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A B S T R A C T

Cyanobacteria blooms are a threat to water quality of lakes and reservoirs worldwide, requiring scalable 
monitoring solutions. Existing approaches for remote sensing of cyanobacteria focus on quantifying (accessory) 
photosynthetic pigment to map surface accumulations. These approaches have proven challenging to validate 
against in situ observations, limiting uptake in water quality management. Optical Water Types (OWTs) have 
been used in inland and ocean waters to dynamically select suitable algorithms over optical gradients, thereby 
helping to limit out-of-scope application of individual algorithms. Here, we present a proof-of-concept study in 
Winam Gulf, Lake Victoria, extending an existing OWT framework using a hybrid approach combining in situ and 
satellite-derived water types. This extended OWT set of 25 water types, obtained from K-means clustering > 18 
million Sentinel-3 Ocean and Land Colour Instrument (OLCI) spectra, was found to better capture the optical 
diversity of cyanobacteria bloom phases compared to the original OWT set. We translate this framework into a 
novel Cyanobacteria Occurrence Index (COI) by assigning weights to key optical features observed in the OWT 
set, such as phycocyanin absorption and surface accumulation. COI was strongly correlated with established 
algorithms for chlorophyll-a (Maximum Peak Height; r = 0.9) and phycocyanin (Simis07; r = 0.84), while 
potentially capturing various bloom phases in optically mixed conditions. We demonstrate how COI could be 
mapped onto a three-category risk classification to facilitate communication of cyanobacteria occurrence risk. 
Initial tests across diverse waterbodies suggest potential for wider application, though further validation across 
different environmental conditions is needed. This work provides a foundation for improved cyanobacteria 
monitoring in optically complex waters, particularly where conventional sampling approaches face limitations.

1. Introduction

Cyanobacteria blooms are a growing global concern due to their 
significant impact on water quality in freshwater ecosystems. Blooms of 
cyanobacteria have increased in frequency and intensity worldwide due 
to eutrophication, enhanced by climate change and intensified anthro
pogenic activities (Taranu et al., 2015; Huisman et al., 2018; Fang et al., 
2022). This is problematic because cyanobacteria blooms can have 
significant ecological impacts. They can alter the structure of aquatic 
food webs (Paerl et al., 2011), create unfavourable conditions for other 
non-buoyant aquatic organisms through shading (Paerl & Otten, 2013; 
Huisman et al., 2018), and their collapse can lead to oxygen depletion in 

water, potentially resulting in fish kills (Paerl & Paul, 2012). Further
more, some species of cyanobacteria produce potent toxins that pose 
significant health risks to animals, humans, and aquatic life (Paerl & 
Paul, 2012; Merel et al., 2013; Christensen & Khan, 2020).

Remote sensing has emerged as a complementary method for 
monitoring cyanobacteria in freshwater ecosystems. Several remote 
sensing studies focus on detecting diagnostic pigments, such as phyco
cyanin (PC) and chlorophyll-a (Chla), to map cyanobacteria occurrence. 
These approaches quantify the absorption or fluorescence signatures of 
these pigments (Dekker, 1993; Kutser et al., 2006; Hunter et al., 2010; 
Matthews, 2011; Pahlevan et al., 2020; O’Shea et al., 2021; Pahlevan 
et al., 2021b; Smith et al., 2021). In freshwater environments, PC is 
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typically only associated with the presence of cyanobacteria and red 
algae, and a useful indicator of cyanobacteria in the presence of eutro
phication pressure. Drawbacks of using PC as a water quality indicator 
are a lack of standardised pigment extraction techniques, and a high 
degree of cellular pigment variability due to regulation of accessory 
pigment production (Tandeau De Marsac, 1977). Optical techniques to 
quantify PC use wavebands in the 610–650 nm range, where the 
pigment has distinct absorption and fluorescence features. Chla, found 
in all plants, algae, and cyanobacteria, is used in remote sensing of water 
as a proxy of phytoplankton biomass, albeit noted that the cellular 
concentration of Chla is typically lower in cyanobacteria compared to 
eukaryotic phototrophs (Johnsen & Sakshaug, 1996). Depending on the 
presence of other optically active substances, Chla detection typically 
relies on absorption properties in the blue region around 443 nm (in 
relatively clear waters), or in the red to near-infrared (NIR) regions 
between 670 and 700 nm (in waters with higher turbidity or dissolved 
organic matter).

Remote sensing pigment concentration retrieval methods for opti
cally complex water (including all inland and most coastal water bodies) 
are typically based on waveband combinations. In ocean colour sensors, 
like the Medium Resolution Imaging Spectrometer (MERIS) and the 
Ocean and Land Colour Instrument (OLCI), the presence of cyanobac
teria via PC light absorption can be captured in the 620 nm waveband, 
referenced against 709 nm where pigment absorption is low (Simis et al., 
2005) or other neighbouring wavebands in a line height approach 
(Dekker, 1993). The waveband ratio of 709 nm and 665 nm is sensitive 
to Chla biomass (Gons, 1999, 2002; Gilerson et al., 2010). Other algo
rithms use the 681 nm waveband to quantify the Chla fluorescence peak, 
or the shape of the reflectance spectrum in the same spectral region, to 
define indicators sensitive to both lower Chla fluorescence yield per unit 
pigment, and higher light scattering efficiency by cyanobacteria (Wynne 
et al., 2008; Matthews et al., 2012; Matthews & Odermatt, 2015). The 
above set of waveband combinations are typically modelled with in situ 
data to create diagnostic pigment concentration retrieval algorithms, 
with some limitations. Firstly, PC algorithms based in light absorption 
can be confounded by the presence of other pigments and dissolved 
organic matter (Ruiz-Verdú et al., 2008). This inherently leads to inac
curacies in cyanobacteria biomass estimates, which can be over
estimated in the presence of other phytoplankton groups (Dekker et al., 
2001; Dall’Olmo & Gitelson, 2005; Simis et al., 2007). Additionally, 
although some of these algorithms provide realistic estimates of (near) 
surface bloom extent, they become less reliable in optically mixed wa
ters where cells are less concentrated in the first optical depth (typically 
1 m in clear waters) and mixed throughout the water column (Wynne 
et al., 2010). Therefore, whilst the underlying mechanism of empirical 
or semi-analytical band ratio algorithms provides a reliable indication of 
pigment presence and biomass, they tend to lack robust application to 
optically varying water conditions.

The effectiveness of pigment concentration retrieval algorithms is 
further challenged by atmospheric effects. Accurate retrieval of water- 
leaving reflectance relies on the performance of atmospheric correc
tion algorithms, directly affecting the reliability of downstream products 
(Pahlevan et al., 2021a). Large uncertainty associated with atmospheric 
correction is typical in inland and coastal waters. Notably, ineffective 
near infrared light absorption by water in the presence of dense surface 
biomass accumulations or high turbidity challenges the ability of at
mospheric correction algorithms to separate water leaving radiance 
from atmospheric effects (Moses et al., 2009; IOCCG, 2010). The 
inherent variability in atmospheric conditions and water optical prop
erties continues to pose challenges for consistent and accurate atmo
spheric correction across optically diverse waterbodies. This variability, 
combined with the limitations of pigment-specific algorithms, has 
prompted more flexible approaches that can adapt to varying optical 
conditions as well as systematic biases.

Spectral end-member mapping techniques and the development of 
spectral libraries have been used to address the wide optical complexity 

of natural waters (Kent & Mardia, 1988; Wang, 1990; Moore et al., 2009, 
2014). These methods acknowledge that individual algorithms are un
likely to be valid across the full optical diversity of natural waters. A 
priori classification of remotely sensed observations into Optical Water 
Types (OWTs) has brought further solutions to deal with the optical 
complexity of water bodies from the local to the global scale, from 
oceans to inland water observations (Moore et al., 2001; Eleveld et al., 
2017; Jackson et al., 2017; Liu et al., 2021). Fuzzy classification of ob
servations to OWTs can facilitate the selection and subsequent weighted 
averaging of individual algorithm predictions, each performing well 
within a given range of biogeochemical properties but with larger un
certainties beyond this scope. Consequently, this dynamic approach 
enhances the reliability of remote sensing products, providing more 
accurate assessments of water quality indicators such as phytoplankton 
biomass and suspended sediments (Neil et al., 2019; Kravitz et al., 
2021), and even providing means to propagate algorithmic uncertainty 
to these products (Liu et al., 2021).

Significant progress has been made in developing globally repre
sentative OWT frameworks for inland waters, with Spyrakos et al. 
(2018) establishing a comprehensive set of 13 water types derived from 
in situ hyperspectral measurements from temperate systems. This li
brary has proven valuable for algorithm selection and blending globally, 
and it is currently used as the baseline OWT classification for the Eu
ropean Space Agency (ESA) Lakes Climate Change Initiative (Simis 
et al., 2022, Liu et al. 2021). A current limitation of this framework is 
that its definitions of OWTs that make reference to cyanobacteria are 
based on a limited geographic sample, potentially underrepresenting 
cyanobacteria dynamics at lower latitudes. This is problematic, because 
light and nutrient conditions influence accessory photosynthetic 
pigment regulation in cyanobacteria (Tandeau De Marsac, 1977; 
Wyman & Fay, 1986b, 1986a; Grossman et al., 1993); the intracellular 
pigment concentrations may therefore be expected to vary regionally 
and with latitude.

The definition of OWTs from in situ hyperspectral reflectance typi
cally provides detailed biogeochemical attributions, but there are 
inherent challenges in obtaining representative in situ measurements of 
cyanobacteria blooms. Near- or at-surface accumulations are easily 
disturbed during sampling, with ship movement and wind action rapidly 
altering the vertical distribution of biomass. The short-lived nature of 
many bloom events (often lasting days to weeks) further complicates the 
collection of comprehensive optical measurements. Moreover, any given 
atmospheric correction algorithm must accurately represent these 
measurements across all optical manifestations of cyanobacteria, 
including near- or at-surface biomass accumulation, which introduces 
additional complexity. These sampling and measurement challenges 
may partly explain why the current OWT framework for inland waters 
by Spyrakos et al. (2018) may not fully capture cyanobacteria bloom 
dynamics. While three of the thirteen OWTs are associated with high 
concentrations of Chla and PC (and one explicitly mentions cyanobac
teria blooms), and four others exhibit varying pigment concentrations, 
these types are often dominated by other optical features such as sus
pended sediments or coloured dissolved organic matter.

There is an opportunity to leverage the extensive spatial and tem
poral coverage of satellite observations to expand the current OWT 
definitions, particularly where obtaining representative in situ mea
surements of cyanobacteria blooms is challenging. Here, we extend the 
13 OWTs for inland waters by Spyrakos et al. (2018) to Sentinel-3 OLCI- 
derived spectra of Winam Gulf, a shallow and highly eutrophic basin of 
Lake Victoria, the world’s largest tropical lake. Lake Victoria has vast 
social and economic importance in the region (e.g. through fisheries, 
drinking water), and has documented history of recurring cyanobacteria 
blooms and cyanotoxins (Hecky et al., 2010; Sitoki et al., 2010; Simiyu 
et al., 2018; Mchau et al., 2019; Brown et al., 2024). By combining these 
established in situ derived OWTs with new types obtained directly from 
satellite observations, we test whether cyanobacteria occurrence can 
consistently be recorded within atmospherically corrected OLCI 
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imagery, and whether the definition of complementary and optimised 
OWTs successfully recognise the various stages of cyanobacteria bloom. 
This approach inevitably introduces uncertainty in the biogeochemical 
attribution of satellite-derived OWTs, particularly for surface accumu
lations that are difficult to sample representatively. However, we may 
expect better recognition of bloom conditions that are challenging to 
capture. Where current gaps in OWT classification exist, we hypothesise 
that an extended set may enhance cyanobacteria monitoring capabilities 
in similar tropical environments, and potentially in other regions where 
traditional sampling approaches are limited.

Given the challenges and limitations of diagnostic pigment concen
trations retrieval algorithms in optically varying water conditions, an 
alternative strategy towards monitoring cyanobacteria occurrence 
drawing further on the OWT classification is explored. This work applies 
a ranking approach to assign weights to OWT classes where one or more 
optical features linked to cyanobacteria presence are evident. Particu
larly, the behaviour of PC absorption captured in the 709 over 620 nm 
waveband ratio, and the shape of the spectrum around the Chla fluo
rescence peak described in the 709 over 681 nm waveband ratio, are 
exploited to distinguish OWT classes that represent a higher risk of 
cyanobacteria occurrence.

While this approach enhances the detection of cyanobacteria by 
targeting specific optical features, there remains a need for more inte
grated and comprehensive assessment to encapsulate the full range of 
cyanobacteria bloom dynamics, moving beyond traditional pigment 
concentration retrieval methods where these have thus far proven too 
variable, unreliable, or lacking validation. Combining past and present 
efforts, we present a novel Cyanobacteria Occurrence Index (COI) built 
on our extended water types library and their association with cyano
bacteria optical features, into a single metric for cyanobacteria occur
rence risk. We test the sensitivity of COI against established pigment 

concentration retrieval algorithms, demonstrating its ability to capture a 
broader spectrum of cyanobacteria bloom features and dynamics that 
are typically individually described by these algorithms.

2. Methods

2.1. Study site

Winam Gulf, also known as Nyanza Gulf or Kavirondo Gulf, is the 
north-easternmost basin of Lake Victoria (Fig. 1). The Gulf covers an 
area of approximately 1,400 km2 and has an average depth of ~ 8 m, 
compared to 40 m in Lake Victoria proper. The largest river inflows are 
from Nyando, Sondu and Kibuon to the south-east (Romero et al., 2005; 
Alexander & Imberger, 2013; Simiyu et al., 2022). Winam Gulf is located 
in west Kenya, a region that experiences a long and a short rainy season, 
and a dry season (Dosio et al., 2022). The average annual rainfall is 
between 600 mm and 2,000 mm, and average daily temperature is be
tween 17 ◦C and 30 ◦C (Humphrey et al., 2022). The shallow Winam 
Gulf experiences full wind mixing which leads to well oxygenated but 
highly turbid waters, in contrast with the rest of Lake Victoria, where 
waters are stratified, clearer, and anoxic at depth. These distinct envi
ronments are separated by the narrow Rusinga Channel which limits 
dilution between Winam Gulf and Lake Victoria (Gikuma-Njuru & 
Hecky, 2005; Alexander & Imberger, 2013; Simiyu et al., 2022). The 
area around Winam Gulf is one of the most highly populated and 
intensively cultivated lands in Kenya and around Lake Victoria (Gikuma- 
Njuru et al., 2013). Tributaries transport large quantities of sediments, 
pollutants, and nutrients, affecting water quality (Sitoki et al., 2010, 
2012). Cyanobacteria are recurrently found in this portion of the lake, 
with the most common belonging to the genera Microcystis, Cylin
drospermopsis, Dolichospermum. The most commonly detected 

Fig. 1. Level-2A True Colour Composite of Winam Gulf captured by Sentinel-2 Multispectral Instrument (MSI) A on 12 Dec2020. Blue lines show the three major 
rivers Nyando, Sondu and Kibuon. Red lines show smaller tributaries around Kisumu Bay, three of which flows through Kisumu, the largest city in the area. Bright 
areas may be due to surface biomass and / or sediments. In these conditions, the Sen2Cor atmospheric correction algorithm used to produce the image may fail to 
accurately reproduce reflectance.
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cyanobacterial toxin is Microcystin, with recent findings of Cylin
drospermopsin (Sitoki et al., 2012; Simiyu et al., 2018; Roegner et al., 
2020; Simiyu et al., 2022; Brown et al., 2024).

2.2. Satellite imagery

A total of 1,795 Level 3C 300 m resolution Sentinel-3 Ocean and 
Land Colour Instrument (OLCI)-A/B images for Winam Gulf were pro
vided by the Natural Environment Research Council Earth Observation 
Data Analysis and Artificial-Intelligence Service (NEODAAS, UK) for the 
period 2016–2023. NEODAAS processed the scenes through the Cal
imnos processing chain using the candidate configuration for version 3.0 
of the ESA Lakes Climate Change Initiative v2.1 (Lakes_cci − Liu et al., 
2021; Simis et al., 2023a, 2023b; Carrea et al., 2024). This new 
configuration uses Polymer v4.17b for atmospheric correction, which 
employs an extended range of initialisation conditions compared to 
previous versions that improves retrieval of turbid water conditions, 
including near or at-surface blooms. In addition, 331 Level 2A 10-m 
resolution Sentinel-2 Multispectral Instrument (MSI)-A/B images coin
ciding with OLCI-A/B images, acquired within 30 min of each other, 
were obtained from Google Earth Engine Python API for the period 
2016–2023. These were provided by ESA and atmospherically corrected 
using Sen2Cor. The analysis primarily focused on Sentinel-3 OLCI im
ages, with Sentinel-2 MSI images exclusively used for visual referencing 
of bloom conditions.

2.3. Optical water types classification

The 13 optical water types (OWTs) for inland waters developed by 
Spyrakos et al. (2018), convolved to OLCI wavebands, were used to map 
water conditions in Winam Gulf over time. These types were originally 
formulated using a k-means classifier applied to in situ hyperspectral 
remote-sensing reflectance originally collated from the Lake Bio-optical 
Measurements and Matchup Data for Remote Sensing (LIMNADES) 
community repository. The optimal number of clusters was determined 
using gap-statistics (Tibshirani et al., 2001). These 13 OWTs are used for 
algorithm selection and blending in the Lakes_cci Lake Water-Leaving 
Reflectance (Rw) product set, following atmospheric correction with 
Polymer as described in Simis et al. (2022) and Liu et al. (2021). A 
further two optical types, developed to flag pixels affected by land ad
jacency (Jiang et al., 2023), were also included. Membership similarity 
score (Sowt) values are calculated at each pixel based on the spectral 
angle metric (Kruse et al., 1993): 

a = cos− 1
∑n

i=1piri
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1p2
i

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1r2

i

√ (1) 

Sowt = 1 − a/π (2) 

where pi and ri are the standardised pixel and reference spectra in band i, 
respectively. The resultant Sowt is a number between 0 and 1, where 1 
indicates identical spectral shape. Only the 12 OLCI wavebands in the 
range 412–779 nm, excluding the oxygen bands at 761, 764 and 767 nm 
were used. Both OLCI-derived and OWT spectra were standardised prior 
the calculation of the Sowt by dividing over their integrals to reduce the 
influence of varying reflectance amplitudes and to allow focusing on the 
similarity of their shapes.

The highest Sowt, also referred to as dominant water type (Moore 
et al., 2014), was used to provide an initial end-member to each 
observation (pixel). This allowed to broadly differentiate between 
spectra highly similar to OWTs not typically associated with the pres
ence of cyanobacteria (non-cyano OWT; 2, 3, 5, 9, 10, and 13), and those 
that are (cyano-OWT; 1, 4, 6, 7, 8, 11, 12), as described in Spyrakos et al. 
(2018). Approximately, 18 out of 26 million total OLCI-derived spectra 
had one of the seven cyano-OWT as their dominant member. Spectra for 
which the dominant OWT was either of the two land effected flags were 

removed. A summary of the workflow, including the steps outlined in 
the next sections, is shown in Fig. 2.

2.4. Candidate optical water types

Spectra for which the dominant type was one of the seven cyano- 
OWT were clustered using unsupervised k-means clustering to deter
mine what spectra captured by OLCI were not represented by the orig
inal OWT set. Principal Component Analysis (PCA) was used to reduce 
the dimensionality of the multispectral data and flag outliers, and only 
the first components with a combined explained variance exceeding 90 
% were selected. K-means clustering was performed on the 18 million 
PCA values using the gap statistic to determine the optimal number of 
clusters. The k-means classifier was provided with 50 starting points (i. 
e., starting from 50 different cluster centres). PCA points outside the 
90th percentile Euclidian distance from cluster centres were removed to 
obtain well-defined clusters.

Spectra belonging to each of the clusters were named after the 
dominant cyano-OWT they were originally assigned to, alongside the 
cluster number they belonged to (i.e., 1.1, 7.2, 11.4, etc.). This library of 
mean standardised ‘cyano subtypes’ spectra was merged with the 
convolved in situ library of non-cyano OWT spectra, left untouched from 
their original formulation, to produce an extended candidate water 
types library.

Sowt values for each combination of OLCI spectra and the OWT set 
were calculated using Eq. (1) and (2) to determine spectral curve simi
larities, and then mapped onto a phylogenetic tree. The tree was con
structed using the Euclidian distance between Sowt cluster centres. From 
this first iteration, any branch containing fewer than three members was 
combined in the next iteration, unless visual inspection suggested the 
types were functionally different (examples are given further below).

Sowt values were iteratively re-calculated after combining subtypes, 
and the membership sum (sum of the Sowt set of each observation), 
normalised to the number of water types, calculated. This metric defined 
the ability of the new water types set to describe optical variability in the 
observation dataset. The final iteration of the OWT set was considered 
reached when no new similar pairs arose during the process. The OWT 
library was considered efficiently reduced and complete at the point 
where further reduction of types cause a substantial drop in the mem
bership sum from previous iterations.

2.5. Owt-based cyanobacteria occurrence

A new metric, the weighted Sowt sum (Wsum), was calculated to 
determine cyanobacteria occurrence: 

Wsum,i =
∑

j
(Sowti,j × wi,j × Pi,j) (3) 

with, .Pi,j =
Sowti,j∑

j
Sowti,j

where Sowti,j is the membership score of water type j at pixel i. wi,j is a 
subjective ranking informed by the presence of optical indicators of 
cyanobacteria presence in the OWT spectra. Pi,j is a proportionality 
factor to account for uneven distributions of similarity of a given ob
servations to the OWT set, i.e., the covariance between subtly different 
OWTs resulting in multiple similarity scores of similar values. The 
ranking factor was obtained by considering the sum of the 709/620 and 
709/681 waveband ratios of the candidate water types library. Visual 
interpretation of MSI images guided the identification of three threshold 
values for this sum, whereby water types with a sum of ratios < 2 were 
assigned w = 0, those >= 3 were assigned w = 1000, and those with 
intermediate values were assigned w = 100. This arbitrary scaling ap
plies an order-of-magnitude differentiation to the ranking factors to 
reflect the increasing likelihood of cyanobacteria presence with 
increasing strength of the indicator waveband ratios. The zero rank 
eliminates any contribution to the combined score in the absence of 
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likely cyanobacteria indicators, while the higher weights (100, 1000) 
ensure that high-ranking sum of ratios dominated the final metric.

Wsum was finally scaled to a new Cyanobacteria Occurrence Index 
(COI) to provide a single, reproducible, and easily interpretable metric, 
defined as: 

COIi =
Wsum,i − 223
321 − 223

(4) 

where Wsum,i is the weighted Sowt sum at pixel i defined in Eq. (3). The 
constants 223 and 321 are the minimum and maximum Wsum obtained 
by applying Eq. (3) on the candidate water types library, giving likely 
boundary values. The resulting COI ranges from 0 to 1, with increasing 
values indicating increasing likelihood of cyanobacteria occurrence and 
optical features indicative of productive bloom. It is possible that a 
different dataset provides Wsum values that fall outside the provided 
boundaries, particularly in the low-end, in which case COI may be set to 
0 if Wsum < 223 and 1 if Wsum > 321.

3. Results

3.1. OWT definitions

K-means clustering of cyano-OWT derived PCA values of the Winam 
Gulf observation data set identified 25 candidate spectral clusters (or 
cyano-subtypes). These subtypes, along with 6 non-cyano OWT which 
were not re-analysed, formed the initial candidate water types library 
(Fig. 3). The most notable feature in spectra that were most closely 
associated with non-cyano OWT is the presence of pigment absorption in 

the red spectral region, and a NIR backscattering peak within the OWT 
13 cluster, indicating that some pixels were classified as this clear water 
type, yet presented features commonly associated with phytoplankton 
presence (Fig. 3F). Two to five new sub clusters were identified per 
cyano-OWT included in the original definitions, confirming a wide range 
of optical variability currently not captured by the OWT definitions in 
Spyrakos et al. (2018) (Fig. 3G-M).

The Euclidian distances between cluster centres, mapped onto a first 
phylogenetic tree revealed nine pairs within the distance threshold of 
138 (Fig. 4A). Visual comparison of these pairs revealed no meaningful 
difference in shapes (e.g., around pigment absorption features) and were 
combined, whereas two pairs were considered dissimilar and not com
bined, namely 6.5 and 12.1, and 6.2 and 12.3 (Fig. 4D and E). These two 
pairs differed in the magnitude of absorption and backscattering at 681 
nm and 709 nm, respectively, which could be interpreted as different 
phases of bloom development, or as optically mixed waters across a 
bloom gradient. Another pair with similar cluster centres, 11.2 and OWT 
5, was not combined, to maintain separation between top-level cyano 
and non-cyano spectral classes (Fig. 4C). A tenth pair consisting of 4.2 
and 6.3 was combined in the second iteration of the analysis, resulting 
from reclassification after the initial reduction in classes (not shown). 
The combined cyano subtypes were assigned the name of the first cluster 
if both originated from the same cyano-OWT (e.g., 7.2 and 7.3), whereas 
they were assigned the name of both clusters they belonged to if they 
originated from different cyano-OWT (e.g., 4.1_11.1).

Each time a pair of similar type spectra was combined, Sowt values 
were re-calculated, and the normalised sum of Sowt was used to evaluate 
the performance of the library (Fig. 4B). Each updated library showed 

Fig. 2. Flow chart of the generation of a new candidate water types library and translation into a cyanobacteria occurrence index (COI).
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better performance than the original library of 13 OWTs, up to and 
including the 7th iteration, beyond which the sum of membership scores 
dropped markedly (Fig. 4B). Consequently, the 25 types at iteration 7 
were considered the ‘optimal’ number resulting from this step, 
comprising 6 non-cyano OWT and 19 cyano subtypes.

3.2. Assignment of risk of cyanobacteria occurrence

Ranking thresholds were defined as w = 0 for the group of water 
types with an average sum of band ratios = 1.5 (± 0.3), w = 100 for 
water types with an average = 2.5 (± 0.3), and w = 1000 to water types 
with an average = 4.9 (± 1.9). The latter was highly skewed by the band 
ratio values of water types 12.4 and 8.2, at 8.2 and 6.8, respectively. 

Fig. 3. Standardised spectra of Optical Water Types not associated to cyanobacteria presence (non-cyano OWT) (A-F), and those that are (cyano-OWT) (G-M) after k- 
means clustering. Clusters are shown as C1, C2, etc. Spectra are grouped by their similarity to the original OWT definitions of Spyrakos et al. (2018). Continuous lines 
describe mean spectra, shaded areas refer to the standard deviation. Wavebands > 779 nm, not used in the clustering process, are not shown.
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Visual inspection of MSI-A/B images largely confirmed the separation 
between the three groups, except for water type 12.2, which was asso
ciated to both surface scum (intense light bright green) (Fig. 5A), and 
macrophytes (dark green colour with raft-like shapes indicative of wind 
dispersal) (Fig. 5B). Visual inspections showed macrophyte presence in 
2019 and 2020 within type 12.2. Consequently, despite a low sum of 
band ratios at = 1.75, w = 1000 was assigned to water type 12.2 in 
consideration of the potential for cyanotoxin to accumulate within and 
below the scum at the surface. Other examples shown include water type 
12.4 (having the highest sum of band ratios) where bloom presence was 
apparent through intense green/ bright green water (Fig. 5A-C) without 
clear evidence of accumulation at the surface. At-surface accumulation 
was visible in types 12.2 and 1.2 (Fig. 5A). Water type 8.3, assigned an 
intermediate rank (w = 100), was present in areas with patchy (or 
stripy) green material not floating at the surface (Fig. 5A-B).

The comparison of spectra by dominant water types distinguishes 
highly turbid waters, including presence of scum or near-surface accu
mulation, from conditions with presence of cyanobacteria and other 
phytoplankton mixed within the water column (Fig. 6). Most spectra in 
the former displayed the characteristic red edge followed by a NIR 
reflectance plateau, indicating high phytoplankton biomass at surface 
masking the absorption of light by water itself. These water types were 
all assigned w = 1000, except for OWT 5 which had a low sum of band 
ratios indicative of cyanobacterial optical features. Spectra indicative of 
presence of cyanobacteria and other phytoplankton mixed within the 
water column showed a range of sum of band ratios. Those with the 

highest sum of band ratio values showed the characteristic red edge of 
high phytoplankton (sub-surface) cells accumulation and were assigned 
w = 1000. Unlike the surface bloom (scum) types, these water types 
showed efficient light absorption by water in the NIR and SWIR. The 
rank assigned to this group of water types was set to w = 0 if the red edge 
disappeared or backscattering by particles (sediments) began to domi
nate the spectral shape in the red and NIR. A qualitative interpretation of 
the spectra of the 25 water types in shown in Table 1.

3.3. Cyanobacteria occurrence analysis

The ability of the extended water types library to capture the full 
optical diversity of the study area was confirmed by relatively low 
variance of average Sowt values over time (Fig. 7A). In particular, 32.4 % 
of observations had an average Sowt value lower than the 7-year average 
of 0.86. 2.8 % of observations had an average Sowt value lower than 0.8.

The COI in Winam Gulf showed considerable interannual variability, 
with an average of 0.66 (± 0.14), suggesting persistent cyanobacteria 
occurrence (Fig. 7B). April, June, and October had the highest average 
COI (0.68 ± 0.14). The highest average across the eight years examined 
occurred in 2020 (0.74 ± 0.16). COI dropped sharply in 2022 but 
increased again to average 0.62 (± 0.14) during 2023. Areas of lower 
COI were typically found in the Rusinga Channel, where water is deeper 
than the rest of Winam Gulf, ranging 15–––25 m, and less turbid 
(Alexander & Imberger, 2013; Gikuma-Njuru et al., 2013). Areas of 
higher COI included semi-enclosed bays, such as Homa Bay in the south, 

Fig. 4. (A) Euclidian distance tree showing the similarity structure of the OWTs at the 1st iteration. The green dotted line at d = 138 marks the threshold below 
which types were evaluated for dissolution. (B) Normalised membership sum calculated after combining each pair of similar spectra. The vertical red dotted line 
shows the iteration (bottom axis) with the optimal number of candidate water types (top axis) before the performance dropped. (C − E) The three pairs of spectra that 
were not combined despite connected by a single branch in the phylogenetic tree. The dotted lines are the spectra in their original non-standardised form. The labels 
for the waveband 400 and 674 on the x-axis were omitted to aid visualisation.
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Asembo Bay in the north, and Kisumu Bay in the northeast, as well as 
areas with large riverine inputs like Sondu, Kibuon, and Nyando to the 
southeast (Fig. 7C). Although COI peaked in 2020 and subsequently 
decreased, certain areas, particularly semi-enclosed bays, showed 

consistently higher cyanobacteria occurrence.
COI was compared to the Trophic State Index (TSI) as defined by 

Carlson (1977) to determine its correspondence to trophic levels. TSI 
was calculated as: 

Fig. 5. (A-C) Sentinel-2 Multispectral Instrument (MSI)-A images corresponding to Ocean Land Colour Instrument (OLCI)-A/B overpasses. The coloured symbols in 
each panel correspond to the centroid of (300 m) OLCI pixels, colour-coded to the corresponding dominant water types in the legend.
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Fig. 6. Water-leaving reflectance (Rw) spectra grouped by dominant water type, ordered by rank (w) and the sum of 709/620 and 709/681 wavebands ratios (SoR), 
from top to bottom, left to right. N refers to the number of spectra associated with each dominant water type. Spectra coloured in green in the left panels are 
associated with high turbidity and scum and are on a different scale than the blue spectra in the right panels. The red box grouping the first panels groups all water 
types associated with high risk of cyanobacteria occurrence (w = 1000). Labels for wavebands centred on 400 and 674 nm omitted to aid visualisation.
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Table 1 
Original Optical Water Types (OWTs) definitions by Spyrakos et al. (2018)
alongside a qualitative interpretation of the candidate library of 25 OWTs that 
originated from them. The interpretation focuses on the absorption features of 
phycocyanin (PC) at 620 nm and Chlorophyll-a (Chla) at 665 nm, Chla fluo
rescence at 681 nm, and the likelihood of surface-accumulated biomass from the 
relative magnitude of absorption by water in the NIR between 709 and 779 nm. 
This is distinguished between as ‘at-surface’ and ‘near-surface’ to ensure sepa
ration between OWTs associated to surface accumulation and mixed conditions. 
The OWTs left unmodified from their original definitions during the clustering 
process are reported as ‘OWTn’ under the ‘Extended OWTs’ column. The column 
w (weights) shows the arbitrary weights assigned to each library entry.

Original 
OWTs

Dominant 
characteristics

Extended 
OWTs

Qualitative 
Interpretation

w

OWT1 Hypereutrophic 
waters with scum of 
cyanobacterial bloom 
and vegetation-like 
Rrs

1.1_7.1* Moderate PC and 
Chla absorption, 
with high 
probability of at- 
surface 
accumulation

1000

1.2 Similar to 1.1_7.1, 
but with a less 
pronounced red- 
edge

1000

OWT2 Waters with diverse 
reflectance shape and 
marginal dominance 
of pigments and 
CDOM over inorganic 
suspended particles

OWT2 Very low PC and 
Chla absorption, low 
Chla fluorescence, 
and low probability 
of near-surface 
accumulation

0

OWT3 Clear waters OWT3 Very low PC and 
Chla absorption, and 
low probability of 
near-surface 
accumulation

0

OWT4 Turbid waters with 
high organic content

4.1_11.1* Very Low PC and 
Chla absorption in 
highly turbid 
conditions and low 
Chla fluorescence 
peak, with low 
probability of near- 
surface 
accumulation

0

4.2 Similar to 4.1_11.1, 
but with lower 
turbidity

0

OWT5 Sediment-laden 
waters

OWT5 Low PC and 
moderate Chla 
absorption, with 
high probability of 
at-surface 
accumulation

100

OWT6 Balanced effects of 
optically active 
constituents at 
shorter wavelength

6.1_11.3* Low PC and 
moderate Chla 
absorption, with 
high probability of 
near-surface 
accumulation

100

6.2 Moderate PC and 
Chla absorption, 
with high 
probability of near- 
surface 
accumulation

100

6.3 Low PC and 
moderate Chla 
absorption, with 
high probability of 
near-surface 
accumulation

100

6.4 Moderate PC and 
Chla absorption, 
with medium 
probability of at- 

100

Table 1 (continued )

Original 
OWTs 

Dominant 
characteristics 

Extended 
OWTs 

Qualitative 
Interpretation 

w

surface 
accumulation

6.5 High PC and Chla 
absorption, with 
high probability of 
near-surface 
accumulation

1000

OWT7 Highly productive 
waters with high 
cyanobacteria 
abundance and 
elevated reflectance 
at red/near-infrared 
spectral region

7.2 High PC and 
moderate Chla 
absorption, with 
high probability of 
at-surface 
accumulation

1000

OWT8 Productive waters 
with cyanobacteria 
presence and with Rrs 

peak close to 700 nm

8.1 High PC and Chla 
absorption, with 
high probability of 
near-surface 
accumulation

1000

8.2 High PC and 
moderate Chla 
absorption, with 
high probability of 
near-surface 
accumulation

1000

8.3 Moderate PC and 
Chla absorption, 
with high 
probability of near- 
surface 
accumulation

100

OWT9 Optically 
neighbouring to 
OWT2 waters but 
with higher Rrs at 
shorter wavelength

OWT9 Low PC and Chla 
absorption, medium 
probability of Chla 
fluorescence, with 
low probability of 
near-surface 
accumulation

0

OWT10 CDOM-rich waters OWT10 Low PC and 
moderate Chla 
absorption, with 
moderate 
probability of at- 
surface 
accumulation

100

OWT11 Waters high in CDOM 
with cyanobacteria 
presence and high 
absorption efficiency 
by Non-algal particles

11.2 Low PC and Chla 
absorption in highly 
turbid conditions, 
with low probability 
of near-surface 
accumulation

0

11.4 Low PC and Chla 
absorption, 
moderate Chla 
fluorescence, in 
turbid conditions, 
with low probability 
of near-surface 
accumulation

0

OWT12 Turbid, moderately 
productive waters 
with cyanobacteria 
presence

12.1 High PC and 
moderate Chla 
absorption, with 
medium probability 
of near-surface 
accumulation

100

12.2 Moderate PC and 
Chla absorption, 
with high 
probability of at- 
surface 
accumulation, likely 
associated to surface 
scum

1000

12.3 Low PC and Chla 
absorption, with low 

0

(continued on next page)
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TSI(Chl) = 10
(

6 −
2.04 − 0.68lnChl

ln2

)

(5) 

where Chla was derived applying the Mixture Density Network algo
rithm (MDN) of Pahlevan et al., 2020 to the OLCI Rw spectra. The trophic 
levels were obtained by binning the resultant numbers between 0 and 
100 associated to each observation into four categories (Carlson, 1977). 
The distribution of COI by TSI (Fig. 8) revealed broad correspondence. 
Observations classed as mesotrophic and eutrophic appeared to follow a 
joint distribution, whereas hyper-eutrophic conditions formed a largely 
isolated class in the highest COI range.

An alternative interpretation of COI, particularly intended for man
agement purposes, divides the COI along the apparent discontinuities in 
the COI distribution by TSI, with thresholds for low risk at COI < 0.5 and 
the transition from medium to high risk at COI > 0.8 (Figs. 8 and 9C). 
Using this thresholding, it was found that, on average, low risk waters 
accounted for 9.5 % of the area annually, with the lowest percentage in 
October (5.25 %) and the highest in December (13.78 %) (Fig. 9A-B). 
Medium and high risk made up 69.8 % and 20.7 % of the area, 
respectively. High risk conditions were most prevalent in April (27.3 %), 
followed by June (24 %) and October (23.5 %). The highest count of 
high risk days was in 2020 (209 days) with an average daily area of 687 
km2 classified as high risk. This was followed by 2019 (184 days 

Table 1 (continued )

Original 
OWTs 

Dominant 
characteristics 

Extended 
OWTs 

Qualitative 
Interpretation 

w

probability of near- 
surface 
accumulation

12.4 High PC and Chla 
absorption, with 
high probability of 
near-surface 
accumulation

1000

OWT13 Very clear blue 
waters

OWT13 Low PC and Chla 
absorption, with 
medium probability 
of near-surface 
accumulation

0

*New OWTs obtained from the combination of two clusters originating from 
different dominant OWTs. For example, OWT 1.1_7.1 arise from the combina
tion of OWT 1.1 (i.e., cluster 1 originated from OWT1) and OWT 7.1 (i.e., cluster 
1 originated from OWT7).

Fig. 7. (A) Daily (red line) and monthly (black line) average Sowt values. (B) Monthly average cyanobacteria Occurrence Index (COI) (solid green line) and relative 
monthly variances (shaded green areas). (C) Spatial distribution of average COI. The COI colour scale is stretched between 0.5 and 1 to enhance spatial differences.
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Fig. 8. Distribution of the COI by Trophic State Index (TSI), which identifies oligotrophic, mesotrophic, eutrophic, and hyper-eutrophic conditions. The horizontal 
axis at the top shows the weighted Sowt sums corresponding to COI in the bottom horizontal axis The vertical dotted lines mark the two arbitrary thresholds (COI =
0.5, and COI = 0.8) used to differentiate between low, medium, and high risk waters.

Fig. 9. (A) Monthly average percentage of pixels for each of the three risk categories (low = yellow, medium = orange, high = red). (B) Monthly distribution of the 
risk categories. (C) Distribution of Cyanobacteria Occurrence Index (COI) coloured by risk category. (D) Map of the sum of risk categories from 2016 to 2023. The 
numbers on the colour bar are negligible since they do not correspond to true risk values, but they help visualise areas that tend to experience higher (lower) risk over 
time. All plots follow the same colouring scheme in the legend in panel C. The three risk categories were obtained by setting COI < 0.5 as low risk, COI >= 0.8 as high 
risk, and intermediate values as medium risk.
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averaging 530 km2) and 2023 (180 days averaging 258 km2). The month 
of January recorded the highest occurrence of high risk days with an 
average of 13.4, followed by May (13.1 days) and July, September, and 
October (all 11.8 days). December exhibited the highest average area 
covered with 573 km2, followed by November and April, both with 523 
km2. Across the entire dataset, the daily high risk cover ranged from 52 
km2 to 1465 km2 (a slightly larger area than Winam Gulf due to the 
inclusion of a small portion of Lake Victoria in our dataset). Spatially, 
the highest risk was recorded at the estuaries of Sondu and Nyando to 
the east, followed by Kisumu and Homa Bays (Fig. 9D). Waters in the 
Rusinga Channel showed the lowest risk across the study site.

3.4. Comparison with pigment concentration retrieval algorithms

To evaluate the relative response of COI versus Chla and PC esti
mates, it was compared to the established algorithms Maximum Peak- 
Height (MPH, Matthews et al., 2012), MDN and Simis07 (Simis et al., 
2007) (Fig. 10). COI showed a strong Pearson’s r correlation coefficient 
with MPH Chla (r = 0.9) and Simis07 PC estimates (r = 0.84), showing 
varying degrees of linearity and sensitivity along the pigment concen
tration ranges. The correlation between MPH and Simis07 was also high 
(r = 0.8, not shown). In contrast, the correlation between COI and MDN 
Chla estimates was lower (r = 0.5), similar to the correlation of MDN 
with MPH (r = 0.44) and Simis07 PC (r = 0.37).

Spatial comparison between COI and the three pigment concentra
tion retrieval algorithms revealed broad alignment, while also high
lighting some key differences. Generally, higher COI values 
corresponded with areas where at least one algorithm detected elevated 
Chla or PC concentrations (Fig. 11). However, the correspondence var
ied across different dates and locations. For instance, on the 23rd of 
March 2018, MPH detected high Chla concentrations on the east side of 
Winam Gulf, with concentrations decreasing towards the middle of the 
Gulf. In contrast, Simis07 and MDN showed an opposing trend, indi
cating low concentrations of PC and Chla in the same area where MPH 
detected high Chla. COI values in this region appeared to mediate be
tween these conflicting algorithm outputs, acknowledging the presence 
of this optically distinct area but assigning it lower values compared to 
surrounding waters, aligning more closely with Simis07 results. On the 
22nd of May 2023, MDN was the only algorithm that detected moder
ately high Chla concentrations in the central part of Winam Gulf. MPH 
and Simis07 primarily detected high concentrations of Chla and PC 
along the eastern and southern coastlines. COI identified the same subtle 
blooms as MDN in the central area, while also providing a more 
comprehensive representation of cyanobacteria presence and abun
dance compared to any single pigment concentration retrieval 
algorithm.

The distribution of COI in relation to different trophic states confirms 

a marked separation between eutrophic and hyper-eutrophic conditions, 
with larger overlaps between mesotrophic and eutrophic. The three risk 
categories (obtained using the same COI thresholding as in Fig. 8), 
although less granular than COI maps, show a marked distinction be
tween the different trophic levels. Low risk areas were primarily 
concentrated within and beyond the Rusinga Channel to the west, 
becoming gradually more eutrophic and with higher COI towards the 
east of Winam Gulf. Semi-enclosed areas were again identified as the 
areas with higher occurrence risk.

3.5. Assessment in other waterbodies

When applied to other waterbodies (maintaining the algorithm 
configuration for Winam Gulf), the broad alignment of COI with the 
three pigment retrieval algorithms under investigation held, despite 
optically different dynamics of the lakes in question (Fig. 12). For 
instance, Lake Erie on the 25th of July 2019 showed a higher risk of 
cyanobacteria occurrence in the west, where blooms are typically 
observed, and lower COI to the east, lower than most observations in 
Winam Gulf. The distribution of TSI showed a higher count of oligo
trophic and mesotrophic waters, which aligned with the lowest COI 
values. The MPH, MDN and Simis07 algorithms generally produced low 
values of Chla and PC concentration in the east, with the latter possibly 
affected by atmospheric correction artifacts. COI provided a much more 
detailed map, revealing cyanobacteria eddies not produced by any of the 
other algorithms. Lake Taihu on the 22nd of May 2019 exhibited hyper- 
eutrophic and eutrophic characteristics, aligning with high COI values. 
The three pigment retrieval algorithms had some disagreement in high- 
biomass areas on the west side of the lake, with the MDN visibly satu
rating in areas of surface accumulations. The COI mostly showed values 
in the range of 0.6 – 1, revealing a detailed cyanobacteria occurrence 
map, especially in areas of high biomass accumulation at the surface. 
The picture is more complex for the small Hartbeespoort Reservoir, 
where TSI has an unexpected distribution, possibly to limitations of 
MDN and adjacency effect.

4. Discussion

Cyanobacteria present a wide diversity of optical behaviours related 
to their vertical distribution in the photic zone, adaptive pigmentation, 
and colony formation. Previous attempts to estimate cyanobacteria 
biomass from pigment absorption have proven challenging to interpret 
in water management practices. Our results show that these dynamics 
can be captured with an extended set of Optical Water Types (OWTs) 
based on Sentinel-3 OLCI-derived spectra, from which further algorithm 
and risk model development may start. The OWT classification 
complexity can be further reduced into a single index of cyanobacteria 

Fig. 10. Comparison between the Cyanobacteria Occurrence Index (COI) versus (A) the Maximum Peak-Height (MPH) and (B) Mixture Density Network (MDN) 
chlorophyll-a (Chl-a) estimates, and (C) Simis07 algorithm phycocyanin (PC) estimates. MPH, MDN and Simis07 were log-transformed to enable the comparison. The 
plots were generated using a sample of 100,000 datapoints selected at random to facilitate visualisation. Pearson’s r showed at the bottom of each plot was obtained 
from the full dataset of 26 million datapoints.
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Fig. 11. Maps of Maximum Peak-Height (MPH) Chlorophyll-a (Chl-a) estimates, Mixture Density Network (MDN) Chl-a estimates, Simis07 phycocyanin (PC) al
gorithm estimates, Cyanobacteria Occurrence Index (COI), the three risk categories, and the distribution of COI and Weighted Sowt sum by trophic status, from top to 
bottom. Figures in each column refer to the same timestamp at the top of the columns. The cyano risk categories were obtained by considering COI < 0.5 as low risk, 
COI > 0.8 as high risk, and medium risk COI values in between. The thresholds are shown as vertical dotted lines in the histograms at the bottom of the figure. COI 
and pigment estimate values were constrained in the range 0.5–1 and 0–200 (µgL-1), respectively, to enhance spatial visualisation.
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Fig. 12. Maps of Maximum Peak-Height (MPH) Chlorophyll-a (Chl-a) estimates, Mixture Density Network (MDN) Chl-a estimates, Simis07 phycocyanin (PC) al
gorithm estimates, Cyanobacteria Occurrence Index (COI), the three risk categories, and the distribution of COI and Weighted Sowt sum by trophic status, from top to 
bottom. Figures in each column refer to the lake and timestamp at the top of the columns. The cyano risk categories were obtained by considering COI < 0.5 as low 
risk, COI > 0.8 as high risk, and medium risk COI values in between. The thresholds are shown as vertical dotted lines in the histograms at the bottom of the figure. 
Pigment concentration estimate values were constrained in the range 0–200 µgL-1 to enhance spatial visualisation.
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occurrence, the COI, which we propose could serve as an indicator for 
satellite-derived inference of the risk of cyanobacteria occurrence. In 
this context, the risk of cyanobacteria occurrence relates to the presence 
of optical features typically associated with abundance of cyanobacteria. 
This occurrence risk should not be confused with health risks to humans 
and animals, associated with cyanotoxin production and accumulation 
or rapid biogeochemical change during hypoxia events. Instead, the COI 
could be used in management to guide sampling strategies to determine 
the species composition and health risk posed by observed blooms.

Whilst this approach requires wider evaluation across water bodies, 
it provides proof-of-concept that subtle features in water colour stem
ming from variation in phytoplankton composition, mixing conditions 
and cell physiology are likely to be recurrent and may be captured from 
current satellite sensors. This builds on previous work where OWTs 
defined from in situ observations alone is likely to have missed less 
commonly observed conditions, including at-surface blooms that are 
challenging to record in situ without disturbing their appearance. The 
development of this approach in the tropical setting of Winam Gulf, 
experiencing frequent cyanobacterial blooms and variable mixing con
ditions, provides a suitable testbed, despite a general lack of equivalent 
in situ observations. Bloom phenology is largely driven by varying 
nutrient conditions, grazing pressure, and species composition, high
lighting the importance of validating the approach across systems and 
seasons with different controlling mechanisms. The lack of compre
hensive biogeochemical measurements, including pigment concentra
tions, nutrient levels, and cell counts, limits our ability to definitively 
attribute optical features to specific physiological states, in contrast to 
deriving optical classifications from detailed in situ investigations. Here, 
we show that a hybrid approach is feasible.

It is important to recognise that defining OWTs from atmospherically 
corrected observations results in a water types library that includes any 
biases from atmospheric correction. This, and the specific sensor 
waveband configuration, may result in challenges to apply the library to 
other sensors. Similar efforts to generate OWTs from satellite-derived 
ocean colour spectra already exist for the global ocean (Jackson et al., 
2017) and transitional and coastal water bodies (Atwood et al., 2024). 
The optical diversity and atmospheric correction challenges of inland 
waters are nevertheless expected to exceed those. Thus, the present 
extension of OWTs derived from OLCI should be considered specific to 
the current Polymer atmospheric correction and may include sensor- 
specific biases. Nevertheless, the gradual spatiotemporal dynamics 
observed in our results, along with correlation to established algorithms 
and trophic state indicators, suggests the extended water types library 
captures meaningful variations in bloom conditions.

The primary proof-of-concept in this work is an improved OWT 
membership sum resulting from extension from 13 in situ reflectance 
derived OWTs to a total of 25 types. K-means clustering revealed sig
nificant intra-OWT variability (Fig. 3) indicating that Winam Gulf pre
sented optical features outside the scope of the 13 OWTs for inland 
waters formulated by Spyrakos et al. (2018). As discussed above, it is not 
known whether this additional variability stems from conditions of the 
water, or from the remote sensing approach. Nevertheless, the process of 
expanding the initial types indicative of cyanobacteria into a wider di
versity of subtypes proved effective. While it is expected for a greater 
number of water types to ‘better represent’ water colour variability, the 
combination of subtypes based on the Euclidian distance between OWT 
membership score (Sowt) clusters avoided ‘overfitting’ the candidate set 
to our study site. This process allowed for a more generalised candidate 
library that improved the membership sum compared to the original set 
of 13 OWTs (Fig. 5B). Furthermore, since the membership sum did not 
show significant drops over time (Fig., 7A), it can be concluded that all 
optical variations in the data set were captured, and that cyanobacteria 
bloom phases in Winam Gulf appeared to be described in our extended 
candidate water types library.

The clustering and classification of spectra into dominant members 
using the candidate water types set revealed cases that have not been 

previously described or not fully characterised. For example, the (non- 
cyanobacteria) OWT 5 showed the largest variance of Chla and inor
ganic suspended matter in the OWT library for inland waters by Spyr
akos et al. (2018), suggesting that its original formulation was 
potentially incomplete. This is evident by the much lower observation 
count within our candidate library (N < 30,000) (Fig. 6) compared to its 
observation count prior the definition of the new types (N > 1.3 mil
lions) (Fig. 3C). Additionally, this indicates that the new candidate li
brary absorbed some of the optical characteristics originally associated 
to OWT 5. Another case not described in the original set of 13 OWTs for 
inland waters by Spyrakos et al. (2018) is what we identified as water 
type 12.2. Visual interpretation of MSI images showed that spectra with 
this water type as their dominant member were associated to intense 
surface scum and sometimes macrophyte mats (Fig. 5). While the 
detection of macrophytes requires a separate assessment beyond the 
scope of this work, it is important to note that strategies to distinguish 
macrophytes from cyanobacteria blooms and surface scum exist. For 
instance, Matthews & Odermatt (2015) proposed a method that com
bines the Normalised Difference Vegetation Index (NDVI) and the MPH 
algorithm in a flagging system. This approach uses an MPH threshold to 
identify legitimate floating vegetation, while an NDVI threshold helps 
differentiate water from submerged and floating aquatic vegetation. 
Their combination allows for the separation of floating cyanobacteria 
scum from emergent macrophyte vegetation. Despite a high likelihood 
of cyanobacteria presence for water type 12.2, the band ratios used to 
determine COI weights were relatively low, which can be explained by 
higher Rw values at 620 nm derived by the different optical character
istics of surface scum, especially when bleached (Tebbs et al., 2015). 
While macrophytes have been documented in Winam Gulf (Romero 
et al., 2005; Kiage & Obuoyo, 2011; Otieno et al., 2022), visual in
spection of 331 MSI observations coinciding with OLCI revealed that 
their presence was primarily confined to the Nyando estuary to the east, 
with more frequent appearances throughout the Gulf only observed in 
2019 and 2020. The clustering process did not clearly separate surface 
accumulations of cyanobacteria from floating macrophytes within water 
type 12.2, as evidenced by its large observation count (N > 600,000). 
This suggests that at the spatial and spectral resolution of OLCI, these 
features may appear similar when using standardised spectra, and may 
not be consistently distinguishable. However, while this aspect remains 
untested, we would expect macrophytes to influence the COI, and 
separate algorithms may be needed in the future to mask them out. 
Finally, there is evidence to suggest that the remaining, non- 
cyanobacteria, OWT set also deserves further scrutiny. Particularly, 
spectra associated with OWT 13 showed a backscattering peak at 709 
nm (Fig. 6), indicating phytoplankton presence and a deviation from the 
clear water case described by Spyrakos et al. (2018).

The candidate water types library likely offers a more detailed rep
resentation of cyanobacteria bloom phases than the original 13 OWTs 
for inland waters, capturing bloom formation, accumulation, and 
breakdown (Fig. 6). One of the two main spectral groups was associated 
primarily with surface bloom conditions (e.g., 1.2, 7.2, 1.1_7.1), 
exhibiting a reflectance peak around 709 nm and plateau in the NIR 
region. These spectra occur when cells accumulate at the water surface. 
Light is efficiently reflected in a shallow layer of water near the surface, 
thus reducing the path length of light absorption by water which in 
mixed conditions would greatly reduce the reflectance in the NIR. 
Increased Rw in the NIR may also be caused by a higher degree of at
mospheric path radiance from adjacent non-water surfaces (Jiang et al., 
2023). If exposed to the sun for long enough, cells accumulated at the 
surface may start bleaching (i.e., 12.2) (Fig. 5A-B). The second group of 
spectra was associated to various cyanobacteria bloom phases within the 
water column, as evidenced by a backscattering peak in the NIR, and an 
efficient absorption by water beyond the NIR. Water types 12.4, 8.2, 6.5 
and 8.1 may indicate fully developed blooms. As blooms intensify and 
pigment absorption per unit area increases, absorption features in the 
red spectral region intensify (Simis et al., 2007; Matthews & Odermatt, 
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2015; Stumpf et al., 2016). A lower peak at 709 may indicate early to 
very early cyanobacteria blooms phases (e.g., 12.1, 6.2, 8.3, 6.4, 6.3), 
when cells have not yet aggregated and become the dominant signal. 
During what may indicate the decaying cyanobacteria bloom phase, 
spectral characteristics change significantly. As cells break down, 
decaying material adds to browning of the water (Tebbs et al., 2013) and 
a flattening of the remote sensing signal, such as represented by water 
type 12.3. Finally, the remainder of water types present mixed condi
tions, where cyanobacteria and other phytoplankton are present in 
varying concentrations throughout the water column (Table 1). The 
spectral signature becomes more complex, due to the concurrent 
contribution from different pigments and varying backscattering due to 
suspended solids (e.g., 11.2, 4.1_11.1, 4.2).

The interpretation of OWT membership in terms of optical biogeo
chemical dynamics will likely remain challenging to users without bio- 
optical knowledge. Given this consideration, it is desirable to generate 
an intuitive index such as the COI. The COI, generated by assigning a 
weight to each OWT to indicate cyanobacteria occurrence risk or like
lihood, is a subjective ranking. Objective ranking is not feasible due to 
the lack of pre-requisite in situ data. Typical optical features are instead 
used to assign order-of-magnitude ranked classes. Notably, the sum of 
the 709/620 and 709/681 nm waveband ratios serves as a useful indi
cator of cyanobacteria presence and abundance, capturing both pigment 
absorption features and their expression under different bloom condi
tions. When cyanobacteria concentrate near the surface, the optical path 
length through the water column is altered, changing how light interacts 
with water and other particles at these wavelengths (Gordon & Morel, 
1983). Consequently, the single metric Wsum, and by extension COI, 
recognises that multiple biogeochemical processes can take place 
simultaneously through the combined use of all membership scores and 
are accounted for by the ranking scheme based on typical optical fea
tures. It is further useful to note that the weighting of OWT memberships 
underpinning the COI, being based on these optical features associated 
with cyanobacteria presence, is likely behind the positive and strong 
correlation with pigment retrieval algorithms demonstrated here. A 
major difference between COI and these algorithms is that the COI does 
not include any attempt to calibrate the response to pigment concen
tration, noting difficulties to achieve linearity in past efforts, and sig
nificant biological variability in pigment production within 
cyanobacteria populations related to nutrient availability, and between 
phytoplankton groups.

The strong correlation of COI with diagnostic pigment-specific al
gorithms like MPH and Simis07 confirmed its sensitivity to cyanobac
teria in dynamic water conditions (Fig. 10). MPH was designed to 
capture Chla concentrations linearly by leveraging the reflectance peak 
around 709 nm, which is sensitive to changes in Chla across different 
trophic levels (Matthews et al., 2012). However, MPH is less effective in 
distinguishing variations of Chla when the 709 peak diminishes, leading 
to large uncertainties at lower concentrations (Fig. 10A). The relation
ship with Simis07 is less straightforward due to the optical complexity of 
PC (Fig. 10C). PC shares its absorption region with other pigments like 
Chlorophyll-b and Chlorophyll-c, complicating its isolation (Simis et al., 
2007). The Simis07 algorithm incorporates spectral deconvolution 
techniques to separate the absorption signals of these pigments. How
ever, this process is less effective at lower concentrations where the 
relative contribution of PC absorption decreases (Tandeau De Marsac, 
1977; Wyman & Fay, 1986b, 1986a; Grossman et al., 1993). The com
parison with MDN showed the advantages of COI in detecting cyano
bacteria presence and abundance (Fig. 10B). MDN leverages the full 
range of wavebands available to estimate Chla across diverse bio- 
optically variable waterbodies, making it well-suited to detect subtler 
blooms mixed within the water column that are yet to surface (Pahlevan 
et al., 2020). However, its reliance on the fluorescence peak at 681 nm 
makes it less suitable to track cyanobacteria. Additionally, MDN may 
struggle in especially turbid water conditions, which may divert from 
the original limited dataset that the model was trained on. 

Consequently, MDN may overestimate higher Chla concentrations and 
underestimate lower concentrations, especially in the presence of cya
nobacteria. Spatially, the COI aligned with both high Chla estimated by 
MPH and high PC concentrations measured by Simis07, reliably iden
tifying cyanobacteria activity both in Winam Gulf (Fig. 11), and in other 
waterbodies with different optical characteristics (Fig. 12). While MPH 
and Simis07 identify areas with high concentrations of cyanobacteria, 
they can miss cyanobacteria presence at lower concentrations in well- 
mixed conditions that COI appears to detect, as evidenced by its 
agreement with MDN. Additionally, the COI showed sensitivity to sur
face (bleached) scum that MDN and Simis07 do not resolve and relate to 
low concentrations of Chla and PC, respectively. This is particularly 
significant since the risk posed by cyanobacteria in surface scum con
ditions can increase substantially, highlighting the limitations of tradi
tional pigment-retrieval algorithms in these scenarios. The technical 
differences of the pigment-retrieval algorithms — MPH focusing on peak 
bloom conditions, Simis07 on overall PC concentration using spectral 
deconvolution, and MDN on Chla levels leveraging fluorescence — lead 
to variations in their responses to different water conditions. The COI 
demonstrated consistent behaviour across varying optical conditions, 
suggesting potential for broader application. The preservation of these 
relationships across different waterbodies, from the shallow tropical 
Winam Gulf to temperate systems like Lake Erie and the highly eutro
phic Lake Taihu, provides encouraging evidence for the transferability 
of the approach, though further validation is needed to establish robust 
thresholds for different ecological contexts.

The COI suggested major shifts in cyanobacteria occurrence in 
Winam Gulf. For example, the COI revealed higher than average cya
nobacteria presence in 2020 (Figs. 7 and 9). This was the year with the 
highest water levels ever recorded in Lake Victoria and Rift Valley Lakes, 
primarily attributed to high precipitation anomalies (Herrnegger et al., 
2021; Pietroiusti et al., 2024). Heavier rainfall is likely to have delivered 
sediment and nutrients into the lake, increasing turbidity and leading to 
further eutrophication, conditions in which cyanobacteria are known to 
outcompete other phytoplankton species (Paerl & Paul, 2012; Huisman 
et al., 2018). In successive years, COI gradually decreased, showing a 
low towards the end of 2021. This could be in part linked to a higher 
dilution driven by higher water levels, which may have suppressed the 
activity of certain bloom-forming species of phytoplankton and cyano
bacteria as observed in other lakes in Kenya (Byrne et al., 2024). 
However, other environmental factors may have played a role in the 
suppressed cyanobacteria activity. Given the prevalence of surfacing 
blooms of cyanobacteria in the Gulf, higher than average COI in coastal 
bays provide further indication that wind-driven biomass is appropri
ately accounted for in the COI.

For management purposes, identifying risk levels from COI may be 
particularly useful, given the popular use of traffic light systems in water 
quality risk assessment, including those in existence for cyanobacteria 
(surface) blooms (EPA, 2015; Loisa et al., 2015). The translation of COI 
values into risk categories provides an accessible framework for water 
quality managers while maintaining the underlying detail of the index. 
COI climatology may further help to identify areas and periods that 
require more careful management (Fig. 8), allowing for proactive 
monitoring strategies. For instance, it was shown that the highest count 
of high risk pixels in Winam Gulf consistently occurs during the long- 
rainy season (Mar-Jun), which may be a direct effect of rainfall 
contributing to the transport of nutrients into the lake from surrounding 
land, promoting cyanobacterial growth. Such temporal patterns, when 
combined with local environmental knowledge, can help optimise 
monitoring resources and inform management decisions. High risk areas 
in enclosed bays and areas with significant riverine inputs (like Homa, 
Asembo, and Kisumu Bay) would then be prioritised. Recent genetic 
studies have found cylindrospermopsins and microcystins in a range of 
concentrations especially in these areas (Brown et al., 2024), providing 
biological validation to the risk assessment approach. While these spe
cific patterns reflect the conditions in Winam Gulf, the ability of the 
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framework to identify areas of concern based on optical characteristics 
suggests its potential utility for other water bodies. Of course, the 
thresholds explored in this work are based on visual interpretation of the 
distribution of TSI, inherently linked to Chla concentration (Fig. 8), but 
could be redrawn based on the management targets of individual water 
bodies, which is also common practise, e.g., in the European Water 
Framework Directive and monitoring for Sustainable Development Goal 
6.3.2 (Halleux & Pichon, 2023).

Further validation and refinement of both the candidate water types 
library and the COI are essential to establish their broader applicability. 
While deriving OWTs directly from satellite observations helps capture 
dynamic bloom conditions, this approach faces specific validation 
challenges. Surface accumulations are particularly difficult to sample 
representatively due to disturbance from vessel movement and wind 
action, compounded by their rapid temporal evolution. This requires 
carefully designed sampling strategies that can capture both optical and 
biochemical characteristics while minimising disturbance. The valida
tion strategy should address three key aspects. First, systematic testing 
of the candidate library across diverse geographical and climatic regions 
using the available satellite record will determine whether the bloom 
phases identified in Winam Gulf are consistently detected by different 
sensors. This cross-sensor validation is particularly important given that 
the current library is specific to the waveband configuration of OLCI. 
Second, the robustness of COI should be evaluated against a range of 
water conditions potentially underrepresented in our dataset, including 
validation against in situ Chla and PC measurements across different 
bloom stages. This validation effort is hampered by the current lack of 
standardised methods for PC extraction (Simis et al., 2007; Stumpf et al., 
2016) and may alternatively rely on non-optical indicators of cyano
bacteria biomass, such as cell counts, or those of less quantitative nature 
such as from fluorescence probes. Third, the sensitivity of both the water 
types library and COI to different atmospheric correction methods re
quires systematic assessment, given their significant influence on 
retrieved reflectance spectra in optically complex waters. While the 
underlying mechanism of COI should theoretically be robust to atmo
spheric correction biases, as these are propagated consistently through 
the wavebands of the used sensor, empirical validation through multi- 
algorithm comparisons would strengthen confidence in the approach.

Looking forward, this present study suggests new opportunities to 
study cyanobacteria dynamics and their management across spatial and 
temporal scales. Long-term satellite records processed with our 
approach could reveal valuable insights into climate change impacts on 
bloom patterns in lakes, including currently underrepresented tropical 
and subtropical systems. Analysis of these time series could help uncover 
relationships between bloom phenology and environmental gradients, 
supporting predictive modelling efforts. Such information would be 
crucial for adaptive water resource management, particularly in regions 
where traditional monitoring approaches face logistical or resource 
constraints. By systematically addressing these research priorities 
through coordinated validation efforts and stakeholder engagement, we 
can enhance the reliability of both the candidate water types library and 
COI, developing them into robust tools for characterising and moni
toring cyanobacteria dynamics worldwide.

CRediT authorship contribution statement

Davide Lomeo: Writing – review & editing, Writing – original draft, 
Visualization, Software, Methodology, Investigation, Funding acquisi
tion, Formal analysis, Data curation, Conceptualization. Stefan G.H. 
Simis: . Xiaohan Liu: Writing – review & editing. Nick Selmes: Soft
ware, Resources, Data curation. Mark A. Warren: . Anne D. Jungblut: 
Writing – review & editing, Supervision. Emma J. Tebbs: .

Declaration of competing interest

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgments

The authors acknowledge funding to DL from the Natural Environ
mental Research Council (NERC) through the London NERC DTP (NE/ 
S007229/1) and the Natural Environment Research Council Earth 
Observation Data Analysis and Artificial-Intelligence Service (NEO
DAAS) for providing satellite data.

References

Alexander, R., Imberger, J., 2013. Phytoplankton patchiness in Winam Gulf, Lake 
Victoria: a study using principal component analysis of in situ fluorescent excitation 
spectra. Freshwater Biology. 58 (2), 275–291. https://doi.org/10.1111/fwb.12057.

Atwood, E.C., Jackson, T., Laurenson, A., Jönsson, B.F., Spyrakos, E., Jiang, D., Sent, G., 
Selmes, N., Simis, S., Danne, O., Tyler, A., Groom, S., 2024. Framework for Regional 
to Global Extension of Optical Water Types for Remote Sensing of Optically Complex 
Transitional Water Bodies. Remote Sensing. 16 (17), 3267. https://doi.org/10.3390/ 
rs16173267.

Brown, K.M., Barker, K.B., Wagner, R.S., Ward, C.S., Sitoki, L., Njiru, J., Omondi, R., 
Achiya, J., Getabu, A., McKay, R.M., Bullerjahn, G.S., & the NSF-IRES Lake Victoria 
Research Consortium (2024). Bacterial community and cyanotoxin gene distribution 
of the Winam Gulf, Lake Victoria, Kenya. Environmental Microbiology Reports. 16 (3), 
e13297. doi:10.1111/1758-2229.13297.

Byrne, A., Tebbs, E.J., Njoroge, P., Nkwabi, A., Chadwick, M.A., Freeman, R., Harper, D., 
Norris, K., 2024. Productivity declines threaten East African soda lakes and the 
iconic Lesser Flamingo. Current Biology. 34 (8), 1786–1793.e4. https://doi.org/ 
10.1016/j.cub.2024.03.006.

Carlson, R.E., 1977. A trophic state index for lakes. Limnology and Oceanography. 22 (2), 
361–369. https://doi.org/10.4319/lo.1977.22.2.0361.
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blooms by satellite remote sensing. Estuarine, Coastal and Shelf Science. 67 (1–2), 
303–312. https://doi.org/10.1016/j.ecss.2005.11.024.

Liu, X., Steele, C., Simis, S., Warren, M., Tyler, A., Spyrakos, E., Selmes, N., Hunter, P., 
2021. Retrieval of Chlorophyll-a concentration and associated product uncertainty 
in optically diverse lakes and reservoirs. Remote Sensing of Environment. 267, 112710. 
https://doi.org/10.1016/j.rse.2021.112710.
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