
(Baguette et al., 2012), it can result in negative or unintended conse-
quences, such as facilitating range expansion of invasive species 
(McLean et al., 2022; Page et al., 2006; Reigel, 2015).

Oil and gas infrastructure, and increasingly, offshore renewable en-
ergy installations are now prolific features of the marine environment. 
Worldwide, there is an estimated 12,000 offshore oil and gas platforms 
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in the sea, many of which are approaching end-of-life. There is, how-
ever, considerable debate over how to decommission these structures, 
including what is the best option for the environment and society 
(Knights et al., 2024a), for meeting environmental targets (Knights 
et al., 2024b), and the existing legal barriers (see Knights et al., 2024c
for a review). In the northeast Atlantic, structures must be entirely 
removed (with exceptions for some parts of structures under specific 
permits) under regional legislation (OSPAR Decision 98/3), whereas 
elsewhere, structures can be repurposed from “rigs to reefs” - leaving 
structures in place at the end of their operational life to serve as artificial 
reef habitat (Bull and Love, 2019; Pereira et al., 2023). In addition, there 
are plans to significantly expand the number of platforms related to 
renewable energy to meet the challenges of decarbonisation and energy 
security.

There are costs and benefits of removing structures at end-of-life for 
both biodiversity and society depending on the decommissioning option 
chosen (Knights et al., 2024b). Removal (complete or partial), relocation 
and repurposing each have distinct implications for both marine eco-
systems and stakeholders. The OSPAR Decision 98/3 mandating the 
complete removal of disused offshore installations (with certain excep-
tions) is grounded in the precautionary principle, aiming to prevent 
potential adverse effects on the marine environment such as long-term 
pollution risks (Shams et al., 2023), and the facilitation of invasive 
species leading to long term ecosystem instability (Schulze et al., 2020). 
However, removal can also disturb established marine communities that 
have adapted to these artificial habitats, potentially leading to localized 
biodiversity loss, and that complete removal may not always be the most 
beneficial option (Ounanian et al., 2020; Sommer et al., 2019). Some 
suggest that leaving structures in-situ or repurposing them elsewhere 
can create artificial habitats that benefit biodiversity (Fowler et al., 
2018), In some countries, such alternatives have been implemented with 
considerable success (e.g. the ‘Rigs-to-Reefs’ programme in the USA: 
Bull and Love, 2019). While options other than complete removal often 
present obvious financial benefits, there is a lack of clear evidence that 
supports a particular option for its benefits to biodiversity (Lemasson 
et al., 2023, 2024).

Connectivity plays a crucial role in maintaining ecosystem resilience, 
supporting species dispersal, and preserving genetic diversity. Frag-
mentation or disruption of connectivity caused by decommissioning 
decisions can have profound implications for marine ecosystem health. 
For example, removing structures without considering their role as 
‘stepping-stone’ habitats may hinder recovery of species with limited 
dispersal abilities, such as sessile invertebrates or reef-associated fish 
(Adams et al., 2014; Bishop et al., 2017). Understanding marine con-
nectivity patterns may help to shed light on this decommissioning 
dilemma, providing insight into how the placement of existing, new (i.e. 
offshore wind turbines), or repurposed (oil and gas) infrastructure might 
affect ecological processes (Bailey et al., 2014; Foley et al., 2010), and 
how commissioning and decommissioning could be strategically un-
dertaken to minimise disruption to the functioning of natural ecological 
systems, while contributing to environmental, economic and societal 
sustainability.

Connectivity assessment has not been routinely applied to offshore 
construction (Bergström et al., 2014). In the North Sea, structures have 
been in place since the mid-20th century. Yet, of the 1500 platforms in 
the region with an average age of 25 years (Scotland’s Marine Assess-
ment, 2020; UK Government, 2023b), decommissioning is a rapidly 
looming and costly challenge for the region (Knights et al., 2024c). In 
two recent studies, particle tracking and network analysis approaches 
were used to assess dispersal among existing offshore oil and gas 
structures in the North Sea (Mayorga-Adame et al., 2022), and assess 
how five different decommissioning options might affect regional con-
nectivity (Tidbury et al., 2020). Both studies provide valuable insights 
into spatio-temporal patterns of generalised species dispersal and con-
nectivity in the region and highlight the value of network analysis as a 
tool for visualising connectivity. However, they adopt a “one-size-fits- 

all” approach to infrastructure rather than a case-by-case assessment as 
advocated by Knights et al. (2024c), which may not deliver the best 
outcomes for the environment or society. Further, if the aim is to 
determine if structures should be left in place, moved (repurposed 
elsewhere), or removed entirely, with a view to enhance, maintain, or 
constrain connectivity, then a regional analysis of connectivity that 
extends beyond existing infrastructure locations is required.

Connectivity modelling in marine ecosystems employs various ap-
proaches to quantify the exchange of larvae across spatial scales. These 
methods often integrate biological, physical, and environmental data to 
assess ecological processes. Hydrodynamic models simulate water 
movement and circulation patterns driven by physical forces, such as 
tides, winds, and currents. These models provide the foundational data 
for understanding larval transport in marine systems. Particle tracking is 
a complementary technique that models the dispersal of particles (rep-
resenting larvae) within hydrodynamic flows. These models can incor-
porate biological traits such as planktonic larval duration to improve 
predictions of dispersal patterns. Building on this, graph network anal-
ysis uses the release and final destination points from the particle 
tracking model to conceptualise connectivity as a network of nodes 
(habitats) and edges (dispersal links). This approach allows for the 
identification of the relative importance of specific regions to overall 
connectivity, and pinpoints critical stepping stones or corridors within 
the environment. Biogeochemical models can further extend the anal-
ysis by linking connectivity with ecological and chemical processes, 
such as primary production. This integration provides a broader 
perspective of ecosystem functionality and highlights locations where 
connectivity may be particularly beneficial for sustaining populations.

Here, using a combination of these techniques, we assess the po-
tential connectivity of the North Sea, and present a generic (i.e. com-
munity level not species-specific) prediction of ‘connectivity hotspots’ 
(or lack of) within the region. In this study, we use the term ‘community- 
level’ to refer to the combined connectivity patterns of multiple taxa 
with similar dispersal characteristics, rather than to an ecological 
community defined by species interactions. Unlike previous studies, our 
aim is to compare and contrast two scenarios: (1) connectivity among 
current offshore man-made structures and the relative importance of 
individual ‘patches’ (structures) to network functioning, and (2) con-
nectivity among patches across the entire North Sea where ‘everything is 
everywhere’ to identify areas of high and low connectivity, with a view 
to identify locations where connectivity may be critical to marine 
ecosystem health.

While existing connectivity indices, such as those proposed by 
Opsahl et al. (2010) and Pascual-Hortal and Saura (2006), have proven 
effective in terrestrial and social network systems, they have limitations 
in dynamic marine environments. Opsahl et al.’s framework uses a 
tunable parameter (α) to adjust the balance between how 
well-connected an area is and how strong those connections are. While 
this flexibility in valuable in certain contexts, it does not incorporate 
ecological factors like food availability, which are critical for larval 
survival. Similarly, the Integral Index of Connectivity (Pascual-Hortal 
and Saura, 2006), emphasised habitat connectivity in static systems, 
such as forests, but does not capture dynamic processes like larval 
dispersal, driven by hydrodynamics.

In the North Sea, where understanding both structural connectivity 
and ecological functionality is critical, a tailored approach is required. 
To address these gaps, we introduce the Connectivity Importance Index 
(CII), which integrates graph network metrics and primary productivity 
to provide a holistic, community-level assessment of connectivity, 
ensuring the index is tailored to the dynamic and ecological complexities 
of the North Sea.
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2. Methods

2.1. The study area

A uniform 30 × 30 km grid extending between 49.7◦N to 65.3◦N and 
6.05◦W to 9.77◦E was created to overlay the North Sea and explore 
connectivity (Fig. 1). The size of the cell was chosen to balance con-
nectivity resolution against computational demands when exploring 
connectivity over the entire study domain. Grid cells including land 
were cropped using a land mask (GEBCO Compilation Group, 2020) to 
ensure that just the sea was included in the grid. Grid cells beyond the 
limits of the North Sea, as defined by the International Hydrographic 
Organisation (International Hydrographic Organization, 1953), were 
removed. The total number of cells was 582. Data for the locations of 
artificial marine structures in the North Sea were obtained from the 
OSPAR Inventory of Offshore Installations (OSPAR Commission, 2019) 
(oil and gas rigs) and the European Marine Observation and Data 
Network (EMODnet, 2014) (wind farms).

Two connectivity scenarios were performed and compared: (1) 
connectivity among grid cells containing man-made structures, and (2) 
connectivity among all grid cells in the domain i.e. ‘everything is 
everywhere’ (Fig. 1).

2.2. The hydrodynamic model

The unstructured mesh finite-volume model FVCOM (Chen et al., 
2003) was run from 2011 to 2015 in the North Sea domain and used to 
drive the offline particle-tracking model PyLag (version 0.6.1: Uncles 
et al., 2020). FVCOM is a prognostic unstructured-grid finite volume 
free-surface 3D primitive equation coastal ocean circulation model. 
Vertical turbulent mixing was modelled with the General Ocean Tur-
bulence Model (GOTM) using a κ-ω formulation (Umlauf and Burchard, 
2005), whilst horizontal mixing was parameterised using the Smagor-
insky scheme (Smagorinsky, 1963) with a coefficient of 0.04. The un-
structured horizontal grid allows variable resolution across the domain 
to reflect the complexity of the flow and scale of bathymetric features. 
The resolution of the model varies between ~1 km and 20 km across the 
domain with the areas of high resolution concentrated on those with 
structures in the North Sea. The vertical grid consists of 25 layers of 
terrain-following (sigma) coordinates, these are hybrid in form, being 
regularly spaced in water less than 120 m depth and telescoping to have 
higher resolution in the surface and bottom boundaries for deeper water. 
Bathymetry is interpolated onto the model grid from the European 
Marine Observation and Data Network (EMODnet) Digital Terrain 
Model (DTM) (http://www.emodnet-hydrography.eu). Lateral bound-
ary conditions were taken from the Atlantic Margin Model retrieved via 

the CMEMS service (Copernicus Marine Service, 2020), and adjusted to 
the internal tidal solution. Atmospheric boundary data, including heat 
fluxes and surface stresses, were generated by downscaling the National 
Oceanic and Atmospheric Administration’s (NOAA) Global Forecast 
System model using a configuration of the Weather Research and 
Forecasting model (WRF; Skamarock et al., 2008) for the UK shelf. The 
WRF outputs were saved every 3 h and converted to FVCOM surface 
forcing using the COARE3.0 bulk air-sea flux parameterisations (Fairall 
et al., 2003). The river input is an annual climatology based on gauge 
data from EMODnet.

2.3. The particle tracking model

The Lagrangian trajectory model PyLag (Uncles et al., 2020) was 
forced by the hourly output of the FVCOM hydrodynamic model to 
generate particle trajectories for a range of planktonic larval durations 
within the North Sea domain (see 2.5). PyLag utilises a fourth order 
Runge-Kutta scheme for particle advection, with numerical integration 
conducted over a 100-s timestep. Horizontal turbulence statistics from 
the hydrodynamic model were used to parameterise the diffusion term, 
which introduces stochastic displacement to the particle position 
following an incremental Weiner process.

Virtual larvae were constrained to the surface waters in the simula-
tions – i.e. vertical advection and diffusion were omitted from the model 
and a restorative property was applied to return particles to the surface 
after each time step. This was deemed appropriate for three reasons. 
One, the aim of this study is to identify connectivity hotspots for a range 
of planktonic taxa rather than a single species, thus the inclusion of 
larval vertical movement behaviour (i.e. swimming: Knights et al., 2006; 
James et al., 2019) cannot be included. Second, as the inclusion of larval 
behaviour has been shown to reduce predicted dispersal distances 
through exposure to depth-differentiated current speeds and directions 
(James et al., 2023; Sundelöf and Jonsson, 2012), consideration of 
passive surface-advected particles provides a ‘maximal dispersal’ sce-
nario. Third, the omission of vertical advective and diffusive terms 
within the model reduces computational resource requirements for 
in-model calculations thereby reducing simulation run-length, allowing 
a greater number of scenarios to be modelled. The model was para-
meterised to have reflective boundaries, so that if a particle reached a 
boundary it was returned to its last known location, however, as the 
domain of the underlying hydrodynamic model was much larger than 
that of the 30 × 30 km grid, this was only relevant when a particle 
reached land, with particles travelling beyond the boundaries of the grid 
and not returning by the end of their simulation time being omitted from 
the analysis. A full description of the equations used within the PyLag 
model can be found in de Vries et al. (2023).

Fig. 1. The 30 × 30 km gridded North Sea study domain. Showing (left) the locations of existing oil/gas rigs (OSPAR Commission, 2019) and wind farms (EMODnet, 
2014) within the region, and (right) the presence/absence of these structures within each cell in the grid.
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2.4. Quantifying primary productivity

FVCOM was coupled to the European Regional Seas Ecosystem 
Model (ERSEM): a generic and well established lower-trophic level 
marine food web and biogeochemical cycling model (Butenschön et al., 
2016). ERSEM resolves the ecosystem dynamics with nutrients and 
carbon cycles in the low trophic levels and was used here to provide 
estimates of phytoplankton carbon biomass to function as a proxy for 
primary productivity, providing a food availability metric for mer-
oplanktonic species. A comprehensive review of the biogeochemical 
representation and mathematical formulations in ERSEM are described 
in detail in Butenschön et al. (2016). Phytoplankton is a primary food 
source for many marine larvae. By including phytoplankton biomass in 
our model, we can better assess the availability of food resources along 
potential dispersal routes, thus identifying areas where larvae are more 
likely to survive and thrive. This allows us to undertake an 
ecosystem-based management approach by providing insights into the 
ecological linkages between primary producers and higher trophic levels 
(Pfeiffer-Herbert et al., 2007; Thomas et al., 2016). Simulations for 
February and July of 2011–2014 were averaged and surface values for 
diatom, picophytoplankton, nanophytoplankton and micro-
phytoplankton carbon biomass were re-gridded from the unstructured 
FVCOM grid to the 30 × 30 km study grid using a nearest neighbour 
interpolation method in python using the package ‘nctoolkit’ (Wilson 
and Artioli, 2023).

2.5. Experiment setup

Multiple simulations were undertaken to encompass potential sea-
sonal and interannual variation in larval dispersal. Simulations were run 
in winter (February) under mixed water column conditions, and in 
summer (July) under stratified conditions, over a 4-year period 
(2011–2014). Passive particles were released from the centroid of every 
cell in the grid. Each cell in the grid functioned as both a source (i.e. 
particles were released from it) and sink (i.e. particles could settle in it) 
location. To capture variation in dispersal due to tides, 100 particles 
were released from each cell each day at the surface at midnight over a 
14-day period, starting on the first day of February/July. This number 
was deemed appropriate as a trade-off between model complexity and 
computation efficiency and followed a similar precedent set by previous 
connectivity modelling studies within this region (Mayorga-Adame 
et al., 2022). A total of 814,800 particles were tracked from the start of 
each simulation for a maximum of 28 days. Planktonic larval duration 
can be highly variable across taxa, ranging from a few minutes to several 
months (Shanks, 2009), and so our study chose a maximum PLD of 28 
days with the aim to provide computationally feasible baseline infor-
mation applicable to organisms with a variety of dispersal periods that 
could serve as a starting point for more complex multispecies larval 
connectivity studies. This maximum PLD has also been previously used 
in generic species connectivity studies in this region (Mayorga-Adame 
et al., 2022). Particle locations (xy) were extracted from simulation re-
sults representing 7-, 14-, 21-, and 28-day model planktonic larval du-
rations (PLD herein). While we acknowledge that environmental factors 
such as temperature and food availability can influence PLD length, our 
approach provides a representative snapshot of larvae that develop 
within this timeframe. This range encompasses a variety of regionally 
common invertebrate taxa, including commercially important species 
such as decapod crustaceans (Homarus gammarus (Schmalenbach and 
Franke, 2010), Palaemon serratus (Baudet et al., 2024)), bivalves (Mytilus 
edulis (Widdows, 1991), Cerastoderma edule (André and Rosenberg, 
1991), Ostrea edulis (Robert et al., 2017)), and echinoderms (Echinus 
esculentus (Tyler-Walters, 2008)). Rather than focusing on a single spe-
cies, this approach captures broad-scale connectivity patterns for taxa 
with PLDs that fall within this modelled range. As a single particle was 
assumed to represent multiple individual larvae, particles were not 
removed from the system at any timepoint, allowing onward 

connections from the same ‘larval cohort’. Consequently, particles could 
potentially settle at every timestep they were extracted. To examine 
connectivity between existing artificial structures only, a two-step filter 
was applied to the particle tracking results. The first step filtered par-
ticles released from cells containing structures, and the second filtering 
for particles reaching cells containing structures by the end of their PLD. 
This filter was applied for particles at 7-day, 14-day, 21-day and 28-day 
intervals.

All PLD/month/year simulation outputs for both scenarios were 
grouped prior to connectivity analysis to provide a holistic view of 
connectivity that captures PLD, season and inter-annual variation.

2.6. Evaluating particle dispersal distance

Analysis of the Euclidian (or ‘straight-line’) distance travelled by the 
simulated particles was undertaken in R (v.4.3.2). Distance (km) was 
calculated for each particle and a new grouping variable ‘group’ was 
created by concatenating PLD, month, and year to form a unique iden-
tifier for each simulation. To assess the differences in Euclidean dis-
tances travelled across different groups, we first evaluated the normality 
of the data using Anderson-Darling tests. Given the non-normality of the 
data, non-parametric methods were utilised. To manage the size of the 
dataset and ensure computational feasibility, a randomised 10 % sub-
sample of the original data was used. The Kruskal-Wallis test was used to 
determine if there were statistically significant differences in distances 
across groups and to further analyse the differences between pairs of 
groups, pairwise Wilcoxon rank-sum tests were performed, adjusted for 
multiple testing using the Bonferroni correction. Significant pairwise 
comparisons were identified based on adjusted p-values (p < 0.05). The 
rank-biserial correlation coefficient was calculated to provide effect size 
metrics for each pairwise comparison to quantify the magnitude of dif-
ferences (small < 0.3, moderate ≥ 0.3 - <0.5, large > 0.5: Cohen, 1988; 
Wilcox, 2012). Summary statistics, including median and interquartile 
range (IQR), were also calculated for each group.

2.7. Network analysis

Graph network theory was implemented using the “igraph” package 
(Csárdi and Nepusz, 2010) in R (version 3.4.2). Connectivity matrices 
generated from the particle tracking simulations quantified connectivity 
of the seascape between all cells (‘everything is everywhere’) and cells 
with man-made structures. Each cell within the 30 × 30 km grid cell is 
denoted as a ‘node’ and connections between pairs of nodes based on 
particle tracking simulations were denoted as ‘edges’ i.e. links between 
nodes (Urban and Keitt, 2001). The importance of each node to con-
nectivity was described using metrics: in-degree, out-degree, node 
betweenness, and modularity (community detection). In-degree pro-
vides a count of the number of in-links reaching the node from other 
nodes, and out-degree a count of the number of out-links from a given 
node to other nodes, aiding in the identification of source-sink dynamics 
in the study region. Node betweenness is calculated as the sum of the 
fraction of node-pairs shortest paths that pass through a given node. 
Nodes with high betweenness are likely to significantly influence the 
flow of particles within the network and be critical to maintaining 
connectivity.

Network graphs were created using the ‘graph from adjacency ma-
trix’ function in ‘igraph’, considering the direction of movement of the 
particles and including a weighing factor that considered the number of 
particles travelling along each edge between nodes. A fast-greedy 
community detection algorithm (Clauset et al., 2004) was used to 
identify clusters of densely connected nodes where intra-particle ex-
change was high and inter-particle exchange was low. In the context of 
graph theory and network analysis, a ‘community’ refers to groups of 
nodes within the graph that are more densely connected to each other 
than to the rest of the graph. The modularity of the overall network, 
ranging from 1 to − 1, was also calculated to quantify the quality of the 
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community structure. Positive modularity scores suggest that the graph 
has more edges within communities than would be expected in a random 
network, with the strength of the community structure (i.e. the density 
of the connections between the nodes with communities) indicated by 
the proximity of the modularity score to 1. The size, strength, and 
density of each community was calculated by the number of nodes 
within each identified community, the sum of the edge weights within 
each community, and how many edges are present in each community 
graph relative to the total number of possible edges, respectively.

Community strength and community density are related but distinct 
concepts in graph theory. Community strength measures the overall 
strength of connections within a community using the weights of edges. 
Higher values indicate stronger internal connections. Community den-
sity, on the other hand, measures the proportion of existing edges 
relative to the total possible edges, ignoring edge weights. Higher den-
sity means a greater proportion of possible connections are present 
within the community (Lancichinetti and Fortunato, 2009).

2.8. Connectivity importance index (CII)

The Connectivity Importance Index (CII) was calculated to quantify 
the contribution of each node (i.e. grid cells containing offshore struc-
tures in scenario 1 and grid cells in the entire domain in scenario 2) to 
overall connectivity in the network integrating graph network metrics - 
out degree, in degree, node betweenness - with primary productivity 
data derived from the FVCOM-ERSEM output. The formulation of the CII 
is designed to identify nodes that are critical for connectivity and 
ecological relevance, particularly for larval dispersal and survival.

The novel connectivity method was developed over the use of 
existing methods, such as Opsahl et al. (2010) and the Integral Index of 
Connectivity (Pascual-Hortal and Saura, 2006), as these methods have 
limitations in dynamic marine systems. Osphal et al.’s framework relies 
on a tunable parameter (α) to balance the importance of edge weights 
and node degree, which requires prior knowledge or assumptions about 
the relative importance of these factors. In marine environments, such as 
the North Sea, this relative importance is often unknown and varies 
across species, spatial scales, and temporal contexts. Additionally, 
Opsahl et al.’s method does not incorporate ecological variables, such as 
food availability, which are critical for larval survival. Similarly, the 
Integral Index of Connectivity (Pascual-Hortal and Saura, 2006), while 
effective in static terrestrial system does not account for dynamic pro-
cesses such as larval dispersal driven by hydrodynamics. By integrating 
both structural and ecological data, the CII overcomes these limitations 
and is particularly suited for assessing connectivity in the dynamic, 
multi-species context of this study.

2.8.1. Mathematical formulation
For each node i in the network, the following metrics were calcu-

lated: 

• Out-degree (Dout,i): The number of connections from node i to other 
nodes, representing dispersal potential from i.

• In-degree (Din,i): The number of connections to node i from other 
nodes, representing its importance as a settlement site.

• Node Betweenness (Bi): A measure of how often node i acts as a 
bridge along the shortest paths between other nodes, capturing its 
role a stepping stone in maintaining connectivity across the network.

• Primary Productivity (Pi): The productivity value at node i, taken 
directly from the FVCOM-ERSEM biogeochemical model.

Each metric was normalised to between 0 and 1 using min-max 
normalisation: 

Mʹ
i =

Mi − min(M)

max(M) − min(M)

Where Mi represemts the value of the metric for node i, and min(M)

and max(M) are the minimum and maximum values of the metrics across 
all nodes.

Subsequently, a z-score was calculated for each normalised metric: 

ZM,i =
Mʹ

i − μM

σM 

Where μM and σM are the mean and standard deviation of the nor-
malised metric M respectively.

The CII for each node was then calculated by summing the z-scores of 
the four metrics: 

CIIi = ZDout,i +ZDin,i +ZBi +ZPi 

Finally, the combined CII values were standardised to between 0 and 
1 using min-max normalisation: 

CIIʹi =
CIIi − min(CII)

max(CII) − min(CII)

2.8.2. Rationale
The chosen metrics reflect complementary aspects of node impor-

tance – directional connectivity provides insights into dispersal potential 
and settlement significance, betweenness emphasises the roles of nodes 
in maintaining overall network connectivity, and primary productivity 
integrates ecological function, identifying nodes where larvae are likely 
to have sufficient food resources for survival and development.

The CII assigns equal weightings to these metrics, reflecting the 
current lack of definitive knowledge about the relative importance of 
each variable to connectivity. While some metrics, such as primary 
productivity, may have a more direct influence on larval survival in 
certain contexts, other metrics, like node betweenness, are crucial for 
understanding the structural cohesion of the network. Equal weightings 
ensure that all metrics are considered impartially, avoiding introducing 
biases introduced by subjective assumptions. By integrating both 
structral and ecological metrics in equal measure, the CII provides a 
balanced framework for assessing the contributions of individual nodes 
to connectivity.

3. Results

3.1. Analysis of euclidean distance travelled by particles

The Kruskall-Wallis analysis revealed statistically significant differ-
ences (x2 = 1,016,296, degrees of freedom = 31, p < 0.001) between all 
groupings of planktonic larval duration (PLD), month and year on the 
Euclidian (straight-line) distance travelled by the particles (Fig. 2). 
Median distances travelled increased with PLD duration (45.63 km at 7- 
days PLD, 75.4 km at 14-days PLD, 100.7 km at 21-days PLD, and 
124.32 km at 28-days PLD; Fig. 2; Appendix 2), though there was 
considerable variation in distances between individual particles. Sea-
sonal and interannual differences were also observed, with particles 
travelling a median distance of 32.4 km further during February simu-
lations than July simulations, and 2014 being the year where particles, 
on average, travelled the furthest (86.04 km in 2011, 86.93 km in 2012, 
59.12 km in 2013, and 110.71 km in 2014; Appendix 2).

A Wilcoxon rank-sum test results demonstrated significant differ-
ences between most PLD/month/year groupings (n = 496), with only 4 
groupings (0.8 % of all pairings) not statistically significant. These were: 

• 14-day PLD in February 2011 and 21-day PLD in July 2012 (p-adj =
0.154),

• 14-day PLD in February 2012and 21-day PLD in February 2013 (p-adj 
= 0.297),

• 14-day PLD in February 2013 and 7-day PLD in February 2011 (p-adj =
0.321), and

• 14-day PLD in July 2012 and 28-day PLD in July 2013 (p-adj = 0.346). 
().
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Effect sizes (rank-biserial correlations) varied among significantly 
different groupings. Small effect sizes (<0.3) were found in 38.51 % of 
pairwise comparisons, moderate effect sizes (0.3 < effect size ≤ 0.5) in 
26.61 %, and large effect sizes (<0.5) in 34.07 %. The average effect 
sizes across all PLDs, month and year groupings was moderate 
(Appendix 2).

3.2. Connectivity between existing structures (oil/gas rigs and wind 
farms)

The analysis of connectivity among cells containing existing loca-
tions of artificial marine structures (oil/gas rigs and wind farms) in the 
North Sea reveals insightful patterns in how these structures form 
communities and how these communities are interconnected. In total, 
36 % of the grid cells in the domain (212 out of 582) contained artificial 
structures. Approximately 51 % of all particles released from cells con-
taining one or more structures reached another cell containing a struc-
ture by the end of their PLD. The likelihood of the particle reaching a cell 
containing a structure, however, decreased over time (Appendix 3). 
Through network analysis of locations of particles both released from 
and settling within these cells (collated simulation outputs for all PLD’s 
(7, 14–21- and 28 days), months (February and July) and years 
(2011–2014)), five distinct communities were identified, each varying 
in size, strength, and density – with an overall modularity score for the 
network of 0.59 (Fig. 3).

Located off the east coast of Scotland, the smallest community 
(community 1: yellow) has only eight nodes. Despite its small size, it has 
relatively high density (i.e. the ratio of actual connections (edges) to all 
possible connections between nodes in the community) (0.77), though 
the overall strength (i.e. the weight of connections (edges) within the 
community) is low (32,877), suggesting that while the nodes are tightly 
knit, the total number of connections or interactions is limited. The 
north North Sea region (community 3: green) contains a slightly larger 
community with 28 nodes and the highest density (0.95). This indicates 
a very compact and interconnected group of nodes. However, despite its 
higher density, the community’s strength is moderate (339,896), 
reflecting a greater but not disproportionately large number of con-
nections when compared to the larger networks. The three larger net-
works that were identified were in the central North Sea (Community 4: 
blue) and in the southern North Sea (Community 1: red, and Community 
5: purple), containing 63, 58, and 55 nodes, respectively (Fig. 2). 
Community 1 (red) exhibited relatively high density, with a score of 
0.83. The strength of this community was 1,285,856, indicating a sub-
stantial total weight of connections, suggesting that the nodes are highly 
interconnected and that the network is well-integrated. Community 4 
(blue), which is the largest community with 63 nodes, showed a strength 
of 1,158,390. Despite its large size, its density was relatively lower at 
0.54, suggesting that although this community has a significant amount 
of connectivity, the proportion of realized connections is lower 
compared to Communities 1 and 3, indicating a more sparsely connected 

structure. Community 5 (purple) had 55 nodes and a strength of 
983,005. The density of this community was 0.73. Although its strength 
was lower compared to Communities 1 and 4, this Community’s density 
was relatively high, indicating a moderately interconnected network 
with frequent interactions among its nodes.

3.3. Potential connectivity of the North Sea under the ‘everything is 
everywhere’ approach

The network analysis of the North Sea under the ‘everything is 
everywhere’ scenario revealed three distinct communities, each with 
distinct characteristics: the western side of the northern North Sea 
(WNNS: community 1: red), the eastern side of the northern North Sea 
(ENNS: community 2: green), and the southern North Sea (SNS: com-
munity 3: blue) (Fig. 4). The overall modularity score for the network 
was 0.5. The WNNS was the smallest community, comprised of 92 nodes 
(15.8 % of all nodes), and exhibited the weakest community strength at 
2,533,503. However, it boasted the highest density of 0.64, indicating a 
highly interconnected and cohesive structure despite its smaller size. In 

Fig. 2. Distribution of the Euclidian (‘as the crow flies’) distance travelled (in kilometres) by particles across various levels of PLD (7, 14, 21, and 28 days), Month 
(February and July), and Year (2011–2014).

Fig. 3. Identified connected communities of artificial structures within the 
North Sea domain as calculated by ‘igraph. Simulation results for multiple 
planktonic larval durations (PLDs: 7,14,21, and 28 days), opposing seasonalities 
(well-mixed/stratified: February/July), and multiple years (2011-2014) were 
collated to give an overview of that could be generically applied to the region 
over a range of temporal scales and considers connectivity at a multi-species 
level. Dots denote the centroid of each release cell, which functioned as 
‘release nodes’ in the particle tracking model.
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contrast, the ENNS was the largest community with 266 nodes (45.7 % 
of all nodes) and the greatest community strength of 8,789,453. Despite 
its extensive size and strong interactions, the ENNS had the lowest edge 
density of 0.5, suggesting a less cohesive internal network. The Southern 
North Sea community, with 224 nodes (38.5 % of all nodes), demon-
strates intermediate characteristics with a community strength of 
7,877,883 and an edge density of 0.53, reflecting a robust yet moder-
ately interconnected community.

In total, 17 % of particles were lost outside the model boundaries, 
increasing over time from 6.8 % after 7 days, to 10.5 %, 13.8 % and 17.0 
% after 14, 21 and 28 days, respectively.

3.4. Identifying ‘hotspots’ of connectivity

Using all particle track data to rank cells based on their importance to 
connectivity across the North Sea region, four metrics were quantified 
namely: ‘out degree’ - indicating importance as source’; ‘in degree’ – 
indicating importance as a sink’; ‘node betweenness’ – indicating 
importance as a stepping stone’; and ‘food availability’ – indicating the 
productivity of the cell’ (see Appendix 4 for definitions and formulations 
of the graph theory metrics). These metrics were also integrated into a 
Connectivity Importance Index (CIIs: Fig. 7).

Under the existing structures scenario, there were spatial differences 
between the locations with the greatest importance as sources and sinks. 
Cells with highest source and sink values were more southerly, occurring 
in the southwestern (~53◦N, 2◦E) and central southern North Sea, 
respectively (Fig. 5a and b). Both areas fell within community 1 of the 
network analysis between structures (Fig. 3: red).

Under the ‘everything is everywhere’ scenario, cells throughout the 
middle of the North Sea were important sources, whereas highest value 

Fig. 4. Community analysis based on connectivity under the ‘everything is 
everywhere’ framework within the North Sea domain. Simulation results for 
multiple planktonic larval durations (PLDs: 7,14,21, and 28 days), opposing 
seasonalities (well-mixed/stratified: February/July), and multiple years 
(2011–2014) were collated to give an overview that could be generically 
applied to the region over a range of temporal scales and considers connectivity 
at a multi-species level. Dots denote the centroid of each release cell, which 
functioned as ‘release nodes’ in the particle tracking model.

Fig. 5. Standardised importance (standardised Z-scores) of each cell containing existing artificial structures as a source (a), sink (b), stepping stone (c) and to primary 
productivity (d). a, b, and c were calculated using graph traversal algorithms in ‘igraph’, and food availability (d) was taken from average surface values for diatom, 
picophytoplankton, nanophytoplankton and microphytoplankton carbon biomass from FVCOM-ERSEM simulations for February and July 2011 and 2012, re-gridded 
to the 30 × 30 km study grid using a nearest neighbour interpolation.
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sink cells were aggregated in the northeastern North Sea along the coasts 
of Denmark and Norway (Fig. 6a and b). A small number of cells were 
particularly important as stepping stone locations (node betweenness 
values >0.8), which occurred in the centre of the North Sea extending 
between 54◦ and 60◦ latitudes (Fig. 6c). Higher productivity was more 
strongly associated with coastal areas and intersecting the Southern 
North Sea between Southeast England and Northeast Denmark (Fig. 6d).

The CII showed spatial variation in the relative importance of cells 
under the two tested scenarios (Fig. 7: a and b). The CII indicated cells in 
the southern North Sea (spanning communities 1 and 5 of the existing 
structure scenario) as important under both scenarios, with a cell of very 
high CII value (>0.7) identified under the existing structures scenario at 
55◦N, 4◦E (Fig. 7a). The integrated CII generated under the ‘everything 
is everywhere’ scenario indicated a small number of cells with very high 
CII values (>0.7: Figs. 7b and 8)). Many of these fell in similar locations 
to high connectivity cells under the existing structures scenario (i.e. the 
Southern North Sea), and in similar locations to cells with high node 
betweenness values under the ‘everything is everywhere’ scenario 
(Fig. 6c).

Crucially, a significant hotspot in the northwestern North Sea 
(Fig. 7b: 59◦N, 4◦E) (falling in community 2 of the ‘everything is 
everywhere’ network analysis (see 3.2: Fig. 3; green)) was not detected 
when looking solely at connectivity between structures (Fig. 7).

The CII for cells containing structures (Fig. 7a) shows that commu-
nity 4 (see 3.2: Fig. 3; red) and community 5 (see 3.2: Fig. 3; purple) have 
the greatest impact on network connectivity within the region, and 
community 1 (see 3.2: Fig. 3; yellow) has the smallest impact. Cells with 
high levels of connectivity were identified in all communities of the 
‘everything is everywhere’ framework (see 3.3: Fig. 4; Fig. 7b). To 
demonstrate the theoretical practical applications of the ‘everything is 

everywhere’ CII, in Fig. 9 we demonstrate the optimal positions of the 
212 cells currently containing existing structures within the domain 
under the view of enhancing (left) and diminishing (right) connectivity.

4. Discussion

The North Sea hosts numerous man-made structures, with many 
more planned and many nearing end-of-life, with decisions about their 
decommissioning at the centre of current debate. Here, using a combi-
nation of hydrodynamic modelling, particle tracking, and graph 
network analysis, we evaluate connectivity under two scenarios: exist-
ing structures and “everything is everywhere”. Additionally, we intro-
duce a Connectivity Importance Index (CII) to assess both current and 
potential future connectivity within the region. This dual approach 
supports informed decision-making, allowing for both targeted en-
hancements to existing networks and strategic planning for future ex-
pansions to maximize connectivity and ecosystem health (Botsford et al., 
2009; Mumby and Hastings, 2008). We also present a theoretical prac-
tical application of the CII, highlighting the optimal locations for the 
existing man-made structures in the North Sea under the viewpoints of 
enhancing and diminishing connectivity, respectively.

The Connectivity Importance Index (CII) under the ‘everything is 
everywhere’ scenario reveals cells with high potential connectivity that 
align with, but also extend beyond, those identified under the existing 
structures scenario. This suggests that while some critical areas are 
highlighted in both scenarios (i.e. the Southeastern North Sea), others 
gain importance when considering a hypothetical network expansion. 
Notably, the presence of high CII values in areas like the Northwestern 
North Sea, which were not flagged by the existing structure analysis, 
points to potentially valuable regions for future structure placement. 

Fig. 6. Standardised importance (standardised Z-scores) of each cell within the North Sea study domain as a source (a), sink (b), stepping stone (c) and primary 
productivity (d). a, b, and c were calculated using graph traversal algorithms in ‘igraph’, and food availability (d) was taken from average surface values for diatom, 
picophytoplankton, nanophytoplankton and microphytoplankton carbon biomass from FVCOM-ERSEM simulations for February and July 2011 and 2012, re-gridded 
to the 30 × 30 km study grid using a nearest neighbour interpolation.
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Fig. 7. The Connectivity Importance Index (CII) of each 30 × 30 km cell (calculated from the standardised sum of the Z-scores of the out degree, in degree, node 
betweenness and food availability of each cell) under two scenarios: existing locations of oil, gas and wind structures in the North Sea (a) and ‘everything is 
everywhere’ (b).

Fig. 8. Frequency distribution of the CII under the ‘everything is everywhere’ scenario.

Fig. 9. Visualisation of the optimum locations for the 212 cells containing current structures under the view of enhancing connectivity (left) and reducing con-
nectivity (right).
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The CIIs presented in this study show spatial differences throughout the 
region in the ‘importance’ of areas to connectivity between the two 
scenarios, and as such, we argue that integrating both the ‘existing 
structures’ and ‘everything is everywhere’ approaches provides the best 
possible insight into larval connectivity for a region. The existing 
structures scenario evaluates the effectiveness of current infrastructure, 
while the ‘everything is everywhere’ scenario explores potential for 
future enhancements. Together, these analyses provide actionable in-
sights for optimizing the placement of marine structures to support and 
improve larval connectivity across the North Sea.

Our analysis identified significant differences in larval dispersal 
based on various PLD, month, and year groupings, underscoring the 
impact of temporal and environmental factors on connectivity, and 
supporting previous research that these factors influence larval dispersal 
patterns in biophysical models (Clubley et al., 2024; Gilbert et al., 2010; 
Hilário et al., 2015; Torrado et al., 2021). By pooling these groups, we 
capture intra-population differences in PLD, spawning season and inter- 
annual variation in dispersal, and provide a holistic community-level 
view of larval connectivity across the North Sea. Future studies utilis-
ing this approach to look at specific species, however, should take these 
identified differences into consideration, as such factors may have 
substantial implications on larval spread at the species-level.

Understanding the balance between community strength, density, 
and size is crucial for managing larval dispersal and marine connectivity 
(Ospina-Alvarez et al., 2020). The network analysis of current structures 
in the North Sea domain identified five distinct communities, demon-
strating a range of network densities, strengths, and sizes (see 3.2). 
Communities with high density (i.e. communities 1, 3, 4 and 5) indicate 
that the structures within these communities are well-connected. This 
high internal connectivity might be beneficial for localized interactions 
but could limit the extent of broader network influence. The relatively 
weaker connections within the largest community (community 4) in the 
central North Sea has notable implications: the sparser network struc-
ture in comparison to the other communities may offer increased flexi-
bility and resilience, allowing populations to adapt more readily to 
environmental changes or disturbances (Rossi et al., 2014; Watson et al., 
2011). The relatively isolated nature of nodes in this community means 
that local disruptions may not propagate rapidly throughout the entire 
network, potentially allowing the community to recover more effec-
tively from localized threats or changes. Conversely, lower density could 
also imply that Community 4 may be less cohesive, with isolated nodes 
or subgroups that might struggle to maintain stability in the face of 
broader disturbances. This may, however, be offset by the high strength 
of the community, which supports the extensive exchange of nutrients, 
larvae, and/or genetic material, which is crucial for maintaining 
ecosystem health and species diversity.

In contrast, the ‘everything is everywhere’ scenario presents a 
different picture of connectivity, with three major communities showing 
varied characteristics (see 3.3). The Western North North Sea (WNNS), 
with its high inter-connectedness and cohesion, may be more resilient to 
disturbances due to its tight-knit structure but could also be more 
vulnerable to localized impacts. In the Eastern North North Sea (ENNS), 
the broad and diverse set of interactions implies this region has the 
potential to play a critical role in maintaining overall network stability. 
However, the lower internal cohesion here suggests the resilience of this 
community is relatively lower. The Southern North Sea, with its 
balanced characteristics, suggests a well-connected community within 
the potential to play a significant role in the overall network. Analysis 
under the ‘everything is everywhere’ framework also highlighted key 
geographically clustered bridging regions in the central North Sea, with 
the potential to function as ‘stepping stones’ to connectivity. Previous 
studies have suggested that the decommissioning of structures in this 
area would result in reduced connectivity (Tidbury et al., 2020), and our 
findings agree with this. The identification of these areas, irrespective of 
whether they contain existing structures or not, is beneficial from a 
spatial management viewpoint. By highlighting these areas over the 

entire domain, we can provide information that can guide best practices 
from an ecological perspective for both the commissioning and 
decommissioning of marine structures (Bishop et al., 2017).

Network analysis using graph theory is becoming an increasingly 
utilised tool for further understanding seascape connectivity (Treml 
et al., 2008; Kininmonth et al., 2010; Thomas et al., 2014; Engelhard 
et al., 2017; Ospina-Alvarez et al., 2020; Tidbury et al., 2020; Mayor-
ga-Adame et al., 2022; Abecasis et al., 2023; Clubley et al., 2024). Graph 
theory enables the identification of key habitats, corridors, and barriers 
influencing marine connectivity dynamics, and has been used to eval-
uate the structure of existing marine reserves (Abecasis et al., 2023; 
Engelhard et al., 2017), inform the design of Marine Protected Networks 
(MPAs) (Kininmonth et al., 2010; Ospina-Alvarez et al., 2020), and 
assess the connectivity of anthropogenic structures in the marine envi-
ronment (Mayorga-Adame et al., 2022; Tidbury et al., 2020). Despite the 
range of applications of these studies, they all follow a common scheme: 
assessing connectivity based on dispersal of propagules from known 
habitats. While assessing connectivity from known habitats provides 
valuable insights into population dynamics, it is important to recognize 
its limitations. Focusing only on known habitats may result in a narrow 
spatial perspective, overlooking hidden habitats and corridors facili-
tating dispersal that extend beyond the boundaries of known habitats, 
and consequently underestimating the true extent of connectivity which 
may lead to suboptimal conservation and management strategies. 
Without considering the broader context of connectivity dynamics, 
conservation efforts may fail to adequately protect critical dispersal 
pathways, leading to fragmentation, loss of genetic diversity, and 
diminished resilience of marine populations (Peterson et al., 2020). Our 
study expands on traditional approaches by incorporating potential 
habitats, addressing the limitations of focusing solely on known habi-
tats. This broader perspective offers valuable insights for conservation, 
spatial planning, and sustainable management of marine environments. 
While the approach undertaken here is a simplified overview of 
dispersal, omitting factors such as competency settlement window of the 
larvae, which has been shown to influence connectivity (Cecino and 
Treml, 2021), and behaviour, shown to influence biogeographic distri-
butions of larvae following dispersal (James et al., 2023), direct com-
parison between the two scenarios highlights the potential 
underestimation of connectivity when looking solely at known habitats. 
This is evidenced by the community structures presented in Figs. 3 and 
4, where larger connected communities were identified using the 
‘everything is everywhere’ framework (Fig. 4).

4.1. Limitations and considerations

While this study provides valuable insights into the role of marine 
infrastructure in shaping connectivity patterns across the North Sea, 
limitations should be acknowledged to contextualise the findings and 
guide future research.

While our study provides valuable insights into broad-scale con-
nectivity patterns, we acknowledge its limitations in not explicitly 
incorporating biological traits such as larval behaviour, vertical migra-
tion, and habitat selection, which can significantly influence dispersal 
trajectories (Sundelöf and Jonsson, 2012). The challenge in accurately 
parameterising these biological traits and behaviours in biophysical 
models stems from the limited availability of in situ empirical data, 
making their inclusion uncertain and potentially leading to highly var-
iable or misleading dispersal predictions (James et al., 2023). In the face 
of these uncertainties, we argue that our surface-only passive dispersal 
framework provides a generalised yet robust perspective on 
connectivity.

While our model captures a baseline for dispersal dynamics that is 
applicable to many pelagic larvae, it is important to recognize its limi-
tations in applicability to species with non-pelagic life histories. Species 
with direct development or brooded larvae exhibit fundamentally 
different dispersal mechanisms (Paulay and Meyer, 2006), which are not 
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well represented by our approach. Similarly, species with extended 
PLDs, due to either innate biology or environmental conditions may 
experience different dispersal pathways that extend beyond the scope of 
our simulations. These constraints should be considered when inter-
preting our results, and future studies may benefit from tailored 
modelling approaches to account for taxa with alternative dispersal 
strategies.

We emphasise that our analysis is based on shared dispersal char-
acteristics rather than ecological community interactions. The grouping 
of taxa in this study is based on similarities in pelagic larval stages and 
PLD rather than on trophic or ecological dependencies. This approach 
allows for broader applicability across taxa but does not explicitly cap-
ture species interactions that shape ecological communities. Future 
work incorporating multispecies interactions could provide further in-
sights into how dispersal-driven connectivity influences ecosystem 
structure and function.

Our decision to focus on winter and summer simulations was based 
on capturing seasonal extremes in oceanographic conditions, which are 
primary drivers of larval dispersal pathways (Bashevkin et al., 2020). By 
selecting these endpoints, we aimed to encompass a broad range of 
variability in dispersal dynamics, which likely includes transitional pe-
riods such as spring. However, we acknowledge that this approach does 
not fully account for species-specific reproductive timing, and for studies 
focused on individual taxa, aligning simulations with known spawning 
periods would enhance biological accuracy.

By acknowledging these limitations, we provide a clear framework 
for interpreting our results. Future efforts that integrate species-specific 
biological traits, alternative life history strategies, interspecies in-
teractions, and expanded seasonal simulations will be crucial in refining 
connectivity assessments and improving the ecological applicability of 
biophysical dispersal models. Nevertheless, our study serves as a base-
line that can be built upon as more empirical data become available, and 
future research can refine and expand upon our findings to enhance 
ecological realism and species-specific applicability.

5. Conclusions

The ‘everything is everywhere’ framework in this study offers valu-
able insights into potential organism distribution in the North Sea, 
highlighting connectivity across both known and unknown habitats. 

This broader perspective identifies connectivity hotspots, migration 
pathways, and areas vulnerable to biodiversity loss, providing a clearer 
understanding of seascape-scale ecological processes. The methodology 
described in this paper is relocatable to any marine-based spatial 
context, and allows for the quantification of potential networks, appli-
cable with or without existing habitat data, and the insights gained from 
this approach can inform management and conservation strategies, 
guiding decisions regarding the sustainable management of artificial 
structures, habitat protection, restoration efforts, and spatial planning of 
marine protected areas.
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Appendix A. Appendix

Appendix 1 
Normality tests for distribution of distance_km for all pld/month/year simulations.

PLD Month Year Anderson-Darling statistic P value

7 feb 2011 30,994.64096 <0.001
7 feb 2012 15,974.9273 <0.002
7 feb 2013 16,597.40913 <0.003
7 feb 2014 12,511.63314 <0.004
7 jul 2011 20,327.98462 <0.005
7 jul 2012 12,362.05041 <0.006
7 jul 2013 6027.499801 <0.007
7 jul 2014 19,915.79057 <0.008
14 feb 2011 17,548.08621 <0.009
14 feb 2012 12,619.36706 <0.010
14 feb 2013 32,757.36984 <0.011
14 feb 2014 7255.113656 <0.012
14 jul 2011 17,921.28186 <0.013
14 jul 2012 15,260.46697 <0.014
14 jul 2013 7240.054447 <0.015
14 jul 2014 21,179.86186 <0.016
21 feb 2011 12,474.04885 <0.017
21 feb 2012 8184.756528 <0.018

(continued on next page)
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Appendix 1 (continued )

PLD Month Year Anderson-Darling statistic P value

21 feb 2013 35,155.80785 <0.019
21 feb 2014 4301.514342 <0.020
21 jul 2011 15,017.18821 <0.021
21 jul 2012 14,275.22659 <0.022
21 jul 2013 8429.26373 <0.023
21 jul 2014 19,072.20075 <0.024
28 feb 2011 13,197.10936 <0.025
28 feb 2012 4900.40814 <0.026
28 feb 2013 31,985.93697 <0.027
28 feb 2014 3269.396575 <0.028
28 jul 2011 12,999.93464 <0.029
28 jul 2012 9610.823307 <0.030
28 jul 2013 7127.806065 <0.031
28 jul 2014 15,816.28574 <0.032

Appendix 2 
median distance and average effect sizes by group.

Group Median Euclidian Distance (km) Inter Quartile Range (lower bound) Inter Quartile Range (upper bound) Average effect size

PLD

7 45.63 28.37 70.32 0.432
14 75.4 46.18 119.5 0.356
28 100.7 61.03 160.95 0.372
28 124.32 75.21 197.69 0.415

Month February 99.86 54.04 117.12 0.422
July 67.4 39.57 109.12 0.365

Year

2011 86.04 48.85 141.32 0.376
2012 86.93 47.57 136.71 0.385
2013 59.12 36.21 91.83 0.362
2014 110.71 56.11 212.54 0.452

Appendix 3. Likelihood of a simulated particle released from a grid cell containing an artificial structure reaching another grid cell containing an artificial structure 
by the end of its planktonic larval duration (PLD). Red dotted line denotes the average percent of particles reaching another structure over all explored PLDs.

Appendix 4: Graph theory metrics definitions and formulations

• Out-degree (Dout,i): 
o Definition: The out-degree of a node i is the total number of outgoing connections (edges) originating from that node to other nodes in the 

network.
o Formula: 

Dout,i =
∑

j
Aij 

Where Aij is the adjacency matrix and Aij = 1 if there is a connection from node i to node j, otherwise Aij = 0. 
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o Interpretation: Indicates the dispersal potential of a node, as it measures how many other nodes can be reached from it

• In-degree (Din,i): 
o Definition: The in-degree of a node i is the total number of incoming connections (edges) directed toward that node from other nodes in the 

network.
o Formula: 

Din,i =
∑

j
Aji 

Where Aji is the adjacency matrix and Aji = 1 if there is a connection from node j to node i, otherwise Aji = 0. 

o Interpretation: Represents the importance of a node as a settlement or destination point within the network

• Node Betweenness (Bi): 

o Definition: Node betweenness measures how often a node lies on the shortest path between pairs of other nodes in the network.
o Formula: 

Bi =
∑

s∕=i∕=t

σst(i)
σst 

Where σst is the total number of shortest paths from node s to node t, and σst(i) is the number of those paths that pass through node i. 

o Interpretation: Captures the role of the node as a connector or stepping stone within the network, facilitating movement between other nodes

Data availability

The code supporting this study are publicly available on Zenodo at 
https://doi.org/10.5281/zenodo.15001694. This repository includes 
links to the source code for the FVCOM, ERSEM, and PyLag models, 
along with scripts for connectivity analysis, community detection, and 
the calculation of the Connectivity Importance Index (CII), enabling the 
reproduction of the results presented in this manuscript.
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