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Abstract 

Many organisms, notably phototrophs, routinely acquire resources over only a 

fraction of the day. They have to balance their main period of initial biosynthesis 

against cell cycle events. Because of their short generation times, this challenge is 

especially acute for the planktonic microalgae that perform 50% of global  C-fixation. 

Empirical evidence indicates that microalgal day-average growth is a function of 

the ability to acquire resources rapidly when available, retaining initial products 

of assimilation to support growth. A fundamental question arises over the optimal 

physiological configuration to support such activity. Here, we applied computer 

simulations implementing a development of the quota concept, in which the internal 

limiting resource is itself C, ratioed against total organism C-biomass. The model 

comprises metabolite and core pools of carbon C (MC and CC, respectively), with 

growth modulated by MC/(MC + CC); MC supports growth of CC in the absence of con-

current resource acquisition. Dynamic feedback interactions from the relative size 

of MC controls resource acquisition. The model reproduces the general pattern of 

growth at different light:day fraction (LD), and of afternoon-depression of C-fixation. 

We explored the efficiency of the physiological cell configuration to locate optimal 

configurations at different combinations of maximum growth rates (Umax) and LD 

values across plausible parameter values for microalgae. While the optimum maxi-

mum resource acquisition rate deployed during the L phase scales with Umax/LD, the 

maximum size of the metabolite pool scales to LD/DV, where DV is division time (i.e. 

Umax/Ln(2)). Accordingly, we conclude that faster growing organisms carry a penalty 

limiting their geographic spread to latitudes and seasons where LD is high. Larger, 

vacuolated organisms (such as diatoms), having a bigger metabolite compartment, 

may be at an advantage in such situations.
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Author summary

Planktonic microalgae that support 50% of global primary productivity have a 
problem: for half of their growing lives, during night time, they cannot fix C. We 
explored how they may optimise C-fixation during the illuminated fraction of the 
day (LD) to support biosynthesis over the whole day. We constructed a model 
describing a metabolite pool, into which the initial results from C-fixation accumu-
late, and a core structural pool. Consistent with how real organisms function, the 
relative size of the metabolite pool modulates, or controls, not only the synthesis 
(growth) of the core structure, but also modulates C-fixation; both modulations 
used sigmoidal functions in line with allosteric biochemical controls. We found 
that, while the C-fixation rate required to support a given growth rate potential 
(Umax) increases broadly linearly with 1/LD, the relationship with the maximum 
size of the metabolite pool relative to the whole organism biomass (Mmax) relates 
to the ratio of LD to the organism’s doubling time. Faster growing organisms thus 
need not only a higher resource acquisition rate (C-fixation) for a given combi-
nation of LD and Umax, but also a larger Mmax. We suggest this limits the compet-
itiveness of faster growing organisms to lower latitudes and/or longer day-light 
periods.

Introduction

The growth of organisms may be expected to be most efficient when it proceeds 
under steady-state environmental conditions, because such conditions enable the 
organism to balance out all biochemical functionality to minimise stress and max-
imise the allocation of resources to growth. It is for this reason that steady-state 
conditions are exploited in biotechnological applications [1]. In nature, however, 
organisms invariably grow in non-steady-state environments, not least because of 
the impacts of the light-dark cycle. This is especially problematic for organisms which 
have generation times of around 1d, such as microalgae. Indeed, the light-dark cycle 
often entrains cell division [2,3] such that microalgae with a doubling time of around 
1 d (i.e., with a specific growth rate, U≤ Ln(2)) partition resource acquisition and the 
cell division cycle stages between the light-dark periods. However, various microal-
gae can grow faster than this and the interactions between resource acquisition and 
growth will be more complex. Although one may suspect that the fastest growth rates 
would only be attainable in continuous light, some species can achieve extremely 
high growth rates in light-dark cycles (e.g., [4]).

Short-term acquisition of resources at rates far in excess of those required to 
match their average needs are common. For example, the uptake of inorganic 
nutrients into microbial plankton can exceed their day-average needs by many times 
[5,6]. However, most simulation models of these organisms assume an equilibrium 
interaction between resource acquisition and growth, such that de facto the maximum 
rate of acquisition defines or aligns with the maximum growth rate (e.g., [7]). This 
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convention is born from empirical studies in which the light:day cycle ratio is held constant, where this diel equilibrium 
condition is inevitably met. The mismatch between simple model assumptions and reality gives rise to various challenges 
when considering the dynamics of growth in non-steady-state natural systems [8]. In contrast to the description in models, 
real organisms have to modulate resource acquisition to balance their needs. How they do so, and the fidelity with which 
they do so, may be expected to differ with the type of resource and the variability in availability. Collectively these traits will 
also help to define optimisation for organisms that evolve in different conditions; the representation of these traits are thus 
important topics for consideration in models.

In computational modelling of microbial growth, simulating the disconnect between resource availability and growth 
is well known to be important, with the simple classical model of Monod [9] being less able to describe growth dynamics 
than quota models [10,11]. Quota models relate growth to the internal resource availability, describing that availability 
either as a cell-quota or C-quota (e.g., for N-limited growth, as N cell-1 or N C-1). Nutrients that contribute only a minor part 
to biomass will occupy little volume in an organism, and may be accumulated to a large excess (e.g., P accumulating as 
polyphosphate, see [12]). The importance of modelling transient uptakes [13] has been recognised for many decades [14]. 
Such accumulations can support C-specific growth to continue for even several generations in the absence of concurrent 
resource acquisition. At the other end of the spectrum, obtaining the most important component, namely carbon, presents 
a challenge to phototrophs because irradiance and thence the ability to acquire the resource varies over the day light-
dark cycle, seasonally with the time of year and also with latitude. Near the equator the light:day (LD) period is close to 
0.5, while at high latitudes it varies between 0 (total darkness in winter) and 1 (continuous light in summer). Models that 
describe the accumulation of storage C include those of [15] and [16], though this feature is also described by the excess 
of C over the minimum C:N quota using a standard quota model [17]. The model of Zonneveld and collaborators [18], 
however, proposed a C-quota model that considered two C pools, transient and structural pools, with their concentrations 
expressed against the cell volume, while the model concept presented in [19] describes models using metabolic and 
structural pools with their concentrations expressed against the total organism-C.

A crude expectation for the growth of phototrophs, such as the unicellular planktonic microalgae that support food-webs 
throughout the sunlit waters of the oceans, is that they grow at a maximum rate during the daylight hours and de facto 
shut down in darkness. Accordingly, we may expect to see a simple relationship between the day-average growth rate 
(e.g., C C-1 d-1) and LD. However, empirical evidence does not support such a simple relationship. For example, the data 
of Paasche ([20,21]; Fig 1A) reveals an ability to totally compensate for LD values down to ca. 0.6. Thus, microalgae grow 
at a day-average rate much faster with an irradiance cycle of 0.5, versus that at LD = 1, than the 50% day-exposure to light 
may be expected to support (Fig 1B). Such abilities are likely to be important factors affecting species succession [22].

The explanation to this paradox must, at its heart, require a rate acquisition (here, as C-fixation as C C-1 hr-1) during the 
day-light hours that exceeds the day-average requirement. However, while a model can be operated that simply describes 
such a high rate of resource acquisition, this raises the question as to why the organism itself should not exploit that high 
rate to achieve an even faster day-average rate of acquisition at LD = 1. The conclusion is that there must be a pinch point 
limiting the biochemical processing of the resources, associated at least in part with DNA-replication cell-cycle events. The 
partially assimilated resources that are accumulated during the light-phase must thus be held in a pool, noting that this 
‘pool’ is not likely to be a single spatially resolvable entity within the organism, but rather a description of part assimilated 
metabolites and sub-structures. The content of this pool then supports growth of what we may term the core biomass over 
the whole day. Under conditions where the periodicity of resource availability (here, light within LD for enabling photosyn-
thesis) may be restrictive, this intermediate pool enables a surplus to be acquired which supports growth of core physi-
ological processes over the whole day. The dynamics of filling and exploiting (draining) that intermediate pool must also 
potentially be restrictive if acquisition exceeds the needs for the day-average maximum growth rate.

Here we consider the simplest situation where resource availability when it is available (e.g., light during day-light 
hours) is not limiting, nor (e.g., for high light) is it inhibitory. We thus have 4 interacting factors to consider that have 
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overarching control on the dynamics: the maximum growth rate (denoted here by Umax), the relative rate of resource 
acquisition rate required to satisfy Umax (denoted by A0), the size of the intermediate (metabolite) pool relative to the total 
organism biomass (denoted by R), and the value of LD.

Previous studies have considered the effects of resource-limitation under continuous light or a fixed LD ([8,16]), as 
did the work [18] using a multiple C-pools model of microalgae. Our work thus appears to be the first to have considered 
C-acquisition under variable diel cycles. Another novelty in this regard is that we exploit feedback processes to mimic 
the homeostatic regulations that modulate resource acquisition and growth in real organisms. The aim of this work is to 
explore the inter-relationships between these factors, to locate the optimal configurations required to handle different 
LD-supply patterns of resource acquisition, and to establish how the maximum growth rate of the organism may affect 
these configurations. These matters are important because allocating unwarranted resources to aspects of organism 
physiology that bring in and then at least partially assimilate resources, and also the maximum size of the metabolite pool, 
could counter the advantage of deploying the mechanism. These results would be crucial for understanding patterns of 
the geographic spread of phototrophs in various latitudes across seasons, and may affect the competitive advantage of 
organisms to grow under climate change scenarios that see pole-ward shifts in distribution [23].

Materials and methods

The flowchart of the model is shown in Fig 2A. The model variables, functions and parameter values used in the model 
are summarised in Table 1. We have retained many of the variable names that have been employed in previous models 
based on the DRAMA concept (see [19]). The organism physiology is described as a system of two pools (compartments) 
of carbon C: considered as a biomass-based model with units of mgC m-3, these are identified as the metabolite pool 

Fig 1. Panel (A) shows experimental data from [20,21], showing growth rates of the microalga Emiliania (formally Coccolithus) huxleyi and 
the diatoms Ditylum brightwellii and Nitzschia turgidula under saturating photon flux density (PFD) but delivered with different diurnal light 
periodicities (LD, where 1 is continuous illumination). In panel (B) these growth rates are shown normalised to the rate at LD = 1. The thin line in 
panel (A) indicates a day-average growth rate of 0.693 d-1 (i.e., Ln(2)) equating to a cell division per day. The thin line in panel (B) indicates the growth 
rate expected if it increased linearly with LD.

https://doi.org/10.1371/journal.pcbi.1013132.g001

https://doi.org/10.1371/journal.pcbi.1013132.g001
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MC, and the core biomass pool CC. The total C-biomass of the organism is given by the sum of CC and MC. The acquired 
external resource firstly enters pool MC (denoted by the thick pink horizontal arrow on the left of the diagram). The 
resource acquisition per capita (i.e., per the total C-biomass) rate is given by the term Amax· 

ACu, where Amax is the maximal 
rate of acquisition, and ACu (‘acquisition of carbon control’) is a function of CC and MC, which accounts for the decrease in 
resource acquisition due to feedback from the fullness of the metabolite pool MC (see below the details about the para-
metrisation of ACu). The maximal rate Amax is given by the product Amax = Umax· Am, where the parameter Umax is the maximal 
per capitate growth rate, and the coefficient Am > 1 scales the acquisition rate above that required to support the maximal 
growth rate of the cell (Am is time-dependent, since the resource acquisition depends on the light). The growth of the core 
biomass CC occurs via synthesis at the expense of C flowing from MC, which is described in the diagram by the thin hor-
izontal pink arrow. The growth of CC is modulated by the feedback from the relative fulness of pool MC, described by the 
function CCu (‘consumption of carbon control’), which is mathematically a function of the relative fulness of pool MC (see 
below). Therefore, the per capita growth rate of CC is given by the product Umax·

CCu.
We also take into account the respiration process due to catabolic (basal) and anabolic mechanisms, which is 

described in the model diagram by the vertical pink arrow. The basal respiration rate is described by the term Umax· Br, 
where Br is a positive parameter. The respiration due to anabolism is assumed to be proportional to the growth rate of 
the core biomass compartment, i.e., to be given by the product Cr · H(CCu) ·C Cu, where the function H is mathematically 
the Heaviside step function (H(x) = 1, x > 0 and H(x) = 0otherwise), the parameter Cr describes the anabolic respiration 
rate. We also account for a return flow of carbon from CC back to MC in the case, where there is insufficient carbon in MC to 
support even basal respiration; this is incorporated in the function CCu (see below). The model equations for the dynamics 
of MC and CC are given by

 

dMC
dt

= Umax

[
(CC+M C) · Am ·A Cu – Br · (CC+M C) – (Cr · H(CCu) + 1) ·C Cu ·C C

]
,
 (1)

Fig 2. (A) The flowchart of the model. The C-biomass comprises a metabolic pool (MC) and a structural core (CC). Resource, here as C-fixation, enters 
at a maximum rate set by Amax (per capita) and is constrained by feedback from the size of MC, as controlled by a sigmoidal term, ACu. Resources from 
MC are used to make CC at a maximum rate set by the maximum organism growth rate, Umax

, constrained by the size of MC via sigmoidal term CCu. The 
resource acquisition rate is potentially higher than the core biomass production rate, hence the difference in the horizontal arrow thickness. Respiration 
costs are withdrawn to support catabolic (basal) and anabolic activities (see the main text for details). (B) Typical behaviour of the feedback functions ACu 
and CCu (defined by (Eqs 5) and (6)) plotted against the relative size of the metabolite pool R defined by (Eq 4). Full description of model parameters and 
model functions used is given in Table 1.

https://doi.org/10.1371/journal.pcbi.1013132.g002

https://doi.org/10.1371/journal.pcbi.1013132.g002
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dCC
dt

= Umax ·C Cu · CC
 (2)

In this study we use the following parameterisation of Am, ACu, and CCu. The time-dependent coefficient Am (describing 
the scaling of resource acquisition) is parametrised as

 
Am =

{
(1 + Br + Cr)·A0 Dk ≤ t < D(k+ LD)

0 D(k+ LD) ≤ t < (k+ 1)D  (3)

which takes into account the light and dark periods. Here D is the length of a day (D = 1 d); LD is the proportion of the 
light time during the day (0 ≤LD≤ 1); k = 0,1, 2,... is the number of the day. The parameter A0 provides adjustment in the 
resource acquisition rate sufficient to enable the maximum growth rate (Umax) to be attained, when resource acquisition is 
allowed for only part of the day. For example, A0 = 2 enables a maximum acquisition rate twice that required to support a 
maximum growth rate of Umax  when acquisition is continuous. In this application, this parameter reflects the relative rate of 
resource acquisition during the light period but must also compensate for continued respiration during darkness.

Table 1. Definitions of model variables, functions, parameters, units as well as their ranges and default values for the model. ‘DL’ denotes 
dimensionless variable/parameter.

Name Meaning Formulation, parameter range, unit, and if 
applicable default value

CC Core structural pool mgC/m3

MC Metabolite pool mgC/m3

η Contribution of MC to the total biomass η = MC/(CC + MC); DL

Am Dependence of resource acquisition on light Am = (1 + Br + Cr) · A0 during the light time; 
Am = 0 during the dark time; gC/gC/d

R Relative size of the MC pool to its maximum as set by Mmax R = min(1,max
(
0, η–M0

Mmax–M0

)
); DL

CCu Feedback controlling growth of CC, depending on the state of the MC pool
(‘consumption of carbon control’) CCu =

{
(1 + CCuh

uk ) RCuh

RCuh+C
Cuh
uk

if R > 0

–Br if R = 0
; DL

ACu Feedback controlling resource acquisition by the MC pool
(‘acquisition of carbon control’)

ACu = (1 + AAuhuk ) (1–R)Auh

(1–R)Auh+AAuhuk
, DL

Gr Day-average growth rate See expression (3); d -1

Gr0 Normalised day-average growth rate See expression (5); DL

LD Proportion of the day that is illuminated 0 ≤ LD ≤ 1;DL

A0 Adjustment in the resource acquisition rate required to support Umax when 
acquisition occurs only over the period LD relative to that when LD = 1

1 ≤ A0 ≤ 6;DL

Auh Curve shape factor for ACu Auh=2; DL

Auk Curve shape factor for ACu Auk=0.05; DL

Br Basal respiration rate expressed as a ratio to Umax Br = 0.05; DL

Cuh Curve shape factor for CCu Cuh=6; DL

Cuk Curve shape factor for CCu Cuk=0.2; DL

Cr Anabolic respiration rate; this would actually vary depending on whether 
(for a phototroph) NH

4
+ or NO

3
- was being assimilated

Cr = 0.2; gC/gC

Mmax Maximum proportion of total carbon biomass occupied by MC 0.2 ≤ Mmax ≤ 0.7; DL

Mo Minimum proportion of organism biomass occupied by MC Mo = 0.05; DL

Umax Maximum per capita growth rate Ln(2)/2 ≤ Umax ≤ 4Ln(2); d -1

Amax Maximum per capita rate of resource acquisition Amax = Umax  ACu Am;  d -1

https://doi.org/10.1371/journal.pcbi.1013132.t001

https://doi.org/10.1371/journal.pcbi.1013132.t001
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The functions ACu and CCu relate to the state of fullness (satiation) of the MC pool, denoted by R (see Fig 2B), between 
the minimum relative pool size, M0, and the maximum Mmax.

 
R = min

(
1,max

(
0,

η –M0

Mmax –M0

))
,
 (4)

where η= MC/(CC+ MC).
The biological rationale of the parameter M0 is that real organisms always contain a residual pool of metabolites in 

reflection of the continual recycling of materials with cell maintenance. The parameter Mmax is the maximum proportion of 
the total biomass (CC + MC) occupied by the metabolite pool MC. Using the above expression for R, we now introduce the 
following sigmoidal parameterisations for the functions ACu and CCu:

 

CCu =

{
(1 + CCuh

uk ) RCuh

RCuh+C
Cuh
uk

if R > 0

–Br if R = 0
,
 (5)

 
ACu =

(
1 + AAuhuk

) (1–R)Auh

(1–R)Auh+AAuhuk
,
 (6)

where Cuh, Cuk, Auh, and Auk,are model parameters. In particular, the value of ACu is maximal at low ratios of R and it 
drops to low values for a high fulness of the metabolic pool. The function CCu shows the opposite behaviour. Our argument 
for the choice of the sigmoid dependences is that operationally these are consistent with the allosteric nature of feedback- 
regulated processes in biological systems. Examples of graphs of ACu and CCu, constructed as against the relative size of 
the metabolite pool R are shown in Fig 2B.

In this study, consistent with the types of empirical data seen in Fig 1, we are mostly interested in the average per cap-
ita growth rate Gr over the period (∆t ) 1 day. To obtain the formula for Gr, we firstly sum up the time derivatives d MC/dt 
and d CC/dt given by (Eqs 1) and (2). Then we divide the obtained expression by the total biomass (CC + MC) and perform 
integration over the interval ∆t :

 
Gr =

Umax

∆t

∫ t+∆t

t

[
Am ·A Cu(t) – Br – Cr · H(CCu(t)) ·C Cu(t)

CC(t)
CC(t) +M C(t)

]
dt.

 (7)

Note that in (Eq 7), we integrate the difference between the resource acquisition rate and respiration. The total bio-
mass in the model (CC + MC) should be understood as the total biomass of all organisms (e.g., mgC m-3) in the population, 
rather than that of an individual organism. As such, the above growth rate gives the population growth rate (i.e., C-specific 
growth rate, as C C-1 d-1).

It is easy to show that the expression for the growth rate depends on the ratio MC/(CC + MC) or CC/(CC + MC) rather than 
on MC and CC separately. Therefore, for the ratio η = MC/(CC + MC) we have the following dynamical equation:

 
dη
dt =

d
dt

(
MC

CC+MC

)
=

dMC/dt
CC+MC –

MC (dCC/dt+dMC/dt)
(CC+MC)2

=
dMC/dt
CC+MC – η

(dCC/dt+dMC/dt)
CC+MC = (1 – η)

dMC/dt
CC+MC – η

dCC/dt
CC+MC  (8)

We substitute the expressions for time derivatives dMC/dt  and dCC/dt from model (Eqs 1) and (2) in the above expres-
sion to obtain

 
dη
dt

= Umax · (1 – η) ·
[
Am · ACu – Umax · Br –

(
Cr · H

(
CCu

)
+ 1

)
· (1 – η) ·C Cu – ηC·Cu

]
 (9)
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Importantly, unlike MC and CC, the ratio η = MC/(CC + MC) is always bounded, and varies between 0 and 1. We should 
also note that both functions ACu and CCu (as well as R) depend on the ratio η. Therefore, expression of the average 
growth rate (Eq 3) would also depend on η. We can re-write the growth rate in a normalised form as

 Gr0 = Gr
Umax

= 1
∆t

∫ t+∆t
t

[
Am · ACu(t) – Br – Cr · H(CCu(t)) ·C Cu(t) · (1 – η(t))

]
dt  (10)

In our study, we mostly considered equation (Eq 9) and integral (Eq 10) for η rather than the system (Eqs 1) and (2). 
Dynamic equation (Eq 9) and integral (Eq 10) were evaluated using standard numerical methods.

The model was implemented in both MATLAB and in Powersim Studio; the model using the latter is described in S1 
File (see Tables A, B, C). For the considered parameter values (see Table 1 for detail), we found that the solution settles 
to a periodic attractor within a few days, which is due to strong external modulation of the resources availability, i.e., to the 
light-dark cycle. In particular, we did not find a strong influence of initial condition on the time to reach the periodic attrac-
tor. Therefore, we computed the value of Gr0 after skipping the first few computational days (ca. 10 days) to ensure that 
the system reaches its asymptotic behaviour. We investigated the dependence of the normalised growth rate Gr0 on the 
four key parameters Umax , LD, A0, Mmax. We did not exhaustively investigate the consequences of using different values 
of the feedback control parameters (Cuh, Cuk, Auh, and Auk ); as long as these describe response curves that show a wide 
level of overlap in saturation values across R (as seen in Fig 2B) the shape of these feedbacks has little consequence on 
general dynamics.

Results

Fig 3 shows the time course of typical model output over a day obtained using various values of A0. If A0 = 1 then the rate 
of acquisition can only support the maximum growth rate for LD = 1. For A0 = 2, the system exhibits growth at its maximal 
rate for LD > 0.5. Therefore, with LD = 0.6, as shown in Fig 3, the rate of acquisition is slowed part way through the light 
period by feedback from the fullness of the metabolite pool (due to the decrease of ACu). With a higher value of A0 (A0 = 4), 
the metabolic pool fills very rapidly, such that feedback occurs earlier and the resource acquisition rate in the latter part of 
the light period is much lower, matching the rate of the flow of material from the compartment CM to the compartment CC 
after accounting for respiration, which is set by the maximal growth rate Umax  (see Fig 2). In the upper panel of Fig 3 we 
also show the calculated day-average growth rates for the three different A0. In Figs B, C from S2 File, outputs are shown 
where A

0
 is held constant, while M

max
 is varied.

We evaluated the day-average growth rate for different combination of model parameters Umax , LD, A0, Mmax. For each 
set of parameters, we ran simulations long enough to attain the periodic attractor. The results are presented in Fig 4 in the 
form of (A0, Mmax) parametric diagrams constructed for different Umax  and LD, where we plot the normalised growth rate 
Gr0 defined by (Eq 10). This shows that for given Umax and LD, an increase in values of A0 and Mmaxabove certain values 
(for fixed Umax and LD) provide no benefit in terms of enhancing the average growth rate: Gr0 attains a plateau with values 
very close to 1, corresponding to Umax . For each diagram, we also estimated the optimal values of A0 and Mmax. Here we 
define the optimal values of A0 and Mmax as the minimal values for which the day-average growth rate attains 97.5% of 
Umax . This modelling approach implicitly accounts for the underlying high costs of having larger values of these parame-
ters for no substantial gain in the growth rate. In Fig 4 we denote such optimal values by red filled circles; they were found 
automatically by applying a standard optimisation procedure. These optimum values are re-plotted in Fig 5, to reveal the 
underlaying relationships.

We found that the optimal values of A0 exhibit a non-linear increase with a decrease in the proportion of the light time 
LD, which can be mathematically approximated by a hyperbolic function, i.e., A0 ∝ LD-1 (see Fig 5A). On the contrary, the 
optimum value of Mmaxat a given LD depends also on the maximal growth rate; the higher the value of Umax, the larger 
the required optimal Mm (see Fig 5B). From Fig 5C it can be seen that the relationship defining Mmaxcomprises a series of 
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linear relationships, one for each growth rate scenario. However, a curve fitted to these data describes 90% of the rela-
tionship between Mmax and LD/Div (here Div is the number of divisions per day). Finally, the corresponding contour plot 
relating Mmaxto Div and LD is presented in Fig 5D. It is noteworthy that much of the space at low LD is inaccessible to fast 
growing configurations, since it requires an implausibly high value of Mmax.

Some example outputs of the model using the optimised parameters from relationships in Fig 5 are shown in Fig C 
(from S2 File) for comparison with Fig 3 and Fig B. These show how the feedback processes act to maintain similar inter-
nal conditions, as reflected by the values of R, ACu and CCu.

Discussion

It is more important, and more efficient, for an organism’s health to maintain a steady metabolic status (homeostasis) than to 
switch processes on and off. Accordingly, when confronted by conditions in which resources are available discontinuously, 
for periods of time, it is preferable to acquire those resources as and when possible, and then convert them into organismal 
growth over time at a steadier rate. The duration of the cell-cycle (through G1, S, G2 and M stages) will also constrain organ-
ismal growth operations. In consequence, the growth of organisms in diel cycles of different duration (e.g., for the microal-
gae shown in Fig 1, [20,21] may not be well described as a simple relationship between their day-average growth rate and 

Fig 3. Examples of model outputs with the resource acquisition confined to 60% of the day (LD = 0.6; light in the first part of the indicated 
day). Upper panel: daily dynamics of the C-resource acquisition rate (C-acq) for different values of A0. The dashed line shows the day-average growth 
rate Gr given by (Eq 7). Bottom panel: the corresponding daily dynamics of ACu, 

CCu and R. For all panels, the model parameters are Umax= 1.386 d-1 
(i.e., 2 doublings or divisions per day as Ln(4)) and Mmax

 = 0.6, the other parameters are provided in Table 1. See also Fig B from S2 File for examples 
where A

0
 is held constant, while M

max
 is varied.

https://doi.org/10.1371/journal.pcbi.1013132.g003

https://doi.org/10.1371/journal.pcbi.1013132.g003
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Fig 4. Example plots showing the normalised growth rate Gr0 given by ( Eq 10) achievable for given A0, Mmaxvalues for an organism with 
resource acquisition limited to only that portion of the day indicated by LD. The maximal growth rates Umax  are expressed as multiples of U0, 
where U0 = Ln(2) d -1, corresponding to 1 division per day. The red dots indicate the optimum combination of values for A0 and Mmax, above which no 
further advantage is afforded to the organism under these scenarios.

https://doi.org/10.1371/journal.pcbi.1013132.g004

https://doi.org/10.1371/journal.pcbi.1013132.g004
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the period of resource acquisition. To appropriately model such a mechanism to function for the acquisition of a dominant 
component of the organism’s biochemistry, notably for carbon, requires both a capability to acquire the resource very rapidly 
when the opportunity arises, and also to retain the capacity to accumulate the immediate products of acquisition.

In this study, we explore this interaction using a simple 2-pool model (Fig 2A) through which recently acquired nutri-
ents are held and exploited in a metabolite pool in support of the growth of the second pool over a longer time at a 

Fig 5. Summary of relationships between the parameters A0 and Mmaxto deliver the optimal growth rate with resource acquisition only under a 
proportion of the day (LD). These values were derived from diagrams such as those shown in Fig 4; the data points in panels (A), (B) and (C) have the 
same source, with those shown in (C) having being normalised to Div from panel (A). The growth rate (Umax

) is described here as divisions per day, Div, 
as Umax

/Ln(2). The Mmax scale in panel (D) is limited to 0.9, which is likely close to the plausible maximum contribution of metabolite-C to total-C, with the 
balance of C being allocated to core structural components. This suggests that much of the output space at LD < 0.5 is inaccessible to organisms with 
division rates of ca. > 2.5 d-1 (i.e., with ca. Umax > 1.7 d-1). The entire data series in panel (A), indicated by the plotted line, is described by: A

0 
= 1.0511 LD-

0.935, R2 = 0.9981. The entire data series in panel (C), indicated by the plotted line, is described by: Mmax = 0.2237 (LD/Div)-0.629, R2 = 0.9034.

https://doi.org/10.1371/journal.pcbi.1013132.g005

https://doi.org/10.1371/journal.pcbi.1013132.g005
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steadier rate. While the use of intermediate pools to accumulate nutrient reserves has been considered in models before 
[18,24–26], our study is unique as it considers both feedbacks controlling resource acquisition and its use for growth, and 
also considers the acquisition of the most important single resource, namely C. Both the relative excess rate of resource 
acquisition over the day-average need (set by the parameter A0 in the model), and the maximum size of the metabolite 
pool into which the resource is initially deposited (set by the parameter Mmax) affect the shape of the relationship between 
the periodicity of resource availability and the relative growth rate attained. The synthesis of CC depends on materials 
flowing from MC; that rate is capped by Umax. Here, we assumed that the flow of carbon into CC, interrupted by LD, was the 
only limiting factor. In reality, there are factors other than that carbon flow that may restrict the use of metabolites, notably 
the acquisition of other nutrients. In a multi-currency model (e.g., C,N,P) the synthesis of CC is thus potentially constrained 
by a multitude of interactions, but there is no negative feedback from the relative size of CC (i.e., CC/(CC + MC)) as such. For 
CC to ‘over-fill’, by definition MC must be relatively small and thus limiting. The relative size of the metabolite pool is a key 
feature of the model; in multi-nutrient DRAMA descriptions this size is used to modulate (regulate) various features [19], 
but the importance of Mmax is shown by our results to itself be of importance in controlling growth dynamics in situations 
where the C-resource (here, as light for photosynthesis) is provided discontinuously.

Considered here when applied to the limiting resource to be C derived from an optimal rate of photosynthesis during 
the light period, we located interactions between A0 and Mmax with Umax and LD (Figs 4, 5). The model predicts that the 
higher the potential growth rate, Umax

, the higher both the optimal acquisition rate and also Mmax must also be for a given 
LD. These conditions must be met to enable a high value of the ratio R (the relative size of the CM pool) to be attained 
over a given proportion of the light time LD. The cost of achieving such metabolic flexibility depends then upon the fluc-
tuation of LD in the environment in which the organism evolves, and the material and operation costs of A0 and Mmax. 
For a phototroph, the total costs of the photosynthetic machinery is significant [27]; in the model this equates to enabling 
Amax = Umax

 x A0, as the resource acquisition rate. From Fig 5A it can be seen that at low LD this rate becomes very high. 
Although one could argue that the proceeds of carbon fixation themselves pay for such a cost, there are additional over-
heads that must be met for a real organism. These are most obviously nitrogen (for proteins) and also, of especial con-
cern in certain areas of the ocean, for the Fe required in co-factors of the light-reactions resulting in a strong relationship 
between the Fe:C quota and growth irradiance [28,29].

The main emphasis on the modelling of photoacclimation in microalgae has been on changes in Chl:C in response 
to nutritional status and irradiance [8,30]. Acclimations to variation in LD are not considered. This likely reflects a bias in 
laboratory studies in maintaining a constant LD during culture work while studying the effects of just changing irradiance 
or interactions with nutrient status [31]. Our work suggests that the value of Mmax might be of equal, if not greater, concern 
than C-fixation in terms of resource allocation for fast growing microalgae in low LD conditions. From the contour plot 
in Fig 5D it is apparent that growth rates above a division per day (Umax = 0.693 d-1) at LD = 0.5 already require ca. 40% 
of the cellular C to be accumulated in the form of readily metabolizable materials. This growth rate is common, with the 
division cycle confined to the dark period of growth (i.e., night time; [2]). For organisms capable of growing with 2 divisions 
per day, such as diatoms and coccolithophorids, such an allocation of space to CM would only permit such a growth rate 
with LD > ca.0.7 (e.g., [20,21]; Fig 1). This structural demand thus places an important control on the spatial and tempo-
ral emergent maximum growth rate and seasonality bounds for phototrophic plankton. If one argues that larger diatoms, 
which are relatively more vacuolated [32–34], have more space for elevated Mmax, then one may expect such organisms to 
be at an advantage in low LD conditions. Mixoplankton, which combine phototrophy and phagotrophy [35], may be able to 
mitigate against such challenges through prey consumption.

From the equation describing the interactions between division rate, LD and Mmax (legend Fig 5), it is seen that at 
extremely low LD it becomes impossible for a phototroph to accumulate a significant amount of C in the light period (the 
rate of photosynthesis, as defined by A0 × Umax, cannot deliver to the need – Fig 5A) and/or there is no space to accumu-
late the intermediates (Mmax is limiting). At the other extreme, in continuous light with LD = 1, there is in modelling terms no 
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justification for describing a metabolite pool and A0 = 1. In reality, of course, there would always be a metabolite pool. For 
organisms with a very low Umax, the required value of Mmax may be small, even at low LD (see Fig 5D).

With global climate change, water temperatures are increasing [36]. This will affect the expressed Umax for plankton [37] 
and, unless the species alter their seasonality or evolve their expressed Umax downwards [38], they will become relatively 
more stressed if their space allocations for Mmax required for them to attain high growth rates become limiting. That may 
be even more likely as microalgae grown at elevated temperatures tend to be smaller [39] and may have less scope for 
expressing a high Mmax. The situation may be more problematic again, because in our study we assume that resource 
availability itself is not limiting in any way during the light period. In practice, for example, the photon flux density varies 
greatly during the day; it would be logical for an organism to be able to express significantly higher than the steady-state 
optimum acquisition rate to make the most of what light is available when it is available. The dynamics of such an excess 
rate of acquisition can be seen in Fig 3 for A0 = 4; here the high acquisition rates during morning photosynthesis results 
in the rapid filling of the metabolite pool which then depressed the acquisition during the afternoon. This behaviour of the 
model is consistent with observations that afternoon rates of photosynthesis are depressed relative to those in the morn-
ing but that this relationship is most obvious when the initial photosynthetic rate is high [40].

In addition to the subcellular space challenges of expressing a large Mmax for faster growing organisms at a given LD 
(except when LD = 1, when Mmax can in theory equate to M0), there is the liability associated with the increased leakage of 
metabolites from such a large metabolite pool into the water which may then support the growth of competitors and also 
attract predators [41]. Our results suggest that growing slowly (i.e., have a lower Umax) is of benefit for an organism exploit-
ing a range of conditions affecting the temporal availability of resources. This provides additional evidence to support the 
growth rate evolution model from [38], which has as its core tenant that an ability to express high growth rates comes at a 
cost, and a failure to meet physiological demand with resource supply results in stress and thence death.

From a modelling point of view, the addition of another state variable (i.e., by dividing the carbon biomass descrip-
tion into state variables MC and CC, or equivalently, using the ratio η = MC/(CC + MC)) with its computational overhead and 
parameterisation challenges, could be seen as undesirable by those running complex models. For such models (at the 
extreme, Earth Systems Models) every additional state variable added per organism described may be seen as computa-
tionally costly. The parameterisation challenge itself is minor; Fig 5 provides a guidance. It should be noted, however, that 
in reality the availability of light is most often sub-optimal, either too low or too high and can vary greatly over the daylight 
hours, prompting various responses [42]. As there is no way for an organism to foresee how the day’s illumination regime 
will develop, one may expect a microalga to express (in the terms used in our model) larger values for A

0
 than indicated 

by Fig 5A. Exploitation of such extreme acquisition rates underscore the value of possessing a suitably high Mmax, a trait 
that thus appears as an important selective criterion that warrants expression in models of these organisms.

Inclusion of the state variable MC in essence provides a description of a C-quota which is analogous to the other nutri-
ent quotas (i.e., N:C, P:C, Fe:C) commonly used in plankton models [11]. In common with the use of other quotas, the 
use of the η = MC/(CC + MC) quota describes growth relating to internal rather than directly to external resource availability. 
Addition of this C-quota also enables an ability to modulate resource acquisitions from different routes, which is partic-
ularly relevant when considering mixotrophic activity [35] that combines phototrophy and heterotrophy (osmotrophy of 
dissolved organics and/or phagotrophy of particulate organics including prey). We argue that the additional computational 
cost of including this state variable (a cost that could be considered as significant in large scale 3D models) is justified by 
the significant advance in describing plankton physiology that is thus enabled.

What of other organisms, how may these be affected by the constraints shown by our model? Many plankton species 
perform diel vertical migration, either downwards for phototrophs to obtain nutrients at night [43,44], or upwards for zoo-
plankton to feed [45,46]. These migrating plankton species are, in the main, organisms with biomass doublings signifi-
cantly less than 1 per day (e.g., copepods have C-specific growth rates of ca. 0.2 d-1; [47]). Even if feeding was limited 
to a rather small fraction of a day, modelling of the relatively low rates of growth for a copepod would (from Fig 5D) only 
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warrant Mmax < 0.2. However, similarly to the situation for the availability of light for phototrophy in the real world, discussed 
above, predation for these organisms is unlikely to proceed at a constant rate, complicated further by prey selection [48]. 
In reality, then, an ability to rapidly consume a temporary super-abundance of a suitable resource (requiring in our termi-
nology a high A

0
), and an appropriately high Mmax would be advantageous. Modelling of such behaviour may also benefit 

from such considerations.
To conclude, for the computational cost of including an extra C-state variable, such that C-biomass is split between a 

metabolite pool and a core structural pool, it becomes possible to provide a model that can better describe the short-term 
dynamics of resource acquisition at rates far exceeding the day-average needs. This is a necessary advance for explor-
ing the competitive advantages between species growing under different environmental conditions; this includes models 
describing the primary production undertaken by the planktonic phototrophs that support food chains and biogeochemical 
activities across over 2/3rds of Earth.
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