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A B S T R A C T

Cyanobacteria blooms pose significant risks to water quality in freshwater ecosystems worldwide, with impli-
cations for human and animal health. Constructing consistent records of cyanobacteria dynamics in complex 
inland waters from satellite imagery remains challenged by discontinuous sensor capabilities, particularly with 
regard to spectral coverage. Comparing 11 satellite sensors, we show that the number and positioning of 
wavebands fundamentally alter bloom detection capability, with wavebands centred at 412, 620, 709, 754 and 
779 nm proving most critical for capturing cyanobacteria dynamics. Specifically, analysis of observations from 
the Medium Resolution Imaging Spectrometer (MERIS) and Ocean and Land Colour Instrument (OLCI), coinci-
dent with the Moderate Resolution Imaging Spectroradiometer (MODIS) demonstrates how the spectral band 
configuration of the latter affects bloom detection. Using an Optical Water Types (OWT) library understood to 
capture cyanobacterial biomass through varying vertical mixing states, this analysis shows that MODIS can 
identify optically distinct conditions like surface accumulations but fails to resolve initial bloom evolution in 
well-mixed conditions, particularly in optically complex regions. Investigation of coherent ecoregions formed 
using Self-organising Maps trained on OWT membership scores confirm that MODIS captures broad spatial 
patterns seen with more capable sensors but compresses optical gradients into fewer optical types. These con-
straints have significant implications for interpreting spatial–temporal dynamics of cyanobacteria in large 
waterbodies, particularly during 2012–2016 when MERIS and OLCI sensors were absent, and small waterbodies, 
where high spatial resolution sensors not originally design to study water are used. In addition, these findings 
underscore the importance of key wavebands in future sensor design and the development of approaches to 
maintain consistent long-term records across evolving satellite capabilities. Our findings suggest that attempts at 
quantitatively harmonising cyanobacteria bloom detection across sensors may not be ecologically appropriate 
unless these observation biases are addressed. For example, analysing the frequency and intensity of surfacing 
blooms, while considering the meteorological factors that may drive these phenomena, could be considered over 
decadal timescales, whereas trend analysis of mixed-column biomass should only concern appropriate sensor 
observation periods.

1. Introduction

Generating consistent long-term satellite records of cyanobacteria 
dynamics in inland waters remains a fundamental challenge to under-
standing the compound impacts of land use and climate change. Cya-
nobacteria blooms can rapidly alter water quality through cascading 
biogeochemical changes, and certain species can produce toxins that 
pose a health concern for humans and animals (Huisman et al., 2005; 

Paerl and Otten, 2013; Chorus et al., 2021). Cyanobacteria blooms 
manifest as vertically mixed populations as well as (near) surface ac-
cumulations, associated with varying characteristic optical features 
(Kutser et al., 2006; Kutser, 2009). Capturing bloom dynamics from 
their onset to their deterioration requires specific spectral information 
that is predominantly collected with global-scale coverage by ocean- 
colour sensors operated within the last two decades, but with signifi-
cant gaps.
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Remote sensing approaches for monitoring cyanobacteria have 
evolved thanks to the understanding of their bio-optical characteristics 
in foundational studies. Early work to determine cyanobacteria biomass 
from water colour focussed on the absorption features of the prominent 
photosynthetic pigments phycocyanin and chlorophyll-a, quantified 
through specific reflectance waveband combinations (Dekker, 1993; 
Jupp et al., 1994). The phycocyanin absorption peak at 615 nm is 
captured in the 620 nm wavebands of recent ocean colour sensors, and 
can be quantified in turbid water types in the same way that chlorophyll- 
a absorption centred on 675 nm is quantified against the 709 nm 
waveband where pigment absorption is largely absent (Dall’Olmo et al., 
2003; Simis et al., 2005; Ruiz-Verdú et al., 2008; Gilerson et al., 2010). 
Algorithm development, particularly in optically complex inland waters, 
has progressed from reflectance line height formulations to spectral 
decomposition, reflectance ratios (Dekker, 1993; Gower et al., 2005; 
Simis et al., 2007) and second derivatives (Wynne et al., 2008; Matthews 
et al., 2012). Advances in detecting and quantifying cyanobacteria 
presence have highlighted fundamental challenges in implementing 
these approaches across different sensor capabilities, particularly when 
specific spectral information needed to track bloom evolution is not 
consistently available across satellite missions. Machine learning models 
have further proven promising to retrieve a range of biogeochemical and 
optical properties from multispectral sensors that would otherwise lack 
the appropriate waveband configurations (Pahlevan et al., 2020; Smith 
et al., 2021; Werther et al., 2022), including phycocyanin (O’Shea et al., 
2021). However, despite these successes, limited spectral resolution 

remains a primary limiting factor to resolve optically complex condi-
tions (Balasubramanian et al., 2025), and therefore to track cyanobac-
teria growth and blooms.

Several satellite sensors designed for ocean colour applications have 
provided capabilities to match the requirements for observing water 
quality from medium to large eutrophic inland waterbodies. These 
include the Medium Resolution Imaging Spectrometer (MERIS) and its 
successor, the Ocean and Land Colour Instrument (OLCI), both with 
waveband configurations that have proven relevant to cyanobacteria 
biomass detection. However, between these missions (2012–2016), key 
wavebands centred at 620 and 709 nm are lacking from remaining ocean 
colour sensors such as the Moderate Resolution Imaging Spectroradi-
ometer (MODIS). The 620, 681, and 709 nm wavebands are key exam-
ples of sensor design dichotomy, with MERIS and OLCI designs, and 
more recently the Geostationary Ocean Color Imager II (GOCI-II), of-
fering more bands to resolve additional optical complexity, while the 
Visible Infrared Imaging Radiometer Suite (VIIRS) follows on from the 
design of MODIS and predecessors (Fig. 1). This division particularly 
impacts the retrieval of key phytoplankton pigment absorption and 
fluorescence behaviours from low biomass (when chlorophyll-a fluo-
rescence is seen in the 681 nm waveband) to high biomass (when light 
absorption and particle scattering dominate the red to near infrared 
signal), and with increasing presence of cyanobacteria in eutrophic 
conditions, showing phycocyanin absorption at 620 nm, usually as the 
dominant accessory light-harvesting pigment (Simis et al., 2005, 2007; 
Matthews et al., 2012). Long-term records of lake water quality from 

Fig. 1. Spectral response functions (SRF) of eleven optical sensors for the wavebands available in the range 380–779 nm, excluding the oxygen bands for MERIS 
(761 nm) and OLCI (761, 764 and 767 nm). Curves in grey represent the wavebands that are not present in OLCI.

D. Lomeo et al.                                                                                                                                                                                                                                  ISPRS Journal of Photogrammetry and Remote Sensing 228 (2025) 323–339 

324 



optical satellite sensors tend to be either based on analysing single- 
sensors which have limited capability (Shi et al., 2017; Wang et al., 
2020) or combining multiple sensors (Liu et al., 2021, 2024) by opti-
mising per-sensor algorithm sets. There is this scope for further 
improving consistency, for example by prioritising the most capable 
sensors (such as MERIS or OLCI), while carefully defaulting to less 
capable sensors (such as MODIS) only when needed, but always 
emphasising consistency in the retrieval methods.

Optical Water Types (OWT) frameworks have brought significant 
advances in handling the wide optical diversity of natural waters, over 
which individual algorithms are unlikely to perform consistently (Morel 
and Prieur, 1977; Kent and Mardia, 1988; Moore et al., 2001; Spyrakos 
et al., 2018). Predetermined OWT sets can be used to determine the 
similarity of new observations to the reference set, assigning weights to 
algorithms known to perform adequately against samples belonging to 
that OWT (Moore et al., 2014; Liu et al., 2021). This approach ideally 
leverages global reference datasets to determine the suitability of indi-
vidual algorithms to each OWT, subsequently allowing geospatial 
extrapolation of the algorithm and its associated uncertainty to other 
waterbodies that express similar optical behaviours. OWT classifications 
are also constrained by the spectral capabilities of the sensors for which 
they are defined: the mathematical space used to define an OWT set with 
a given number of wavebands becomes compressed as the number of 
available wavebands decreases. Water types that appear distinct given 
many wavebands, may thus become mathematically similar with fewer 
spectral dimensions, even when representing different ecological 
conditions.

Understanding the systematic limitations to cyanobacteria moni-
toring introduced by discontinuous sensor capabilities requires a 
framework to evaluate how well sensors capture various cyanobacteria 
growth phases, from initial development through peak biomass and 
eventual decline. OWTs form one part of this framework, with multiple 
sensors ideally observing the same distribution of OWT membership for 
a given set of observations. Partitioning natural waters into spatially 
distinct regions of similar biogeochemical characteristics, also referred 
to as ecoregions, provides another route to analyse observation consis-
tency. Ecoregion analysis has widely been used to study broad-scale 
biogeochemical patterns in ocean colour (Platt and Sathyendranath, 
1988; Longhurst, 1995). This has included studies of global phyto-
plankton dynamics using factors such as wind, euphotic depth, surface 
irradiance, nutrients availability and chlorophyll-a concentrations 
(D’Ortenzio, 2009; D’Ortenzio et al., 2012; IOCCG, 2009; Ardyna et al., 
2017). Ecoregion partitioning is achieved using several techniques, with 
Self-Organising Maps (SOM; Kohonen, 1982, 2001) proving especially 
useful in dealing with the complexity of natural waters observed using 
remote sensing data (Yacoub et al., 2001; Niang, 2003). SOMs are neural 
network-based methods that map high-dimensional data onto lower 
dimensions (typically two) preserving the topological relationship of the 
input data (Liu et al., 2006). As such, SOMs are both a projection and a 
clustering method that order similar patterns onto neighbouring SOM 
units or nodes (Richardson et al., 2003; Liu and Weisberg, 2011). The 
use of SOMs has demonstrated useful in several applications, such as 
meteorology (Richardson et al., 2003; Liu et al., 2006), in situ water 
quality analysis (Richardson, 2002; Chazottes et al., 2007), land cover 
and ocean colour classifications (Yacoub et al., 2001; Niang, 2003; 
Villmann et al., 2003), and satellite-derived chlorophyll-a analysis 
(Diouf et al., 2013; Fendereski et al., 2014; El Hourany et al., 2019; Liu 
et al., 2022), proving more advantageous than other commonly used 
dimensionality reduction and clustering techniques (Astel et al., 2007). 
The ability of SOMs to capture and encapsulate the complex relationship 
between biogeochemical characteristics and seasonal cycles into ecor-
egions has the potential to provide useful information on sensor capa-
bilities, including the sensitivity of different sensors to various phases of 
cyanobacteria growth over space and time. We may further consider that 
SOMs trained on OWT memberships have the potential to reveal addi-
tional underlining biases in detecting cyanobacteria dynamics that other 

strategies would be less likely to capture.
While hyperspectral sensors will not suffer the spectral limitations 

described in this work, multispectral sensors offer baseline observations 
from which changes in ecosystem health can be determined and still 
provide the only global coverage with up to daily revisit. As more efforts 
to bridge the gaps between past and present satellite missions are un-
dertaken, it is hence useful to understand how different multispectral 
sensor capabilities affect the characterisation of cyanobacteria bloom 
development, thus to what extent OWT classifications remain reliant on 
the spectral resolution of sensors. By examining how well different 
sensor configurations distinguish between optical features classified into 
a given OWT set, it is possible to assess their ability to consistency 
resolve optical transitions. In principle, this can be shown by exploring 
theoretical sensor capabilities that assume equivalent measurement 
conditions, radiometric sensitivities, and atmospheric correction biases, 
examining the impacts of different waveband configurations and indi-
vidual waveband contributions to the sensitivity to different bloom 
conditions (IOCCG, 2012).

Here, we use a set of OWTs that can represent the range of optical 
conditions encountered in freshwater bodies (Spyrakos et al., 2018), 
currently used in global-scale lake water quality services (e.g., Coper-
nicus, ESA CCI), extended with the OLCI-derived OWTs developed by 
Lomeo et al. (2025), for enhanced cyanobacteria sensitivity and un-
derstood to capture a wide range of cyanobacterial population growth 
through varying mixing states. We hypothesise that sequentially 
removing wavebands from the reference OWT set will determine the 
degree to which each contributes to estimating cyanobacteria occur-
rence. Comparative analysis of current ocean colour sensor capabilities 
is then possible. In previous work, Lomeo et al., (2025) have shown that 
a weighted OWT membership score sum (Wsum) provides a useful single 
metric to characterise the risk of cyanobacteria occurrence, further 
reducing the complexity of the underlying OWT membership. This 
experiment is expected to provide a baseline understanding of the im-
plications for monitoring capabilities, as well as for OWT definitions and 
related downstream products. Additionally, we hypothesise that exam-
ining the full OWT membership distribution over space and time can 
provide deeper insights into the fundamental constraints in how cya-
nobacteria growth through varying mixing states is detected.

Extending OWT analysis of sensor biases to ecoregion analysis is 
done here for Lake Victoria, an economically important water body with 
a long history of cyanobacteria blooms (Sitoki et al., 2010). We compare 
OWT membership scores and Wsum values from coincident observations 
between MODIS-MERIS (2011) and MODIS-OLCI (2019) to understand 
how reduced spectral information affects OWT classification in practice. 
By examining both the magnitude and pattern of differences in OWT 
membership, specific optical conditions, where MODIS systematically 
over- or underestimates similarity to reference water types, can be 
identified. We further compare OWT retrieval from matching sets of 
water-leaving reflectance wavebands across the three sensors to eluci-
date on individual sensor sensitivity to observe a given OWT when 
biases resulting from atmospheric correction are accounted for. OWT 
membership scores for coincident observations are subsequently used to 
train SOMs, partitioning Lake Victoria into spatial-temporally coherent 
ecoregions. The distribution of Wsum across the identified ecoregions is 
used to evidence individual sensor capabilities in characterising cya-
nobacteria bloom development. Key waveband ratios representative of 
phytoplankton pigment in the blue-green (443/ 560 nm), and NIR-red 
(709/ 665 and 754/ 665 nm) are used to provide evidence of the 
ecological validity of the identified ecoregions.

Ultimately, this work is intended to establish whether MODIS ob-
servations during 2012–2016 can be reliably harmonised with MERIS 
and OLCI for long-term monitoring of cyanobacteria growth, bloom and 
decay, or whether fundamental limitations result in systematic gaps in 
our understanding of inland water responses to environmental change. 
These insights provide crucial context for interpreting historical satellite 
records and developing robust approaches for maintaining consistent 
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long-term monitoring capabilities across sensor technologies.

2. Methods

2.1. Study site

Lake Victoria is the largest tropical lake in the world and the second 
largest inland waterbody globally. Its shoreline is shared between 
Tanzania, Uganda, and Kenya (Fig. 2). Approximately 42 million people 
live within the lake catchment and depend on it for drinking water and 
commercial activities like fishery (Olokotum et al., 2020). The lake has a 
surface area extending to approximately 68,000 km2, mean depth of 40 
m, and maximum depth of 80 m (Johnson et al., 2000; Bootsma and 
Hecky, 2003), with lake water levels fluctuating considerably over time 
(Vanderkelen et al., 2018). The lake is subject to a bi-modal rainfall 
seasonality. The ‘long rains’ typically occur between March and May due 
to the northward movement of the Intertropical Convergence Zone 
(ITCZ), while ‘short rains’ occur between September and November, 
when the ITCZ progresses southward (Yang et al., 2015). Precipitation 
typically occurs at night and during early morning hours (Thiery et al., 
2015). Since the 1950 s the lake has experienced increasing eutrophi-
cation due to anthropogenic activities within its basin, with consequent 
implications to water quality (Sitoki et al., 2010). Some of the most 
optically dynamic regions are found along the shorelines and within 
semi-enclosed basins like Winam Gulf (Kenya), Murchison Bay (Uganda) 
and Mwanza and Speke Gulfs (Tanzania) (Frank et al., 2023; Nakkazi 
et al., 2024).

2.2. Datasets

Satellite imagery was processed to level 3C (L3C) by the Natural 
Environment Research Council Earth Observation Data Analysis and 
Artificial-Intelligence Service (NEODAAS, UK) for the years 2003–2023. 
The dataset included 981 MERIS scenes in the period 2003–2012, 1389 
MODIS Aqua scenes in 2012–2016, and 2372 OLCI A/B scenes in 
2016–2023. All images were projected onto a 1/448 degree grid, which 
approximates to 250 m resolution at the equator. A further two years of 
MODIS Aqua observations for the years 2011 and 2019 were used for 
sensor intercomparison with MERIS (2011) and OLCI (2019), these 
being the nearest years with full matching sensor coverage. The choice 
of using MODIS on the Aqua platform, with a slightly later overpass 
(1:30 pm) compared to OLCI and MERIS (10:30 am), was driven by the 
documented higher water-leaving radiance retrieval stability compared 

to MODIS Terra, for which the radiometric response in certain wave-
bands has degraded substantially since launch (Franz, 2008). MODIS 
Aqua (MODIS hereafter) has been used in the ESA Lakes Climate Change 
Initiative (Lakes_cci) to derive multi-decadal chlorophyll-a concentra-
tion for large lakes. Images were processed by NEODAAS through the 
Calimnos processing chain, using the candidate configuration for version 
3.0 of the ESA Lakes_cci Climate Research Data Package (Simis et al., 
2022a; Liu et al., 2021). This new configuration uses Polymer v4.17b for 
atmospheric correction, which employs an extended range of initiali-
sation conditions compared to previous versions, improving retrieval of 
turbid water conditions including near or at-surface blooms.

2.3. Sampling strategy

A random stratified spatial sampling strategy was used to identify 
suitable areas for spatial–temporal intercomparison between MERIS, 
MODIS, and OLCI, and to reduce computational requirements for the 
analysis. Specifically, 2,100 windows of 3 x 3 pixels were selected, with 
the number of windows exponentially decreasing as a function of dis-
tance from land. This strategy captures the (expected) greater variability 
of water colour in nearshore areas and semi-enclosed basins. 1,333 
windows were thus randomly selected within the first 20 km from land, 
428 in the range 20–40 km, 182 in the range 40–60 km, and 94 beyond 
60 km. Areas within 2 km from land were masked to account for the 
higher likelihood of the influence of land adjacency, such as mixed land/ 
water pixels and atmospheric mixing of land and water-reflected signals. 
The selected 2,100 windows were further inspected for consistency, and 
windows for which any of their 9 pixels had been masked by atmo-
spheric correction (e.g., due to presence of cloud or cloud-shadow) were 
removed from analysis. The remaining pixels were treated as individual 
observations and included for subsequent analysis. This approach 
resulted in a reduction of observations from approximately 11 billion 
across the three sensors to 4 million observations for MERIS, 9.5 million 
for MODIS, and 12 million for OLCI. Coincident observations between 
MODIS and MERIS in 2011 were 192,665, whereas for MODIS and OLCI 
in 2019 were 804,287.

An additional stratified sampling was implemented on the reduced 
observation sets for later training of neural networks and to enable a 
comparable water colour partitioning across the lake, further discussed 
below. MERIS, MODIS and OLCI observations were harmonised across 
matching days of year, ranging 1–365, disregarding the year of overpass 
and records on the 366th day of leap years. For each day, observations 
were proportionally sampled within the previously identified windows 

Fig. 2. Map of Lake Victoria and its major rivers.
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to ensure a balanced spatial representation, with a minimum threshold 
of 100 observations per day. This approach yielded approximately 3 
million observations for each sensor, or 10,000 observations per day 
across 322 days, maintaining comparable spatial–temporal 
distributions.

2.4. Optical water types classification

Water colour in Lake Victoria was mapped using a library of 25 
optical water types (OWT) for inland waters (Lomeo et al., 2025), an 
extension of the 13 OWT for inland waters by Spyrakos et al. (2018). 
This extended library was formulated using OLCI-derived spectra to 
better determine cyanobacteria occurrence, including mixed and surface 
accumulated bloom conditions (Lomeo et al., 2025). A further two type 
spectra developed to flag pixels affected by land adjacency (Jiang et al., 
2023) were also used. OWT similarity scores (Sowt) were calculated for 
each pixel using the spectral angle metric (Kruse et al., 1993), empha-
sising similarity in spectral shape rather than amplitude, as recom-
mended by Liu et al. (2021), using the following equations: 

aj = cos− 1
∑n

i=1piri
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1p2
i

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1r2

i

√ (1) 

Sowt j = 1 − aj/π (2) 

where pi and ri are the standardised pixel and reference spectra in band i, 
respectively. The resultant Sowt j is the membership score for OWT j, 
represented as a number between 0 and 1, where 1 indicates identical 
spectral shapes. The Sowt values were calculated between the 25 OWTs, 
and the sensor-derived standardised spectra in the range 412–779 nm 
for MERIS, MODIS and OLCI, excluding the oxygen bands at 761, 764 
and 767 nm for OLCI, and 762 nm for MERIS. Satellite-derived spectra, 
like the OWTs, were standardised by dividing over their integrals to 
reduce the influence of varying reflectance amplitudes and instead focus 
on the similarity of their shapes (Liu et al., 2021). Observations for 
which the highest Sowt value, also referred to as dominant water type 
(Moore et al., 2001, 2014), was associated to either of the two land 
effected types, were removed.

It is worth adding that the library of 25 OWTs by Lomeo et al., (2025)
was originally formulated by clustering OLCI-derived spectra for which 
the dominant OWT was associated to the presence of cyanobacteria, 
according to the definitions by Spyrakos et al. (2018), into ‘subtypes’. 
These new subtypes were named after the dominant OWT they origi-
nated from (e.g., OWT 1, 7), together with the cluster number they 
belonged to (e.g., OWT 1.2 or 7.2). Some subtypes originating from 
different dominant OWTs were merged if they spectral similarity was 
high, hence the naming 1.1_7.1 or 4.1_11.1. We invite the reader to refer 
to Lomeo et al., (2025) for an in-depth explanation of the clustering 
process.

2.5. OWT-based cyanobacteria occurrence

The weighted membership score sum (Wsum) metric (Lomeo et al., 
2025) was used to evaluate the spatial–temporal dynamics of cyano-
bacteria bloom occurrence risk across Lake Victoria. Wsum combines Sowt 
values obtained with Eq. (2) with a subjective ranking informed by 
typical optical indicators of cyanobacteria presence in the reference 
spectral library of 25 OWT using the sum of 709/620 nm and 709/681 
nm waveband ratios (Lomeo et al., 2025). The Wsum is calculated as 
follows: 

Wsum,i =
∑

j
(Sowti,j × wi,j × Pi,j) (3) 

with Pi,j =
Sowti,j∑

j
Sowti,j

where Sowti,j is the membership score of water type j at pixel i. wi,j is an 

OWT ranking obtained by converting the sum of the 709/620 and 709/ 
681 waveband ratios of the 25 OWT library into an order-of-magnitude 
differentiation. The ranking categorises cyanobacteria occurrence risk 
into low (w = 0), medium (w = 100), and high (w = 1000), reflecting the 
increasing likelihood of cyanobacteria presence based on either pigment 
absorption indicators and/or the formation of (sub)surface layers. Pi,j is 
a proportionality factor that accounts for the uneven distributions of 
Sowt values of a given observation across the set of OWTs, inherently 
capturing the covariance of similarity scores across the OWT set. The 
resulting Wsum is a number expected to range between 223 (absent to 
low cyanobacteria occurrence risk) and 321 (high to very high risk) in 
productive turbid waters, though the range may extend in the low-end 
for less productive, clear waters (Lomeo et al., 2025).

2.6. Sensor water-leaving reflectance and Wsum intercomparison and 
uncertainty evaluation

The water-leaving reflectance (Rw) stability between MERIS, MODIS, 
and OLCI was assessed using all available wavebands within 6 nm dis-
tance for coincident observations, i.e., observations with aligning date, 
latitude, and longitude within shared valid windows (as described in 
section 2.3), in 2011 for MODIS-MERIS, and in 2019 for MODIS-OLCI. 
These were the wavebands centred at 412, 443, 490 (488), 560 (555), 
665 (667), 681 (678), and 754 (748) nm, where the centre wavelength 
in brackets refers specifically to MODIS (Fig. 1).

Sowt and Wsum values obtained from the set of 25 OWTs for coinci-
dent observations were compared to evaluate the ability of each sensor 
to capture different OWT definitions and associated cyanobacteria 
determination, respectively. Here, OLCI was used as the reference sensor 
because of its appropriate spectral configuration for cyanobacteria 
occurrence monitoring and its superior radiometric sensitivity 
compared to its predecessors. Sowt and Wsum values were calculated on 
the full range of wavebands available to each sensor, as well as for 
MERIS and OLCI waveband subsets defined to match only MODIS 
wavebands (MERISM and OLCIM, respectively). Using the full range 
available to the three sensors helped to establish the degree of ‘spectral 
information loss effect’ introduced by MODIS against two more capable 
ocean colour sensors. Using the subsets ranges substantiated OLCI and 
MERIS ‘upstream bias’, i.e., their sensitivity to cyanobacteria presence 
compared to MODIS using ‘equivalent’ waveband configurations.

Additionally, Wsum values were iteratively calculated using the 
reference set of 25 OWTs after sequentially dropping wavebands. This 
exercise revealed the contribution of each OLCI waveband in the overall 
sensitivity of the sensor to cyanobacteria presence. Furthermore, the 25 
OWT set was adapted to ‘match’ the waveband configurations of ten 
widely used optical sensors (Fig. 1) to evaluate how cyanobacteria 
detection is affected when assuming virtually equivalent atmospheric 
conditions and radiometric sensitivities.

To quantify the differences between sensors, five statistical metrics 
were used: Root Mean Squared Difference (RMSD), Median Absolute 
Percentage Difference (MAPD), slope, bias, and R2. These metrics were 
selected to capture both the magnitude and the nature of sensor differ-
ences, while characterising the systematic relationships between sensor 
measurements. These were calculated as follows: 

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(xi − xj)

2

√

(4) 

MAPD =
1
n
∑n

i=1
med

{⃒⃒xi − xj
⃒
⃒

xj

}

× 100% (5) 

Bias = xi − xj (6) 

where xi are the Rw, Sowt or Wsum of MODIS, and xj are those from either 
MERIS or OLCI. The slope and R2 were obtained from linear regressions 
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of Sowt and Wsum values for coincident observations across the three 
sensors. Observations for which the highest Sowt value was < 0.9 were 
removed from the statistical analysis to reduce the influence of outliers, 
followed by the removal of the top and bottom 1 % of the remaining 
observations. Observations with the highest Sowt < 0.9 may not be well- 
captured within the OWT set for several reasons, including atmospheric 
artifacts introduced by atmospheric correction, or spectra highly influ-
enced by land adjacency. In addition, the 443/560, 709/665 and 754/ 
665 waveband ratios were used to provide context to the distribution of 
Wsum values across optically similar regions in the lake (described in 
more details below).

2.7. Self-organising maps

The Self-organising Map (SOM) technique, also known as Kohonen 
map (Kohonen, 1982, 2001), was used to partition Lake Victoria into 
regions (ecoregions) of similar spatial–temporal water colour patterns. 
Ecoregions were used to classify the biogeochemical and seasonal 
characteristics of spatial patterns in the lake, and to assess sensor- 
specific biases in cyanobacteria detection.

The Python implementation ‘MiniSom’ (Vettigli, 2018) was used to 
train SOMs. Typically, a grid of arbitrary size is defined, where each grid 
element is a node that stores the weights generated during the training 
process. While it has been suggested that the number of required nodes 
needed is linked to sample size (Vesanto and Alhoniemi, 2000), it is 
understood that the grid size should be dependent on the required 
granularity of information extracted during training, as well as the 
complexity (degrees of freedom) of the data (Richardson et al., 2003; Liu 
et al., 2006; Chazottes et al., 2007; Wang et al., 2019). It may be 
tempting to set the number of nodes to the required number of end- 
classes, but a (too) small grid may lead to pattern overgeneralisation 
(i.e., underfitting), whereas a (too) large grid may lead to pattern 
blending (i.e., overfit) (Reusch et al., 2005). Several preliminary con-
figurations were attempted, and a grid of 10 x 10 size (Fig., 3) was 
deemed the most appropriate to balance between the need to capture 
enough complexity and avoid model under/ overfitting. Prior to 
training, weights are randomly initialised on each node. The shape of the 
nodes in grid was set to hexagonal, such that each node was connected to 
a minimum of three neighbours (at the boundaries of the grid), and up to 
six (Fig. 3). This shape is usually preferred to using square nodes in 
remote sensing studies that use large, complex, datasets, because it is 

able to capture shared patterns more effectively (Liu et al., 2006). The 
training was run for 1 million iterations to allow the inherent complexity 
of the input data to be fully represented within the grid. At each itera-
tion, each observation vector (or row vector) is compared to all nodes 
using an ‘activation distance’, typically Euclidian, and the node with the 
smallest difference is the ‘winner’, becoming the centre of the updated 
‘nodes neighbourhood’. This approach allows the data to automatically 
converge towards similar patterns. Individual observations (i.e., pixels) 
were selected at random from the input dataset, so that each observation 
would be used for training multiple times (given the observation count 
was smaller than 1 million as described above). The rate at which the 
input converges is controlled by a dynamic learning rate, which was set 
to 0.01 at the start of training, and that decreased as the algorithm 
learned to more accurately converge and topologically sort nodes in the 
map (Liu et al., 2006). Additionally, as the training progresses, the area 
considered for convergence (or sigma) reduces, which ensures that 
patterns are progressively refined from an initial, more generalised map 
(grid). Again, several preliminary configurations were attempted, and 
using a sigma of 4 was chosen because it provided the most balanced 
output, whereby a smaller sigma led to patchier node sorting, and a 
larger sigma led to two patterns to dominate the grid.

The input variables for SOM training were the 25 Sowt values ob-
tained with Eq. (2), the maximum Rw amplitude in the range 412–779 
nm, and the sine and cosine deconstruction of the day of year (1–365). 
The 25 Sowt values are directly related to the optical characteristic of 
water against the reference library of 25 OWTs. These are preferred to 
using individual Rw wavebands because they represent an informed 
dimensionality reduction from raw Rw, capturing meaningful optical 
relationships rather than treating each waveband as an independent 
variable. The Sowt values inherently account for the covariance between 
wavebands while emphasising the spectral features most relevant to 
distinguishing water types, enabling more robust pattern recognition of 
biogeochemical conditions. The maximum Rw amplitude, or the peak 
reflectance across the target sensor wavebands range, complements the 
25 Sowt values by preserving information about particle scattering that 
would otherwise be lost in standardised spectra. Since absorption is 
more featured than scattering and is what primarily determines spectral 
shape, including the peak amplitude helps distinguish between waters 
with similar spectral shapes but different particle characteristics. The 
sine and cosine of day-of-year provide a sinusoidal representation of 
time, capturing seasonal patterns of water colour while retaining the 

Fig. 3. Self-organising map (SOM) design. The input variables for the SOM training were the 25 optical water types (OWT) membership scores (Sowt), the max 
amplitude (or the highest water-leaving reflectance value at each pixel), and the sin and cos decomposition of time (day of year). The input row vectors (pixels) are 
matched to each node in the 10 x 10 SOM grid (map), and the weights in the nodes are updated. The nodes in the figure are colour-coded to (hypothetical) clusters 
formed using the weights of the nodes after training.
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cyclical nature of these processes without discontinuities at the turn of 
the year. The 25 Sowt values and peak Rw amplitude were normalised 
across the full dataset using a z-score standardisation to ensure all var-
iables contributed equally to the SOM regardless of their original units 
and ranges. This scaling was essential as SOM training uses distance 
measures to determine similarity, and without normalisation, variables 
with larger absolute ranges would disproportionately influence the 
clustering.

Five SOMs were trained using the harmonised datasets previously 
described. Three were trained using sets with Sowt values calculated on 
native sensor waveband configurations for MERIS, MODIS, and OLCI. 
Two SOMs were trained for MERIS and OLCI sets with Sowt values 
calculated on the same waveband configuration as MODIS (MERISM and 
OLCIM).

2.8. Identification of ecoregions

Although trained nodes are already organised in the SOM maps by 
shared characteristics, the number of patterns they underpin is related to 
the grid size. Therefore, it is useful to further reduce the information 
space to a meaningful number of groups (clusters), which in this case 
translates into the number of ecoregions (Fig. 3). The trained nodes of 
the five SOM models were clustered using a Hierarchical Agglomerative 
Clustering (HAC) (Jain and Dubes, 1988). HAC is an unsupervised 
classification method that provides a structured clustering relative to the 
distance (e.g., Euclidian) between clusters, and that does not require a 
priori indication of cluster numbers. These can be identified at a later 
stage using a linkage matrix (or dendrogram).

The SOM trained on OLCI data was used as the reference classifica-
tion and divided into five ecoregions. While not directly supplemented 
by in-situ biological validation, this was expected to provide reasonable 

distinction between nearshore and (deeper) open water processes as 
well as any phytoplankton succession, that could still be captured by 
sensors with somewhat reduced capacity to distinguish all OWTs. The 
centroids of these ecoregions were obtained averaging the weight vec-
tors across nodes belonging to the same cluster. These represented the 
(average) optical characteristic of each ecoregion in multidimensional 
space. The nodes in the remaining four SOMs were assigned to the 
nearest reference OLCI ecoregion centroid in terms of Euclidean dis-
tance. This approach ensured that ecoregions were numbered consis-
tently across sensors, whilst allowing for sensor intercomparison.

3. Results

3.1. Influence of waveband presence or absence on Wsum

Sequentially removing individual wavebands from the reference li-
brary of 25 OLCI OWT spectra revealed that Wsum values are primarily 
affected by the presence and absence of wavebands centred at 412, 560, 
620, 709, 754, and 779 nm (Fig. 4A). For OWTs representing the highest 
risk of cyanobacteria occurrence (i.e., w = 1000), removing the wave-
band centred at 412 nm led to positive Wsum biases, overestimating the 
risk of cyanobacteria occurrence. Removing wavebands centred at 754 
and 779 nm primarily affected Wsum values for OWTs that are not 
typically linked to high cells backscattering in these regions, which is 
often indicative of surface accumulation of material (like OWT 1.2, 7.2). 
The omission of wavebands centred at 709 nm and 620 nm yielded 
negative Wsum biases, particularly in OWTs associated with cyano-
bacterial dominance. The influence of the 709 nm waveband diminished 
with decreasing risk of cyanobacteria occurrence. In clear waters, the 
effect of removing this waveband reversed, leading to positive biases. 
Similar patterns were repeated for OWTs belonging to the other two 

Fig. 4. (A) Bias between the weighted optical water type (OWT) membership score sum (Wsum) values calculated using the full OLCI waveband configuration and 
those calculated after sequentially removing each waveband. Negative Wsum bias suggests underestimation of the occurrence of cyanobacteria, and vice versa. (B) 
Wsum bias when comparing ten theoretical optical sensor configurations with OLCI. Bias expresses the difference in Wsum compared to using the full OLCI waveband 
configuration.
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groups of cyanobacteria occurrence risk (w = 100 and w = 0), with 
increasing impact of the absence of the waveband centred at 560 nm and 
decreasing influence of the waveband centred at 709 nm. The removal of 
the 560 nm band led to (high) negative Wsum biases in OWTs associated 
with a lower cyanobacteria occurrence risk (for example, OWT 9 and 3).

Optical sensors originally designed for ocean colour applications 
showed the closest alignment with OLCI in the prediction of cyanobac-
teria occurrence (as Wsum). These sensors include MERIS and GOCI-II, 
while others generally overestimated Wsum across OWTs (Fig. 4B). 
Landsat sensor configurations exhibited highly positive Wsum bias across 
most OWTs, although they performed slightly better for OWTs associ-
ated with surface bloom conditions. Despite including wavebands cen-
tred near 620 and 709 nm, Superdove configurations showed 
consistently poor agreement with OLCI across all OWTs. MSI primarily 
yielded positive Wsum bias, particularly in OWTs associated with me-
dium cyanobacteria occurrence risk (i.e., w = 100), while showing 
negative bias for OWTs associated to clear water (e.g., 13, 3), and minor 
positive bias in OWTs associated to cyanobacteria dominated water. 
VIIRS, MODIS, and GOCI displayed similar patterns, characterised by 
negative Wsum biases in OWTs associated with high cyanobacteria 
occurrence risk, transitioning to positive biases for OWTs associated 
with the lowest risk of cyanobacteria occurrence/ clear waters.

3.2. MERIS, MODIS and OLCI radiometric stability

Comparison of aligning Rw wavebands for coincident observations in 
the MERIS, MODIS and OLCI L3C datasets showed fair agreement be-
tween sensors (Fig. 5 and Table 1). The largest consistency between 
MODIS and MERIS was found for the wavebands centred at 560 (555) 
nm, 665 (667) nm, and 681 (678) nm, with MAPD = 41.7 %, 27.6 % and 
20.1 % respectively, and average R2 = 0.80. The largest disagreement 
between the sensors was found for the waveband centred at 412 nm, 
with MAPD = 76.7 % and slope = 1.61. Rw stability between MODIS and 
OLCI followed a similar pattern, with agreement across wavebands in 
the range 560 (555) – 681 (678) nm, and the strongest disagreement in 
the waveband centred at 412 nm, with MAPD = 93.3 %. Overall, MODIS 
showed better stability with MERIS compared to OLCI, although un-
certainty in the optical region associated to the chlorophyll-a 

fluorescence red peak was relatively similar in both.

3.3. Stability of OWT similarity metrics between MODIS and MERIS or 
OLCI

Coincident observations of MODIS with MERIS and OLCI revealed 
that MODIS overestimated the majority of Sowt values compared to the 
other sensors (Fig. 6, Table 2). The magnitude of overestimation varied 
between OWTs, with the largest positive biases in Sowt observed for 
OWTs associated to high cyanobacteria occurrence risk (i.e., w = 1000). 
For example, for OWT 8.2 MODIS had biases of 0.116 and 0.113 against 
MERIS and OLCI, respectively, whereas for OWT 11.2, which is associ-
ated to low likelihood of cyanobacteria occurrence, the bias was 0.009 
and − 0.002 against MERIS and OLCI, respectively. Low regression 
slopes (0.26–0.69) and high intercepts (0.4–0.64) indicated that MODIS 
spectra tend to overestimate low similarity.

When the comparison was restricted to matching wavebands, MODIS 
underestimated Sowt values. Bias ranged consistently from − 0.01 to 
− 0.03, with slopes between 0.5 and 0.7 and lower intercepts (0.2–0.4). 
Comparing this result to the overestimation previously observed when 
using the complete set of wavebands of each sensor, therefore shows that 
this difference stems from the spectral angle calculated using different 
numbers of wavebands (7 for MODIS versus 11 for MERIS and 12 for 
OLCI). When evaluated in the same seven-dimensional spectral space, 
MODIS showed consistently larger angles with the reference spectra 
compared to MERIS and OLCI, leading to lower Sowt values across most 
OWTs. Expectedly, Sowt bias propagated to Wsum, with MODIS system-
atically overestimating by 23.6 compared to MERIS and by 20.8 
compared to OLCI, on average (Table 2). Bias reduced significantly 
when using matching wavebands, giving 2.3 against MERIS and 0.6 
against OLCI (Table 3).

Spatially, the distribution of Wsum across Lake Victoria showed 
higher values in dendritic and semi-enclosed basins across all sensors in 
both 2011 and 2019 (Fig. 7A, B, E, F). MODIS yielded higher average 
Wsum values across most of the lake compared to MERIS and OLCI, 
except in dendritic areas and in Winam Gulf, in the north-east sector of 
the lake, where values were often lower (Fig. 7I and 7J). These areas are 
those that see the highest median Wsum, suggesting that where 

Fig. 5. Comparison of fully normalised water-leaving reflectance (Rw) wavebands of coincident observations for MODIS and MERIS/ OLCI (A-G) in Lake Victoria. 
The overlapping year are 2011 for MERIS and 2019 for OLCI. MODIS wavebands are indicated in brackets where their centre does not match with MERIS and OLCI 
wavebands. Both axes were log-scaled to enable visual comparison across all wavebands.
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cyanobacteria occurrence risk is expected to be higher, MERIS and OLCI 
tend to have higher values than MODIS. In general, areas of lower Wsum 
values coincided with reduced observation counts in MODIS (Fig. 7D 
and 7H).

3.4. Ecoregion consistency across sensors

Partitioning of water colour in Lake Victoria using SOMs revealed 
consistent spatial patterns of ecoregions between sensors, particularly 
between MERIS and OLCI (Fig. 8). Ecoregion 1 was consistently asso-
ciated with dendritic and semi-enclosed basins, ecoregion 5 primarily 
with areas alongside the coastlines and as a transition from ecoregion 1. 
Ecoregions 2, 3, and 4 where mostly associated to water colour dy-
namics in the centre of the lake, with high seasonal variability across all 
sensors. MODIS generally aligned with MERIS and OLCI in assigning 
ecoregions with the highest risk of cyanobacteria occurrence (i.e., 
ecoregions 1 and 5). However, MODIS was less sensitive to gradual 
seasonal evolution of cyanobacteria dynamics in the centre of the lake, 
and especially the transitioning between ecoregions.

The distribution of Wsum values across ecoregions confirmed that the 
SOMs successfully partitioned the spatial–temporal optical variability of 
the lake (Fig. 9A). OLCI and MERIS followed almost identical patterns, 
with ecoregion 1 yielding the highest risk of cyanobacteria occurrence, 

followed by ecoregion 5. Ecoregion 4, 3, and 2, showed gradually 
decreasing Wsum ranges, with ecoregion 2 yielding the lowest. The 
classification into the five ecoregions was also captured by MODIS, but 
Wsum ranges were narrower and with higher absolute values, and with 
small difference between ecoregions, especially 1 and 5. The lake par-
titioning performed by MERISM followed almost equivalent patterns to 
MODIS, although with lower absolute values, whereas OLCIM, despite 
aligning with the magnitude of Wsum values from MODIS, failed to 
discern between ecoregions 2–4.

The blue-green waveband ratio captured the optical differences be-
tween ecoregions across the three sensors, aligning with expectations 
that a higher ratio describes clearer water types with lower risk of 
cyanobacteria occurrence and vice versa (Fig. 9B). The NIR-red wave-
band ratio using the waveband centred at 709 nm (not available for 
MODIS) showed agreement between MERIS and OLCI, successfully 
discerning between ecoregions. This aligned with the expectation of 
increasingly higher values with increasing phytoplankton biomass, and 
with ecoregions associated to increasingly higher risk of cyanobacteria 
occurrence, although the difference between ecoregions 3 and 4 in OLCI 
was minimal (Fig. 9C). The NIR-red waveband ratio using the waveband 
centred at 754 (748) nm only captured differences between ecoregions 
in MERIS, with OLCI and MODIS failing to discern between ecoregions, 
showing a wide range for ecoregion 2 (Fig. 9D).

Table 1 
Descriptive statistics of coincident MODIS and MERIS/ OLCI observations. Wavebands in brackets are the MODIS bands used for the comparison.

Sensors MODIS vs MERIS (Average N = 186,219) MODIS vs OLCI (Average N = 776,825)

Wavebands R2 Slope Intercept Bias RMSD MAPD (%) R2 Slope Intercept Bias RMSD MAPD (%)

412 nm 0.48 1.61 0.0010 0.0034 0.0049 76.7 0.54 1.08 0.0040 0.0040 0.0052 93.3
443 nm 0.65 1.15 0.0024 0.0030 0.0037 59.4 0.69 1.21 0.0026 0.0035 0.0041 66.2
490 (488) nm 0.75 0.93 0.0035 0.0028 0.0033 41.3 0.67 0.97 0.0037 0.0034 0.0039 47.5
560 (555) nm 0.82 1.02 0.0038 0.0037 0.0048 41.7 0.79 1.12 0.0028 0.0038 0.0052 37.9
665 (667) nm 0.80 0.82 0.0013 0.0007 0.0012 27.6 0.67 0.86 0.0014 0.0009 0.0016 30.5
681 (678) nm 0.77 0.77 0.0014 0.0006 0.0011 20.1 0.62 0.78 0.0011 0.0001 0.0012 13.8
754 (748) nm 0.75 0.93 0.0005 0.0004 0.0006 58.3 0.60 1.01 0.0002 0.0002 0.0006 34.7

Fig. 6. Comparison of Optical Water Types (OWT) membership scores (Sowt) bias of MODIS observations coincident with MERIS or OLCI. Sowt bias was calculated 
using native waveband configurations of the sensors (purple bars), as well as for the subset of wavebands available on each sensor (orange bars). The OWT are 
grouped by ranking (W) using the vertical dotted lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)
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The seasonal distribution of Wsum values by ecoregion for four 
selected areas of Lake Victoria showed that MODIS followed similar 
patterns to MERIS and OLCI, particularly in regions where water colour 
was less variable across seasons, while it consistently deviated in areas 
of greater seasonal variability (Fig. 10). For example, in the area 
covering the Ssese Islands and Murchison Bay (Fig. 10 A-B), MODIS- 
derived ecoregions showed a relatively good agreement with both 
MERIS and OLCI (Fig. 10 C-D). In open waters, on the other hand, 

particularly during seasons when the lowest cyanobacteria occurrence 
risk was predominant (i.e., ecoregion 2), MODIS systematically assigned 
these to ecoregions 3 and 4 (which represent a higher risk of cyano-
bacteria occurrence). When this portion of the lake experienced the 
predominance of ecoregion 1 in June – August 2019 (i.e., the ecoregion 
associated to the highest risk of cyanobacteria occurrence), MODIS but 
largely misclassified this to ecoregion 5 (Fig. 10 C-D). In Winam and 
Speke Gulfs (Fig. 10 E-H), where ecoregions associated to the highest 

Table 2 
Descriptive statistics of Optical Water Types (OWT) membership scores (Sowt) comparison between MODIS and MERIS/ OLCI, alongside the weighted Sowt sum (Wsum).

Sensors MODIS vs MERIS (Average N = 181,029) MODIS vs OLCI (Average N = 739,896)

OWT W R2 Slope Intercept Bias RMSD MAPD (%) R2 Slope Intercept Bias RMSD MAPD (%)

12.4 1000 0.14 0.44 0.521 0.069 0.072 8.6 0.28 0.41 0.539 0.069 0.074 8.6
1.2 1000 0.68 0.41 0.431 0.043 0.047 6.6 0.63 0.44 0.408 0.033 0.035 5.0
6.5 1000 0.48 0.48 0.505 0.078 0.084 9.5 0.50 0.54 0.455 0.075 0.077 9.1
7.2 1000 0.56 0.48 0.402 0.032 0.041 4.6 0.45 0.49 0.384 0.017 0.027 2.7
1.1_7.1 1000 0.62 0.45 0.406 0.033 0.040 4.9 0.54 0.48 0.382 0.019 0.025 2.8
8.1 1000 0.54 0.49 0.408 0.032 0.043 4.5 0.42 0.51 0.393 0.018 0.030 2.7
12.2 1000 0.16 0.26 0.644 0.010 0.027 1.8 0.16 0.35 0.567 0.007 0.019 1.3
8.2 1000 0.37 0.38 0.590 0.116 0.120 15.1 0.41 0.47 0.524 0.113 0.114 14.6
6.4 100 0.52 0.50 0.405 0.009 0.032 2.4 0.38 0.49 0.407 − 0.004 0.027 1.9
5 100 0.51 0.43 0.472 0.020 0.034 2.9 0.47 0.47 0.438 0.012 0.024 1.9
6.1_11.3 100 0.57 0.51 0.416 0.026 0.040 3.7 0.47 0.53 0.397 0.015 0.029 2.4
6.3 100 0.57 0.52 0.429 0.040 0.050 5.0 0.47 0.55 0.404 0.031 0.039 3.8
10 100 0.57 0.43 0.419 0.024 0.036 3.7 0.55 0.46 0.390 0.008 0.022 1.9
8.3 100 0.56 0.51 0.412 0.033 0.044 4.5 0.46 0.52 0.392 0.020 0.032 2.9
6.2 100 0.57 0.54 0.446 0.058 0.065 6.9 0.46 0.56 0.422 0.052 0.056 6.1
12.1 100 0.53 0.53 0.454 0.053 0.060 6.3 0.53 0.55 0.435 0.049 0.053 5.8
11.2 0 0.56 0.48 0.405 0.009 0.031 2.4 0.47 0.50 0.393 − 0.002 0.026 1.9
12.3 0 0.62 0.54 0.420 0.033 0.043 4.0 0.51 0.55 0.407 0.026 0.034 3.1
11.4 0 0.63 0.49 0.427 0.029 0.039 3.8 0.57 0.49 0.418 0.020 0.028 2.7
4.1_11.1 0 0.55 0.49 0.410 0.003 0.031 2.2 0.46 0.50 0.404 − 0.007 0.028 2.0
4.2 0 0.54 0.51 0.421 0.007 0.033 2.3 0.43 0.51 0.416 − 0.001 0.028 1.8
2 0 0.53 0.53 0.414 − 0.002 0.032 2.0 0.37 0.53 0.413 − 0.009 0.029 1.9
9 0 0.30 0.48 0.489 0.002 0.028 1.9 0.11 0.32 0.642 0.002 0.028 1.7
13 0 0.58 0.69 0.266 0.031 0.040 4.2 0.26 0.41 0.477 0.045 0.058 6.2
3 0 0.56 0.49 0.487 0.020 0.030 2.3 0.51 0.44 0.547 0.036 0.047 4.0
Wsum − 0.58 0.38 181.870 23.638 25.418 9.3 0.54 0.43 169.633 20.816 21.354 8.0

Table 3 
Descriptive statistics of Optical Water Types (OWT) membership scores (Sowt) comparison between MODIS and MERISM/ OLCIM (i.e., using the same waveband 
configuration as MODIS), alongside the Weighted Sow sum (Wsum).

Sensors MODIS vs MERISM (Average N = 191,177) MODIS vs OLCIM (Average N = 787,682)

OWT W R2 Slope Intercept Bias RMSD MAPD (%) R2 Slope Intercept Bias RMSD MAPD (%)

12.4 1000 0.13 0.54 0.412 0.025 0.033 3.0 0.25 0.31 0.612 0.027 0.043 3.4
1.2 1000 0.76 0.72 0.199 0.001 0.008 0.7 0.48 0.59 0.283 − 0.004 0.011 0.8
6.5 1000 0.47 1.01 0.003 0.009 0.019 1.4 0.35 0.42 0.521 0.008 0.026 1.5
7.2 1000 0.68 0.65 0.249 − 0.014 0.023 2.0 0.37 0.49 0.370 − 0.024 0.034 3.2
1.1_7.1 1000 0.74 0.67 0.232 − 0.008 0.015 1.3 0.46 0.56 0.310 − 0.015 0.022 2.1
8.1 1000 0.66 0.64 0.263 − 0.018 0.028 2.4 0.35 0.47 0.397 − 0.029 0.040 3.6
12.2 1000 0.35 0.73 0.227 − 0.007 0.016 1.0 0.15 0.41 0.509 − 0.007 0.018 1.2
8.2 1000 0.39 0.98 0.029 0.014 0.021 1.7 0.33 0.38 0.554 0.012 0.028 1.8
6.4 100 0.60 0.63 0.280 − 0.020 0.032 2.6 0.28 0.43 0.448 − 0.032 0.044 3.9
5 100 0.67 0.67 0.256 − 0.013 0.021 1.7 0.44 0.58 0.333 − 0.017 0.025 2.2
6.1_11.3 100 0.69 0.65 0.272 − 0.020 0.031 2.4 0.43 0.55 0.355 − 0.028 0.038 3.4
6.3 100 0.69 0.67 0.266 − 0.019 0.029 2.2 0.44 0.61 0.322 − 0.024 0.034 2.8
10 100 0.71 0.65 0.244 − 0.011 0.019 1.7 0.51 0.55 0.309 − 0.016 0.024 2.3
8.3 100 0.69 0.65 0.265 − 0.018 0.029 2.4 0.41 0.53 0.363 − 0.028 0.039 3.5
6.2 100 0.66 0.77 0.193 − 0.010 0.022 1.4 0.37 0.60 0.351 − 0.013 0.025 1.7
12.1 100 0.52 1.02 − 0.014 0.007 0.018 1.2 0.34 0.43 0.515 0.006 0.025 1.4
11.2 0 0.67 0.64 0.267 − 0.020 0.030 2.5 0.42 0.51 0.371 − 0.028 0.039 3.6
12.3 0 0.69 0.75 0.212 − 0.012 0.023 1.6 0.42 0.63 0.314 − 0.015 0.026 1.9
11.4 0 0.70 0.70 0.234 − 0.010 0.020 1.5 0.48 0.60 0.314 − 0.013 0.023 1.8
4.1_11.1 0 0.65 0.63 0.280 − 0.022 0.033 2.7 0.40 0.50 0.389 − 0.030 0.041 3.7
4.2 0 0.64 0.63 0.294 − 0.024 0.035 2.8 0.38 0.52 0.396 − 0.031 0.042 3.6
2 0 0.59 0.64 0.297 − 0.023 0.035 2.6 0.31 0.53 0.399 − 0.028 0.039 3.2
9 0 0.33 0.58 0.380 − 0.013 0.028 1.9 0.06 0.24 0.714 − 0.008 0.030 2.0
13 0 0.59 0.63 0.304 0.026 0.037 3.6 0.22 0.34 0.524 0.039 0.056 5.3
3 0 0.60 0.52 0.457 0.010 0.023 1.6 0.41 0.39 0.586 0.028 0.043 3.1
Wsum − 0.66 0.94 19.270 2.341 3.853 1.0 0.47 0.65 99.656 0.600 3.819 0.8
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cyanobacteria occurrence risk was predominant, MODIS captured the 
most severe conditions. However, when other ecoregions presented in 
MERIS and OLCI (e.g., ecoregions 4 and 5) MODIS assigned these to 
ecoregion 1.

4. Discussion and conclusion

Cyanobacteria blooms manifest through a wide range of optical 
conditions as cells transition between light and nutrient regimes, influ-
encing the expression of characteristic pigmentation, colony formation, 
buoyancy, and sensitivity to grazing, photodegradation and other loss 
factors. While relationships between sensor spectral properties and 
monitoring capabilities are generally well established from the bio- 
optical literature, our analysis shows that reduced spectral informa-
tion leads to a fundamental loss in the ability to determine the likelihood 
of cyanobacteria presence in different mixing states. Multispectral 
configurations, as found in current or simulated ocean colour sensors 
(recent hyperspectral instruments excluded), can distinguish pop-
ulations blooms near or accumulated at the surface in most waveband 
configurations. However, there are broad differences between multi-
spectral sensors equipped with specific channels in the yellow to red and 
infra-red region and those that lack one or more of these, particularly in 
their ability to capture conditions common to the onset of cyanobacteria 
population growth in the water column. Such a systematic limitation has 
important implications for the 2012–2016 period where MERIS and 
OLCI missions leave a capability gap and MODIS is the most obvious 
sensor to fall back on for large waterbodies, as well as for high spatial 
resolution sensors designed to monitor land that are used to study water 
quality in smaller waterbodies. Our analysis of coincident observations 

of MODIS, MERIS and OLCI, through the lens of Optical Water Types 
(OWT), demonstrates that constructing consistent long-term records of 
cyanobacteria dynamics requires careful consideration of how reduced 
spectral information fundamentally limits the detection of bloom dy-
namics. Our recommendation based on this research is that long-term 
cyanobacteria trend detection from satellite sensors relying on distinc-
tive optical features should either work around the four-year gap, or 
focus only on the presence/absence of surfacing blooms. The latter is not 
without risk, as changes in cyanobacteria species composition and 
meteorological factors, particularly wind-induced mixing or lack 
thereof, should be taken into account to determine the cause of any 
trends. Biomass estimates for surfacing blooms are also subject to higher 
estimation uncertainty, as the depth of the visible surface layer cannot 
be assessed with sufficient accuracy as is the case with semi-analytical 
reflectance inversion algorithms.

OWTs are particularly useful to examine capability differences be-
tween multispectral sensors because they directly show how spectral 
shape information is affected by varying waveband configurations. 
While modern machine learning methods that leverage reflectance 
amplitude might capture different aspects of water quality (Pahlevan 
et al., 2020; Smith et al., 2021; Werther et al., 2022; O’Shea et al., 2023), 
OWTs offer insights into how specific optical features contribute to 
water type differentiation. This makes them suitable for identifying 
which aspects of bloom determination are most affected by reduced 
spectral information.

Our experiments consistently reveal that the absence of key wave-
bands fundamentally alters how satellite sensors determine the likeli-
hood of cyanobacteria presence across different mixing states. This 
limitation stems from the underlying mathematical principles behind 

Fig. 7. Median weighted optical water types membership score sum (Wsum) of observations in 2011 for MERIS (A) and MODIS (B) with respective percentage of 
observations (C and D). Median Wsum of observations in 2019 for OLCI (E) and MODIS (F) with respective percentage of observations (G and H). Median Wsum bias 
between MODIS and MERIS in 2011 (I) and between MODIS and OLCI in 2019 (J).

D. Lomeo et al.                                                                                                                                                                                                                                  ISPRS Journal of Photogrammetry and Remote Sensing 228 (2025) 323–339 

333 



similarity metrics used to define OWTs. Among these, the spectral angle 
has been shown to provide robust similarity measurements across the 
wide optical diversity of inland waters, effectively capturing spectral 
shapes even when the covariance between adjacent wavebands is low 
(Liu et al., 2021). In higher-dimensional space, the spectral angle 
effectively captures subtle differences between OWTs from the inherent 
high number of degrees of freedom. With fewer wavebands, the math-
ematical space becomes constrained and the angular separation between 
different optical conditions compresses, causing otherwise distinct 
spectra (and possibly pertaining to different ecological processes) to 
appear more similar. This compression creates systematic biases that 
vary with both the optical complexity of water conditions and with the 
selection of remaining wavebands. Biases manifest non-linearly as either 
an over- or underestimation of the likelihood of cyanobacteria presence 
depending on the mixing state and dominant optical features present 
(Figs. 5, 6). Crucially, while optically well-defined conditions like sur-
face accumulations or clear water conditions maintain their distinc-
tiveness even in reduced spectral dimensions due to their large deviation 
from reflectance shapes of well-mixed water, the subtle spectral features 
that are diagnostic of cyanobacteria become increasingly difficult to 
differentiate without key wavebands in the yellow to infrared region. 
This pattern is consistent across our theoretical waveband sensitivity 
analysis, direct sensor comparison, and ecoregion-based evaluation, 
evidencing the fundamental limitation in detecting cyanobacteria bloom 

evolution that transcends specific algorithms or waterbodies.
The theoretical waveband sensitivity analysis (Fig. 4A) demonstrates 

that the loss of spectral regions expected to have high-magnitude Rw in 
certain optical conditions, e.g., when a high energy under the curve in 
the NIR region is expected in the presence of surface accumulations, or 
in the blue region in clear water conditions, leads to an underestimation 
of the likelihood of cyanobacteria presence. On the other hand, the loss 
of regions expected to have low-magnitude Rw, e.g., weak reflectance in 
the NIR region in relatively clear water conditions or in in the blue re-
gion when cyanobacteria are present, leads to overestimation. This 
behaviour can be effectively described using the weighted OWT mem-
bership score sum (Wsum) metric, which captures covarying OWT 
properties of cyanobacteria presence (Lomeo et al., 2025). For instance, 
removing the waveband centred at 709 nm in the set of 25 OLCI OWT 
definitions led to the largest (negative) Wsum bias compared to using the 
full range of wavebands, especially for OWTs typically associated with 
the highest cyanobacteria occurrence risk (Fig. 4A). This is expected 
given the important contribution of the 709 nm waveband to the shape 
of Rw and OWT spectra when phytoplankton biomass is high. As the 
concentration of cells, and thereby the contribution of particle back-
scattering and pigment absorption relative to water absorption in this 
region reduces, the lack of the 709 nm waveband led to the largest 
(positive) Wsum bias compared to using the full range of wavebands in 
OWTs typically associated with the lowest cyanobacteria occurrence 

Fig. 8. Most the frequent ecoregions by season (DJF, MAM, JJA, SON), and the most frequent, or predominant, for coincident observations for MERIS and MODIS in 
2011, and for OLCI and MODIS in 2019.
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risk (Fig. 4A). The absence of a waveband centred at 620 nm affects the 
definition of all OWTs. In some cases, secondary absorption features of 
algal accessory pigments like chlorophylls b and c likely lead to over-
estimating cyanobacteria presence (Simis et al., 2007). However, the 
620 nm waveband remains crucial for distinguishing cyanobacteria 
from other phytoplankton groups across varying optical conditions 
(Kutser et al., 2006). The combined critical importance of the 620 and 
709 nm wavebands to detect cyanobacteria presence is well established 
(Dekker, 1993; Simis et al., 2005; Matthews et al., 2012), and our 
analysis shows that sensors lacking either of these wavebands will 
particularly underestimate OWTs associated to medium (w = 100), and 
high (w = 1000), cyanobacteria occurrence risk. Wsum bias resulting 
from removing the 412 nm waveband from OWT definitions, especially 
those associated with the highest cyanobacteria occurrence risk, corre-
sponds to efficient light absorption by pigments in cyanobacteria- 
dominated waters (Ruiz-Verdú et al., 2008). Thus, in the presence of 
cyanobacteria, when higher absorption in this spectral region is ex-
pected, the absence of the 412 nm waveband reduces the ability of 
sensors to distinguish between different cyanobacteria growth phases 
through varying mixing conditions, leading to an overestimation of 
Wsum. Conversely, at the lowest cyanobacteria cooccurrence risk (i.e., 
clearer water conditions), the bias becomes negative. Similarly, positive 
Wsum bias linked to the removal of 754 and 779 nm wavebands confirms 
the importance of capturing the relative contribution of absorption by 
water to beam attenuation which is primarily modulated by particle 
scattering. When cells accumulate at the surface, the shape of the 
spectrum in the NIR becomes highly distinguishable from other mixing 
conditions, much like the case of floating vegetation. This reduces the 
individual influence of these wavebands in the spectral angle 

calculation, resulting in smaller Wsum bias. Conversely, in OWT defini-
tions not associated to material accumulating at the water surface, the 
presence of either of these wavebands in the spectral angle calculation 
becomes fundamental to distinguish between subtle variations of mixing 
states. The contribution of the wavebands described above only diverge 
for OWTs with distinct optical characteristics, whereby the spectral 
angle metric become sensitive to changes in other parts of the spectrum 
compared to (most) OWTs. These include OWT 12.2 (surface scum), 
which present a unique M− like shape, showing reflectance peaks at 
bands 560 and 754 nm, and throughs at 412, 681 and 885 nm (Lomeo 
et al., 2025), and OWT 10 and 13, representing colour dissolved organic 
matter rich waters primarily found at riverine estuaries and clear water 
conditions, respectively (Spyrakos et al., 2018).

Sensors with waveband configurations that are similar to OLCI, like 
GOCI-II and MERIS, detect cyanobacteria population dynamics with 
minimal bias relative to OLCI (Fig. 4B). Waveband configurations such 
as those of MODIS, VIIRS, and GOCI show departures from OLCI, 
particularly in OWTs associated with high cyanobacteria occurrence risk 
and clear waters. Land-focused sensors like the Landsat series show 
substantial biases across most OWTs, with marginally better perfor-
mance in OWTs associated to surface accumulations, which present the 
strongest optical contrasts with most other water types. Even MSI, 
despite a more appropriate waveband configuration for studying water 
colour than Landsat sensors, struggles to resolve varying cyanobacteria 
presence, particularly for OWTs associated to medium cyanobacteria 
occurrence risk, likely to include the initial (or final) stages of cyano-
bacterial bloom (Lomeo et al., 2025). Superdove, while possessing 
wavebands expected (in theory) to help resolve cyanobacteria, such as a 
yellow band overlapping with phycocyanin absorption, shows 

Fig. 9. (A) Comparison of weighted optical water type membership score sum (Wsum) for MERIS (2011), MODIS (2011 and 2019 combined), OLCI (2019), MERISM 
(2011), and OLCIM (2019), by ecoregions. MERISM and OLCIM refer to MERIS and OLCI sensors using the same waveband configuration as MODIS. (B) R490 (488) / 
R560 (555), (C) R709 / R665 (not available for MODIS), (D) R754 (748) / R665 (667) waveband ratios for MERIS, OLCI, and MODIS by ecoregions. The wavelengths in 
brackets refer to MODIS wavebands. The numbers on the vertical axes in bracket are the MODIS wavebands.
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substantial biases, likely due to the lack of wavebands in the blue and in 
the NIR spectral regions to help distinguish optical water types. In all 
these results, sensor capabilities pertaining to accurate atmospheric 
correction are not taken into account, and we assume that Rw is repro-
duced to the same accuracy as the data underlying the definition of the 
OWT library. In practice, atmospheric correction for optically complex 
water greatly benefits from wavebands spanning the light spectrum and 
additional wavebands in the near infrared and shortwave infrared.

Comparison of coincident observations of MODIS, MERIS, and OLCI, 
confirm that the reduced spectral resolution and waveband configura-
tion in MODIS lead to artificially assigning higher OWT membership 
score (Sowt) values compared to MERIS and OLCI, collapsing the 
continuous gradient of bloom evolution into fewer types. This occurs 
despite key spectral regions for ocean colour monitoring, such as the 
wavebands centred at 560 (555), 665 (667), and 681 (678) nm, show a 
fair stability between the three sensors and their atmospheric correction 
(Fig. 6; Table 1), as also found in other studies (Liu et al., 2024; Pahlevan 
et al., 2024). The greater disagreement in other shared wavebands such 
as those centred at 412 and 754 (748) nm likely reflects challenges for 
atmospheric correction, particularly given the reduced spectral infor-
mation and different radiometric characteristics in MODIS (Moses et al., 
2009; IOCCG, 2010; Simis et al., 2022b). However, our results sub-
stantiate that the non-linear responses of MODIS to optical features 
associated to cyanobacteria bloom development make attempts to 
harmonise with other sensors non-trivial, and likely not always 
ecologically appropriate.

MODIS-derived Sowt values are systematically higher across the OWT 

set compared to both MERIS and OLCI, especially for OWTs associated 
with high cyanobacteria occurrence risk (Fig. 6). Spectra that represent 
distinct cyanobacteria mixing states appear mathematically more 
similar with MODIS. When the difference to a given reference OWT 
spectrum is large (i.e., low Sowt values), the loss of spectral detail arti-
ficially reduces the measured angles, leading to overestimations in 
MODIS. Conversely, when spectra are similar (i.e., high Sowt values), the 
reduced spectral configuration of MODIS slightly increases the 
measured angle, producing lower Sowt values (Table 2). When restricting 
the comparison to matching wavebands, MODIS shows consistently 
lower Sowt values compared to MERISM and OLCIM (Table 3), reflecting 
its tendency to yield larger spectral angles. This difference likely stems 
from a combination of factors including its broader spectral response 
functions and different waveband positioning (Fig. 4), differences in 
radiometric characteristics, and later overpass time of the Aqua sensor 
compared to MERIS and OLCI, likely leading to less consistent 
comparisons.

The systematic compression into fewer water types by MODIS clearly 
results in limited monitoring capabilities across the diverse optical 
conditions observed in Lake Victoria. While MODIS generally over-
estimates Wsum across the lake, it systematically underestimates Wsum in 
dendritic regions and semi-enclosed basins (Fig. 7I, J), where it also 
consistently shows lower observation counts (Fig. 7D, I). This is 
particularly evident in Winam Gulf (Fig. 10E-F), where MODIS provides 
91 % to 96 % fewer valid estimates compared to MERIS and OLCI. These 
are also areas known to have a recurrent issue of persistent cyanobac-
teria prevalence (Sitoki et al., 2012; Mbonde et al., 2015; Simiyu et al., 

Fig. 10. Weighted membership score sum (Wsum) relative proportion by ecoregion by season for coincident observations for MERIS and MODIS in 2011 (A, C, E, G) 
and OLCI and MODIS in 2019 (B, D, F, H) in four different regions of the lake. The location of these regions is shown in the central plot of the boundaries of Lake 
Victoria: the Ssese islands and Murchison Bay (A − B), a central portion of the lake (C – D), Winam Gulf (E – F), and Speke Gulf (G – H).
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2018; Olokotum et al., 2020; Brown et al., 2024). The coarser native 
spatial resolution of MODIS leads to larger masked areas during atmo-
spheric correction near shorelines, while its radiometric characteristics 
cause well-understood saturation over bright targets like surface blooms 
and high suspended sediment concentrations (Wynne et al., 2013). The 
coincidence of these biases with areas of reduced observations creates 
systematic gaps in bloom monitoring precisely where detailed optical 
information would be most valuable, underscoring how the fundamental 
limitations of MODIS compound in regions where cyanobacteria blooms 
frequently develop and impact water quality.

The ecoregion analysis demonstrates that while MODIS captures 
broad spatial patterns of water colour, particularly in areas of high 
cyanobacteria occurrence risk, it fails to resolve the subtle transitions 
that characterise cyanobacteria bloom development through mixing 
states. Self-organising Maps (SOM) captured typical optical character-
istics leveraging Sowt values within shared seasonal cyclin, proving an 
effective method to evaluate monitoring capabilities irrespective of 
waveband configurations and overpass times (Fig. 8), and this is evi-
denced by the distribution of Wsum across the identified ecoregions. 
While MERIS and OLCI show comparable and consistent Wsum ranges, 
MODIS yields consistently higher values with notably compressed 
ranges (Fig. 9A). This pattern persists even when MERIS and OLCI are 
constrained to the waveband configuration of MODIS, though with 
lower absolute values, directly suggesting that the higher average Wsum 
and narrower ranges are linked to the reduced spectral space rather than 
individual sensor characteristics. The spectral basis for these differences 
manifests clearly in commonly used waveband ratios across different 
optical conditions. The 443/ 560 nm waveband ratios provide consistent 
distinction between ecoregions across the three sensors (Fig. 9B), 
reflecting the relative radiometric stability previously described (Fig. 5). 
Additionally, while MERIS and OLCI clearly distinguished between 
ecoregions using the 709/ 665 nm waveband ratio (Fig. 9C), this 
behaviour was not replicated when using the 754/ 665 nm waveband 
ratio (Fig. 9D), highlighting the lower sensitivity of wavebands at longer 
wavelengths to changes in the vertical distribution of cells, unless 
accumulated at the surface (Kutser et al., 2006). This means that the loss 
of the waveband at 709 nm in MODIS fundamentally limits its ability to 
capture the expected optical transitions between mixing states, which is 
ultimately why Wsum magnitudes and ranges diverge from MERIS and 
OLCI.

Regional variations in optical complexity across Lake Victoria expose 
the practical consequences of the reduced spectral coverage of MODIS. 
In the area comprising the Ssese Islands and Murchison Bay in the north- 
west, MODIS largely aligned with both MERIS and OLCI observations, 
showing only minor disagreements in discriminating between optical 
conditions (Fig. 10A-B). This region exhibited less complex optical 
gradients and fewer transitional mixing states during the study period 
(at least in the years under examination). The limitations of MODIS 
become pronounced in open waters, where it consistently detected 
higher cyanobacteria occurrence risk in clear water conditions. Even 
when capturing the presence of optical characteristics associated to 
blooms of varying severity, as observed during JJA 2019, MODIS failed 
to distinguish subtle transitions that OLCI resolved more distinctly 
(Fig. 10C-D). These constraints become most evident in regions like 
Winam and Speke Gulfs. Although MODIS successfully identified optical 
conditions associate with higher cyanobacteria occurrence risk, it sys-
tematically compressed the optical variability into the ecoregion asso-
ciated with the highest (average) risk of cyanobacteria occurrence 
(Fig. 10E-H). Where MERIS and OLCI detected subtle gradients between 
different ecoregions, indicating evolving mixing states, MODIS defaul-
ted to classifying these to the ecoregion associated to the highest risk of 
cyanobacteria occurrence, loosing granular information that may be 
crucial for proactive water quality management.

In conclusion, while OWT frameworks provide practical solutions to 
translate optical complexity in water bodies into realistic estimates of 
biogeochemical properties, through dynamic algorithm selection across 

optical gradients (Moore et al., 2001; Liu et al., 2021), our analysis re-
veals important constraints imposed by sensor-specific spectral config-
urations. These constraints significantly impact how we interpret 
satellite records, particularly during the 2012–2016 when ocean colour 
mission capabilities were limited to sensors like MODIS, as well as for 
observations from high-spatial resolution sensors commonly used to 
study smaller waterbodies. While the study focused on Lake Victoria, the 
findings are expected to find global relevance and applicability, espe-
cially in light of previous testing of the cyanobacteria occurrence index 
in other lakes (Lomeo et al., 2025). Emerging machine learning ap-
proaches have demonstrated remarkable capabilities in retrieving water 
quality parameters even from sensors with limited spectral coverage 
(Pahlevan et al., 2020; Smith et al., 2021), which likely leverage 
covariation across the reflectance spectrum that may not be explicitly 
captured in discrete OWT classifications. The systematic compression of 
optical gradients demonstrated across our experiments indicates that 
apparent trends in MODIS observations may reflect changes in detection 
capability rather than true ecological dynamics. These findings under-
score the importance of spectral capability in mission design, while 
highlighting that complementary approaches incorporating both spec-
tral shape (as emphasised in OWTs) and amplitude information may 
provide more robust characterisation of cyanobacteria presence across 
varying mixing states. As emerging ocean colour missions like the 
Plankton, Aerosol, Cloud ocean Ecosystem (PACE) offer enhanced 
spectral capabilities that are expected to improve cyanobacteria moni-
toring globally, understanding the specific spectral limitations we have 
identified provides essential context for analysing decades of observa-
tions that underpin our understanding of inland water responses to 
environmental change. This context becomes particularly critical as we 
increasingly rely on historical records to understand climate-driven 
changes in phytoplankton communities and develop evidence-based 
water quality management strategies for these vital ecosystems.
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Advancing cyanobacteria biomass estimation from hyperspectral observations: 
demonstrations with HICO and PRISMA imagery. Remote Sens. Environ. 266, 
112693. https://doi.org/10.1016/j.rse.2021.112693.

Paerl, H.W., Otten, T.G., 2013. Harmful cyanobacterial blooms: causes, consequences, 
and controls. Microb. Ecol. 65 (4), 995–1010. https://doi.org/10.1007/s00248-012- 
0159-y.

Pahlevan, N., Balasubramanian, S., Begeman, C.C., O’Shea, R.E., Ashapure, A., Maciel, D. 
A., Hall, D.K., Odermatt, D., Giardino, C., 2024. A retrospective analysis of remote- 
sensing reflectance products in coastal and inland waters. IEEE Geosci. Remote Sens. 
Lett. 21, 1–5. https://doi.org/10.1109/LGRS.2024.3351328.

Pahlevan, N., Smith, B., Schalles, J., Binding, C., Cao, Z., Ma, R., Alikas, K., Kangro, K., 
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