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Abstract: A radiometric field intercomparison was conducted at the Acqua Alta Oceanographic
Tower (AAOT) in the Adriatic Sea from 14 to 21 July 2022 to assess differences in the accuracy of
above-water radiometer systems (Sea-Bird HyperSAS, pySAS, TriOS-RAMSES) processed using
an open-source community processor (HyperCP). Class-based and sensor-specific characteristics
of the radiometers were used to determine the quantities Ed(λ), Lsky(λ), Lt(λ) and Rrs(λ), and their
associated uncertainties. Using sensor-specific characteristics, the differences among systems
were 2% for Ed(λ), Lsky(λ), Lt(λ) and 2.5% for Rrs(λ) and the uncertainties were 1.5%, 2%,
1.5% and 5%, respectively. The differences were higher when using class-based characteristics.
Lwn(λ) values were also compared to the above-water AERONET-OC SeaPRiSM and in-water
HyperPro II. For SeaPRiSM, the differences and uncertainties were <5% over blue and green
bands when using Mobley [App. Opt. 38, 7442 (1999)] sea surface reflectance factors (ρ) and
no NIR correction. For HyperPro II the differences were larger but were reduced when Rrs(λ)
from the above-water systems was computed using ρ from Zhang et al. [Opt. Express 25, 1
(2017)] with similarity (sim) spectrum (spec) NIR correction. HyperCP using sensor-specific
characteristics is highly recommended to reduce the associated uncertainties and to produce the
highest quality data for satellite OC validation.
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1. Introduction

Radiometric inter-comparison exercises are necessary to ensure measurement consistency among
optical systems that are used to validate satellite radiometric data products. The ocean color
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(OC) community has a long history of instrument inter-comparison exercises for OC missions.
Following the launch of SeaWiFS, NASA conducted SIRREX [1,2], an inter-calibration program
that established common protocols, which led to a decrease in absolute radiometric calibration
differences from 8% to 1%. In SIRREX-5, an inter-comparison was conducted with instruments
from 8 laboratories. The discrepancies between Rrs(λ) determined using various methods and
diverse instruments were greater than the desired uncertainties for the field measurements [2].
This was followed by SIMRIC-1 and -2 [3,4], the purpose of which was to investigate consistency
among the calibration procedures and protocols used by 10 different calibration laboratories. The
agreement between calibration coefficients determined for a single radiometer (SeaWiFS Transfer
Radiometer SXR-II) were within the combined uncertainties for all but two of the laboratories.
Following the launch of MERIS in 2002, an inter-comparison off Plymouth, UK, of above- and
in-water radiometers were within 1 to 2%, except for one sensor that exhibited cosine collector
degradation [5]. A second field inter-comparison of above-water and in-water measurements for
MERIS, conducted off south-west Portugal in 2003 showed differences within 5%. A successive
inter-comparison included above-water and in-water radiometers and was conducted under near
ideal deployment conditions at the AAOT in the northern Adriatic Sea in 2010 [6]. Differences
among water-leaving radiance (Lw), downwelling irradiance (Ed) and remote sensing reflectance
(Rrs) were within 1% and 6% for the above-water systems and 9% for the in-water systems.
A radiometer inter-comparison exercise in support of Sentinel-3 OLCI (FRM4SOC 1) was
also conducted at the AAOT in 2018, in which above-water systems, and in-water profilers,
were compared against SeaPRiSM [7]. The differences in normalized water-leaving radiance
(Lwn) were 4.8% across the visible bands for two above-water systems and 11.8% for the two
in-water systems due to temporal and spatial differences in sampling and instrument self-shading
for one system. This study highlighted the impact of differences in processing, that rely on
diverse data reduction procedures, which can lead to error compensations that make it difficult to
assess the results based on differences alone. This further showed the importance of uncertainty
budgets in future studies and spurred the FRM4SOC Phase 2 Radiometric Field inter-comparison
(FICE-22) at the Aqua Alta Oceanographic Tower in July 2022. The objectives of this new
inter-comparison were to assess differences in the accuracy of above-water radiometer systems
(Sea-Bird HyperSAS and TriOS-RAMSES) processed using the same open-source community
data processor (HyperCP). The HyperCP is a toolkit designed to provide automated processing
of above-water hyperspectral radiometric data using state-of-the-art methods and protocols for
quality procedures that also includes uncertainty propagation. Though the radiometric systems are
hyperspectral, for the inter-comparison they were matched to OLCI bands. The same processor
was also coded to produce end-to-end uncertainties, which are reported with k= 1 coverage
factor. It was run using class-based and sensor-specific radiometer characteristics. Class-based
radiometric quantities and uncertainties are computed using mean instrument class characteristics
derived from ∼40 individual radiometers. The sensor-specific processing chain differs from the
class-based one by using the individual instrument characteristics to compute the radiometric
quantities and uncertainties. The outputs from class-based and sensor-specific were compared
and recommendations on reducing the uncertainties, based on these, are given.

2. Materials and measurements

The radiometric quantities, Ed(λ), Lsky(λ), Lt(λ), Rrs(λ) and Lwn(λ) from five above-water systems;
one SeaBird-HyperSAS, one pySAS, two TriOS-RAMSES and AERONET-OC SeaPRiSM and
one in-water SeaBird HyperPro II, were inter-compared. Sections 2.1 to 2.3 describe how these
quantities are determined.



Research Article Vol. 33, No. 7 / 7 Apr 2025 / Optics Express 15758

2.1. Determination of water-leaving radiance: above-water

Illumination in above-water radiometry during clear sky conditions is largely determined by the
sun zenith angle θ0, and to a lesser extent by atmospheric properties. The water-leaving radiance
Lw is computed by removing glint perturbations from Lt as follows:

Lw(θ, θ0, ∆ϕ, λ) = Lt(θ, θ0, ∆ϕ, λ) − ρ(θ, θ0, ∆ϕ, U10)Lsky(θ
′, θ0, ∆ϕ, λ), (1)

where Lt(θ, θ0, ∆ϕ, λ) is the total radiance from the sea, Lsky(θ
′, θ0, ∆ϕ, λ) the sky radiance, and

ρ(θ, θ0, ∆ϕ, U10) is the sea surface reflectance factor typically expressed as a function of the
sun-sensor geometry, with θ and θ0 being the viewing and sun zenith angles, ∆ϕ the relative
azimuth with respect to the sun, and U10 the wind speed at 10 m above the sea surface [8]. For
this inter-comparison, θ was set to 40° implying θ ′ = 180◦−θ and ∆ϕ set to either 90° or 135°.

2.2. Determination of water-leaving radiance: in-water

The sub-surface upwelling radiance determined with nadir view, Lu(0−, λ), is transmitted above
water to obtain the water-leaving radiance:

Lw(0, θ0, ∆ϕ, λ) = Lu(0−, λ) ·
(1 − ρ′)

n2 , (2)

where 0− indicates just below the surface, ρ′ is the water-air interface sea surface reflectance, n
is the refractive index of water.

2.3. Determination of remote sensing reflectance and normalized water-leaving radi-
ance for above-water measurements

The remote sensing reflectance Rrs(θ, θ0, ∆ϕ, λ) is defined as the ratio of the Lw to the above-water
downwelling irradiance Ed(0+, λ), where 0+ indicates just above the surface and is computed as:

Rrs(θ, θ0, ∆ϕ, λ) =
Lw(θ, θ0, ∆ϕ, λ)

Ed(0+, λ)
. (3)

The exact normalized water-leaving radiance Lwn is computed as per Morel et al. (2002):

Lwn(λ) = Rrs(θ, θ0, ∆ϕ, λ)BRDF(θ, θ0, ∆ϕ, λ, chl)F0(λ), (4)

where F0(λ) is the extraterrestrial solar irradiance [9] and chl is the total chlorophyll concentration.
BRDF(θ, θ0, ∆ϕ, λ, chl) indicates bi-directional reflectance factor

BRDF(θ, θ0, ∆ϕ, λ, chl) = ℜ0(U10)
f0(λ, U10, chl)
Q0(λ, U10, chl)

[︃
ℜ(θ, U10)

f (θ0, λ, U10, chl)
Q(θ, θ0, ∆ϕ, λ, U10, chl)

]︃−1
(5)

where, ℜ accounts for combined reflection/refraction effects by the sea surface, Q is the Q-factor
indicating the ratio of upward irradiance to upwelling radiance just below the surface, and f relates
the irradiance reflectance to the water inherent optical properties conveniently expressed by chl.
Look-up-tables of f

Q and ℜ values were taken from Morel et al. [10] for specific wavelengths.
The quantities f0(λ, U10, chl), Q0(λ, U10, chl) and ℜ0(U10) indicate values of f (θ0, λ, U10, chl),
Q(θ, θ0, ∆ϕ, λ, U10, chl) and ℜ(θ, U10) determined for θ0 = 0, respectively.The BRDF factor
was computed as a function of chl estimated from OC4 M, which resulted in values ranging
from 0.1 to 0.8 mg m−3. BRDF corrections were determined for the +/-90 and +/-135 degrees
relative azimuths between sensor and sun, and the sensor viewing angle of 40 degrees assuming
U10 = 2 m/s.
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2.4. Field intercomparison

The field intercomparison was conducted from 14 to 21 July 2022 at the AAOT in the Gulf of
Venice, Italy, at 45.31°N, 12.51°E. The AAOT is a fixed oceanographic tower allowing for the
measurement of ocean properties under stable conditions. The platform has a long history of
optical measurements, which often provides near ideal conditions to validate OC missions under
clear skies, low wind speed and calm sea state [11]. Two AERONET-OC SeaPRISM instruments
are deployed at the western corner of the AAOT (Fig. 1). A CE-318 9-channel radiometer (called
Venice) has been active since April 2002, and a CE-318 T 12-channel radiometer (named AAOT)
has been operated since October 2017 [12]. For the inter-comparison, four above-water, two
RAMSES [7,13], one HyperSAS [14], one automated HyperSAS (pySAS) [15] and one in-water
HyperPro II [16] were deployed.

Fig. 1. Locations of the radiometric measurement systems on the AAOT for the field
inter-comparison. (A.) HyperSAS, pySAS, RAMSES-A & -B irradiance sensors located on
a Fireco mast on the top level of the AAOT, (B.) SeaPRiSM and HyperSAS, RAMSES-A
& -B radiance sensors located side-by-side (C.) close up of HyperSAS, RAMSES-A, -B
radiance sensors, (D.) pySAS system, (E.) view of the AAOT showing locations of radiance
sensors, (F.) deployment of Hyperpro II from RV Litus,

To rule out any difference arising from independent absolute radiometric calibrations, all
sensors were calibrated at the University of Tartu (UT) [17] applying the same methods and
standards within ∼1 month of the campaign. The instruments were then shipped directly to the
AAOT. Processed Lsky(λ), Lt(λ), Ed(λ) and Rrs(λ) data with application of the OLCI’s spectral
response functions to obtain radiometric quantities equivalent to those corresponding to the
OLCI channels centered at 400, 412, 443, 490, 510, 560, 620, 665, 674, 681 nm, were produced
along with a UTC timestamp, the make, model, serial number of the instrument and integration
time setting used during the acquisition.

2.5. Above-water systems

2.5.1. TriOS-RAMSES

For above-water measurements RAMSES-A and -B, both comprising three TriOS (Mess- und
Datentechnik GmbH, Germany) radiometers were deployed by UT and Hereon (Table 1). The
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systems consisted of two RAMSES ARC-VIS hyperspectral radiance sensors for measuring
Lsky(λ) and Lt(λ) respectively, and one RAMSES ACC-VIS irradiance sensor for measuring Ed(λ).
Measurements were made over the spectral range of 350–950 nm with a spectral resolution of
about 10 nm, a spectral sampling of approximately 3.3 nm and a wavelength accuracy of 0.3 nm,
respectively. The nominal full angle field-of-view (FOV) of the radiance sensors is 7°. The
sensors are based on the Carl Zeiss Monolithic Miniature Spectrometer (MMS 1) incorporating
a 256 channel silicon photodiode array. Integration time varied from 4 ms to 8 s, which is
automatically adjusted based on light intensity to prevent saturation. The data stream from all
three instruments is integrated by an IPS-104 power supply and interface unit and logged on a
PC via a RS232 connection. For the deployment and processing of data, both UT and Hereon
followed published satellite validation protocols [18].

Table 1. Field intercomparison measurement systems, sensors and institutes used in the analysis.

Method (ID) Radiometers Institute

1 Above-water (RAMSES-A) TriOS University of Tartu, Estonia

2 Above-water (RAMSES-B) TriOS Hereon, Germany

3 Above-water (HyperSAS) Seabird Plymouth Marine Lab, UK

4 Above-water (pySAS) Seabird NASA, USA

5 Above-water (SeaPRISM) SeaPRISM Joint Research Centre, Italy

6 In-water HyperPro II Seabird NOAA, USA

2.5.2. Sea-Bird HyperSAS

PML deployed a measurement system consisting of three hyperspectral Sea-Bird (Washington,
USA; formerly SATLANTIC Inc.) radiometers, two measuring Lsky(λ) and Lt(λ) and one
measuring Ed(λ), that are routinely deployed on the Atlantic Meridional Transect [14]. The
sensors measure over the 350–900 nm wavelength range with a spectral sampling of approximately
3.3 nm and a spectral resolution of about 10 nm. Integration time can also vary from 4 ms to 8 s
and is automatically adjusted to the light intensity. The data stream from all three instruments
is integrated by an interface unit and logged on a PC via a RS232 connection. The radiance
sensors have a FOV of 6°. HyperSAS radiometers are equipped with a shutter that closes
periodically to record dark values. The Ed(λ), Lt(λ), and Lsky(λ) data were first dark corrected by
interpolating the dark values in time to match the light measurements for each sensor. Then, the
dark values were subtracted from the spectral light measurements of each radiometer. Ed(λ),
Lt(λ) and Lsky(λ) data were then interpolated to a common set of wavelengths every 3.3 nm from
353–898 nm.

2.5.3. pySAS system

The pySAS system comprises Sea-Bird HyperSAS radiometers (as described in Section 2.7.2)
operated on a custom robotic sun-tracking mount connected to a Raspberry Pi 3B+ computer
for control and data logging. The system autonomously adjusts the relative azimuth to within
preset limits to avoid platform perturbations, while continuously logging data from the sensors
and controller. Data from all instruments, including directional GPS, tilt sensor, sun tracker, and
the three radiometers are merged into hour-long, Sea-Bird-styled files using python software
prepSAS (https://github.com/OceanOptics/pySAS/tree/master/prepSAS).

2.5.4. SeaPRISM AERONET-OC

The SeaWiFS Photometer Revision for Incident Surface Measurements (SeaPRiSM) is a CE-318
T sun-photometer (CIMEL, Paris, France) that has the capability to perform autonomous above-
water measurements with a FOV of 1.2° at a number of 10 nm wide spectral bands. The CE-318

https://github.com/OceanOptics/pySAS/tree/master/prepSAS
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T instrument is a new version of the previous CE-318, which had fewer spectral bands centred on
those of MODIS-Aqua. CE-318 T replicated measurement sequences (typically 3) are made every
30 min. Lw (λ) is determined using spectral bands centred at 400, 412, 443, 490, 510, 560, 620,
667, 779, 865, 1020 nm, which largely match those of the Sentinel-3 OLCI in the visible spectral
region. These measurements are: 1.) the direct sun irradiance Es(λ) acquired to determine the
aerosol optical depth τa(λ) used for the theoretical computation of Ed(λ), and; 2.) a sequence of
11 sea-radiance measurements for determining Lt(λ) and of three sky radiance measurements for
determining Lsky(λ). These measurements are sequentially repeated for each λ with ∆ϕ= 90°
and θ= 40°. The larger number of sea measurements, when compared to sky measurements, are
required because of the higher environmental variability (mostly produced by wave perturbations)
affecting the sea measurements during clear skies. Quality flags are applied at the different
processing levels to remove poor data. These include checking for cloud contamination, high
variance of the sequential measurements applied for the determination of Lt(λ) and Lsky(λ),
elevated differences between pre- and post- deployment calibrations of the SeaPRiSM system,
and spectral inconsistencies affecting Lwn(λ) [12]. Fully quality controlled data are accessible at
Level 2.0 (https://aeronet.gsfc.nasa.gov/cgi-bin/draw_map_display_seaprism_v3).

2.6. In-water system

2.6.1. HyperPro II deployment method

The Seabird HyperPro II comprises a HyperOCR radiometer that measures the upwelling radiance
Lu(z, λ) and a HyperOCI irradiance sensor that measures the downward irradiance Ed(z, λ) in
the water column at depths z. The HyperPro II also includes an HyperOCI irradiance sensor to
measure the above-water downward irradiance Ed(0+, λ), which is used as the reference during
data reduction. Both HyperOCR and HyperOCI have a 10-nm spectral resolution over the 350 to
900 nm spectral range. The FOV of the in-water radiance sensor is 8.5°. The HyperOCRs benefit
from dark signal corrections performed using a shutter operated every 5 regular measurement
scans. The HyperPro II was deployed from the in-shore boat RV Litus and the above-water
reference irradiance sensor was located on a pole mounted above the wheel house. At each
coincident above-water station cast, one HyperPro II profile station was produced. HyperPro
profile data were collected with a deployment speed as low as 15 cm s−1. The multicast technique
allowed to continuously log data while the instrument was profiled up and down in the water
column up to 5 times. This led to the collection of a sufficient number of readings per meter to
ensure that depth resolution requirements were met for accurate determination of sub-surface
radiometric values [19].

2.7. Radiometer setup and experimental design

The irradiance sensors from HyperSAS, pySAS and RAMSES systems were located on the same
telescopic mast (Fireco, Italy) (Fig. 1(a)) at the eastern corner of the AAOT, 21 m above the
sea surface (Fig. 1(d)). The radiance sensors from three of the manually operated measurement
systems (RAMSES-A, RAMSES-B, HyperSAS) were located on the same purpose-built frame
on the western corner of the AAOT at a height of 17 m from the sea surface, alongside the
SeaPRISM systems (Fig. 1(b)–(d)). The Lsky and Lt sensors had identical viewing zenith angles
of 40°. A sundial was located mid-way down the mast of the frame to determine the correct
∆ϕ. The deployment frame was adjusted for each measurement sequence so that ∆ϕ= 135°,
which are typically used to reduce sun glint [8]. If this was not possible, ∆ϕ= 90° was used. The
pySAS was located on the south-western corner of the tower on a lower level (Fig. 1(d)). For
the manually operated systems, measurements were made at 20 min intervals, from 08:00 to
13:00 UTC, over a discrete measurement period of 5 min (called “cast”), with all instruments
having a synchronized start time so that the data collected were directly comparable. Data from
the pySAS were extracted over the same measurement period. In-water HyperPro II (Fig. 1(e))

https://aeronet.gsfc.nasa.gov/cgi-bin/draw_map_display_seaprism_v3
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measurements were also coordinated to these times, though with a temporal delay that is inherent
with the practicalities of deployment.

2.8. Convolution of hyperspectral measurements to the Sentinel-3 OLCI bands

Hyperspectral measurements of Lt(λ), Lsky(λ), Ed(λ) and Rrs(λ) were converted into equivalent
Sentinel-3 (S-3) Ocean and Land Colour Instrument (OLCI) bands by applying the OLCI spectral
response functions [20] as in the following example for Lt(λ):

Lt(λi,OLCI) =
∫ Si,OLCI(λ)Lt(λ)dλ

∫ Si,OLCI(λ)dλ
, (6)

where Lt(λi,OLCI) and Si,OLCI(λ) are Lt and the OLCI Spectral Response Function (SRF) for the
ith OLCI channel, respectively. The AAOT AERONET-OC SeaPRISM system measures Lt(λ)
and Lsky(λ) directly at the OLCI bands, while Ed(λ) is estimated using a solar irradiance model
(see Section 2.9.1).

2.9. Data processing and computation of uncertainties using HyperCP

HyperCP was developed through an open science, open-source collaboration effort established to
facilitate community development of a data processing toolkit for in situ above-water radiometry
supporting aquatic biogeochemistry applications, algorithm development and satellite validation.
HyperCP has a strong heritage in NASA’s HyperInSPACE and University of Victoria’s PySciDON
software processing packages, both of which originally supported Sea-Bird HyperSAS radiometry
data for archiving to NASA SeaBASS. HyperCP adds the capability of processing RAMSES
data and computing either class-based or sensor-specific uncertainties for both HyperSAS and
RAMSES systems following the Guide for Uncertainty Measurement (GUM) [21]. HyperCP
processes datasets with a common baseline using standardized parameters. The main objective
of HyperCP is to provide the community with the means of processing above-water radiometric
data to Fiducial Reference Measurement (FRMs) standards, which requires the determination of
uncertainties.

HyperCP has a range of processing solutions and options that can be utilized. For this inter-
comparison the data were processed, as follows: Firstly, before applying radiometric calibration,
the data were verified to meet the relative azimuth angles between instrument and sun, i.e., 90°
and 135°. Spectral measurements were synchronized across radiometers to interpolate them to
time and 3.3 nm spectral sampling to account for small inter-radiometer differences. Quality
control filters were then applied to remove data exhibiting Lw(λ) higher in the NIR [780 to 850
nm] than in the UV [350 to 400 nm], wind speeds >5 m s−1 and solar zenith angles outside the
20°- 60° range. Any remaining spectral outlier was filtered by removing spectra (normalized to
their maxima) within each file that fall outside of 5.0, 8.0, and 3.0 standard deviations over the
spectral range from 400 nm to 700 nm for Ed(λ), Lt(λ) and Lsky(λ), respectively. Acquisitions
were then binned to 5 min ensembles, from which the brightest 90% (as measured by the Lt
sensor) were discarded to reduce the effect of capillary wave solar reflection (glitter). Finally,
Rrs(λ) and Lwn(λ) were computed. Spectra in which Rrs(λ) is negative between 380 nm and 700
nm, were also removed. The hyperspectral data were then convolved to S-3 OLCI wavebands.

For this intercomparison, the data were processed using the Mobley [8] ρ with no residual NIR
correction (hereafter referred to as M99NN). The data were also processed using the Zhang et al.
[22] ρ factors, with the similarity spectrum residual NIR correction (hereafter called Z17SS)
determined over the spectral range from 750 to 800 nm. For the computation of Lwn(λ), the
BRDF correction described in Section 2.3 was applied.
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2.9.1. HyperCP class-based data processing

Class-based uncertainties are computed using the individual radiometric calibration files that, in
addition to calibration coefficients, include the uncertainty of the calibration coefficients assigned
for each sensor. To account for instrument characteristics, the uncertainty contributions for an
instrument class were determined by UT based on characterization of 37 individual radiometers,
which included 20 RAMSES and 16 hyperOCR. Eight uncertainty contributions were accounted
for:

i. Absolute radiometric calibration, from the calibration certificate.

ii. Absolute calibration stability, estimated as ∼1%.

iii. Detector non-linearity, estimated as ∼2%.

iv. Spectral straylight sensitivity, which varies spectrally and per class of instrument.

v. Temperature sensitivity, which varies spectrally and per class of instrument.

vi. Polarization sensitivity for radiance radiometers, which varies spectrally and per class of
instrument.

vii. Cosine response for irradiance radiometers, estimated to be 3.5% for RAMSES and 2% for
HyperSAS. These estimates neglect any dependence on the sun zenith angle.

viii. Environmental variability, estimated from the data statistics of the quality controlled
individual measurements contributing to each measurement cast.

The contribution from each uncertainty is propagated through the various processing steps
leading to the determination of Rrs(λ) following the GUM methodology. Uncertainties are
propagated using a Monte Carlo method [21], where each component of the measurement
equation has assigned a probability distribution function (PDF) that expresses its uncertainty.
Then, the measurement equation is run many times by randomly drawing its input values from
the PDFs of the input components, thus leading to a PDF of the output value representing its
uncertainty. The correlations between input components are defined and the information is
stored in correlation matrixes. For the practical implementation of Monte Carlo uncertainty
propagation in HyperCP the “Propagation of UNcertainties in Python” (punpy) package included
in the CoMet Toolkit [23], is used.

2.9.2. HyperCP sensor-specific data processing

The sensor-specific processing chain differs from the class-based one. In this regime, each
instrument has an extended calibration file which contains, in addition to calibration coefficients
with their uncertainty, the data from the laboratory calibration acquired at two different integration
times. These are used to calculate sensor specific nonlinearity correction following Vabson et al.
[17]. In addition, each instrument has a dedicated file with correction coefficients for:

- Spectral stray light,

- Temperature sensitivity,

- Angular cosine response for irradiance sensors.
Thus, corrections due to the above non-ideal performances of each radiometer are applied in

the processing chain and only the residual uncertainty on corrections are propagated. In this
way the instrument related uncertainty contributors are significantly reduced. The polarization
uncertainty is handled in the same manner in both workflows as well as all remaining uncertainty
components that are not directly related to the instruments. These include the uncertainties in ρ
factors and BRDF corrections.
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2.10. Individual processors

2.10.1. TriOS-RAMSES data processing

Proprietary MSDA XE software was used to acquire the data from both RAMSES-A and -B
systems acquired every 10 s for the duration of each 5 min cast, and then applying calibration
coefficients determined before the campaign by UT. For RAMSES-A, data were merged using
bespoke Python software. The irradiance sensor had GPS time, location, tilt and heading. No
corrections were applied, but spectra with missing or saturated values were removed from the
database. For RAMSES-B, all 60 spectra per cast were used for averaging and determine the
standard deviation. No flagging was applied and visual quality control confirmed expected natural
variability for clear sky conditions. All sensor data were interpolated to a common wavelength
basis with 2.5 nm intervals. For RAMSES-B, to account for the uncertainties from sky glint
correction, three ρ factor, from Mobley [1], Ruddick et al. [24] and sea state-related roughness
modifications from Hieronymi [25], were used and the results were averaged.

2.10.2. Sea-Bird HyperSAS data processing

HyperSAS data processing follows Lin et al. [14]. In brief, data were first extracted from the
raw instrument files and the pre-campaign calibration coefficients were applied. The standard
processing used no NIR correction.

2.10.3. pySAS system data processing

PySAS data were processed in HyperCP as described in section 2.9 with a slightly different
parameterization. Specifically, the surface reflectance correction of Z17SS was applied and
Rrs(λ) and Lwn(λ) were further corrected by applying the similarity spectrum approach of [24] to
remove residual NIR reflectance.

2.10.4. HyperPro II data processing

Multi-cast data saved into a single file were processed using Seabird ProSoft Software version
8.1.6 applying straylight and thermal corrections, and successively removing measurements
affected by high tilt. A least squared regression fit was applied to the log-transformed Lu(z, λ) data
to determine the subsurface upwelling radiance Lu(0−,λ). Spectrally independent extrapolation
depths were determined to ensure log-transformed data still exhibit linear decay at each spectral
band. Lw(λ) and Rrs(λ) were calculated as described in the sections above. The Rrs(λ) from
individual multicasts were averaged for each station.

2.11. Data quality control

AERONET-OC SeaPRiSM Level 2.0 data were quality controlled (QC) following Zibordi et al.
[26]. The mid-point of the cast time +/- 10 minutes from QC SeaPRiSM data were used to filter
the data for the inter-comparison. Wind speed was acquired from the AAOT meteorological
station. Only casts with wind speeds< 5 ms−1 and exhibiting clear skies were retained for the
inter-comparison.

2.12. Statistical analyses

For all above-water systems, Ed(λ), Lsky(λ), Lt(λ) and Rrs(λ) were determined over a 5 min
period for each cast. Results are presented as an inter-comparison between RAMSES-A, -B,
HyperSAS and pySAS with uncertainties from HyperCP for sensor-specific corrections applied
for the instruments non-ideal performances. Results from individual above-water systems were
compared to the mean of all sensors. Differences between individual processors (IP) and the
HyperCP were also assessed to cross check the performance of HyperCP against previously
published processors. For the IP, individual quality control procedures were applied, and mean,
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median and standard deviation values were computed. Lwn(λ) determined from SeaPRISM
and in-water HyperPro II data were used as independent reference data to compare against the
above-water data.

3. Results

3.1. Variability in Rrs(λ)

Figure 2(a) shows the variation in Rrs(λ)measured by the pySAS during the campaign. Figure 2(b)
shows the stations that passed the QC filtering for the manually operated (HyperSAS, RAMSES-A,
-B) and automated systems (pySAS and SeaPRiSM indicated by ‘AAOT’), and illustrates the
larger number of measurements (N) for the autonomous systems. To illustrate the quality of
the data, the Quality Water Index Polynomial (QWIP) [27] was used (Fig. 2(c)). The QWIP
is a metric of color correlated to the spectral shape and represents a polynomial relationship
between the location of the weighted peak in Rrs(λ) (known as the Apparent Visible Wavelength,
AVW) [28] and a Normalized Difference Index determined with red and green wavelengths. The
technique screens for spectra with incorrect removal of surface reflected skylight or unrealistic
shapes, which are indicated by QWIP indices> 0.2. Figure 2(d) shows matching data from the
AAOT meteorological station, and Fig. 2(e) shows the time-series of chl and the absorption
coefficient of the sum of detrital and colored dissolved organic matter (adg) derived from the
pySAS Rrs(λ). A high value of adg is here indicative of optically complex waters where the
in-water signal is related to total suspended material (TSM) and colored dissolved organic
material (CDOM) not correlated with chl.

On 15th July, the shape of the Rrs(λ) is typical when chl is <1 mg m−3 and AVW is between
480–490 nm (blue spectra in Fig. 2(a)). From the 16th to 18th July 2022, high wind speeds (which
prohibited reaching the AAOT to conduct manually operated measurements) were followed by
an increase in total suspended materials (TSM) and chl. This caused an increase in Rrs(λ) slopes

Fig. 2. Variability in (A.) quality controlled Rrs(λ) from the pySAS data during the campaign
from 14 to 22 July 2022, (B.) timeline of data acquisitions, (C.) pySAS-derived reflectance
quality parameters QWIP and AVW, (D.) meteorological data from a nearby buoy and (E.)
pySAS-derived OC properties chl and adg (all identified by the symbols • and ∆). Stations
in (B.) indicate when synchronized manual radiometric acquisitions were collected. Prior
to the pySAS becoming operational on 15 July, the QWIP and AVW are calculated from
SeaPRiSM (indicated by AAOT and shown in black in (B.)). In all sub-figures, the color
indicates AVW.
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Fig. 3. Percent residuals of Ed(λ) (A.-D.), Lsky(λ) (E.-H.), Lt(λ) (I.-L.), and Rrs(λ) (M.- P.)
using HyperCP in class-based mode compared to the mean of all systems for HyperSAS (A.,
E., I., M.), pySAS (B., F., J., N.), RAMSES-A (C., G., K., L.), and RAMSES-B (D., H., L.,
P.), respectively. The residuals at each wavelength are calculated for each system as [(X –
XR)/XR]*100, where XR is the mean reference value across the available sensor systems for
each cast and X=Ed, Lsky, Lt, and Rrs, respectively. The boundary of the box closest to
zero indicates the 25th percentile, the solid line within the box is the median, the boundary
of the box farthest from zero indicates the 75th percentile, the error bars above and below the
box indicate the 90th and 10th percentiles and the points above and below the 90th and 10th
percentiles are outliers. The dashed grey lines are the± values of the median propagated
uncertainties for class-based processing (given in Fig. 4).

from 400 to 490 nm and 550 to 600 nm and a double peak near 490 and 535 nm, indicating
a change in the optical water type (i.e., AVW 490–500 nm in Fig. 2(a)). There was an abrupt
increase in adg on 19th July indicating significant influence of TSM and CDOM.

On 19th July, there was the passage of high chl water followed by a further increase in chl at the
end of the campaign (Fig. 2(e)). During this period Rrs(490) decreased (red spectra in Fig. 2(a))
with a shift in the peak from 490 nm to 535 nm.

3.2. Intercomparison of Ed(λ), Lsky(λ), Lt(λ) and Rrs(λ) between HyperSAS, RAMSES
and pySAS processed using HyperCP (M99NN) in class-based and sensor-
specific modes

Figure 3 (class-based processing) and Fig. 5 (sensor-specific processing) show the percentage
residuals in the radiometric quantities with respect to a reference mean value, which is calculated
by averaging across the available sensor systems (three or four) for each cast. Figures 4 and 6
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Fig. 4. Percentage propagated uncertainties for Ed(λ) (A.-D.), Lsky(λ) (E.-H.), Lt(λ) (I.-L.),
and Rrs(λ) (M.- P.), computed using HyperCP in class-based mode compared to the mean of
all systems for HyperSAS (A., E., I., M.), pySAS (B., F., J., N.) RAMSES-A (C., G., K., O)
and RAMSES-B (D., H., L., P.).

show the corresponding propagated uncertainties for class-based and sensor-specific processing.
The percentage residuals quantify the internal consistency of the field measurements, and are
therefore a natural point of comparison for the propagated uncertainties from HyperCP. For the
HyperCP class-based and sensor-specific processing, there were N= 30 measurements of Ed(λ),
Lsky(λ), Lt(λ) and Rrs(λ) that passed QC for RAMSES-A, -B and HyperSAS, and N= 15 and
N= 17 measurements respectively, for pySAS (Fig. 3, 4, 5, 6). The differences in N for pySAS
were due to a combination of a delay in the system being operational after setup, as well as
azimuth restrictions applied to match the azimuth angles of the manually operated systems. A
slightly different location of the pySAS on the AAOT compared to the other systems, prevented
pySAS performing some the measurement sequences made by the manually operated systems.
HyperCP class-based Ed(λ) processing for HyperSAS and pySAS exhibited small differences over
the visible bands compared to the mean of the four systems (Fig. 3(a),(b)). For RAMSES-A and
-B, the differences in Ed(λ) were higher: ∼2% in the red, and up to 5% in the blue (Fig. 3(c),(d)).
For class-based Lsky(λ) processing, the differences for HyperSAS, RAMSES-A and -B compared
to the mean of all systems were generally <1% (Fig. 3(e),(g),(h)), except at 620 nm which were
<2%. For pySAS, the differences in Lsky(λ) were consistently higher (1–6%) and higher than the
mean uncertainties, except at 412 and 681 nm (Fig. 3(f)). For class-based processing of Lt(λ),
the differences were <1.0% and lower than the median uncertainties (Fig. 3(i)–(l)). The range in
pySAS Lt(λ) compared to the mean was greater than the other systems and the outliers were
greater than the median uncertainties (dashed lines in Fig. 3(j)). For class-based Rrs(λ), the
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Fig. 5. Percent residuals of Ed(λ) (A.-D.), Lsky(λ) (E.-H.), Lt(λ) (I.-L.), and Rrs(λ) (M.- P.)
using HyperCP in sensor-specific mode compared to the mean of all systems for HyperSAS
(A., E., I., M.), pySAS (B., F., J., N.), RAMSES-A (C., G., K., L.), and RAMSES-B (D., H.,
L., P.), respectively. The residuals at each wavelength are calculated for each system as [(X –
XR)/XR]*100, where XR is the mean reference value across the available sensor systems for
each cast and X=Ed, Lsky, Lt, and Rrs, respectively. The boundary of the box closest to
zero indicates the 25th percentile, the solid line within the box is the median, the boundary
of the box farthest from zero indicates the 75th percentile, the error bars above and below
the box indicate the 90th and 10th percentiles and the points above and below the 90th and
10th percentiles, are outliers.The dashed grey lines are the median propagated uncertainties
for sensor-specific processing given in Fig. 6.

differences from the mean of all systems were <5% (Fig. 3(m)–(p)), except for pySAS at red
bands, which were <7.5% (Fig. 3(n)).

The differences in Ed(λ) for all systems processed using class-based HyperCP were within
their median uncertainties (dashed line in Fig. 3(a)–(d)), which were 3.5 to 4.5% across all bands
for all systems (Fig. 4(a)–(d)). The class-based Lsky(λ) uncertainties for all systems were between
2.5 and 4% (Fig. 4), which for RAMSES-A and -B exhibited an asymptotic curve from blue to
red (Fig. 4(g),(h)). For HyperSAS and pySAS the class-based Lsky(λ) uncertainties were higher
in the red compared to the other systems (Fig. 4(e),(f)). The class-based Lt(λ) uncertainties
were well constrained for all systems and between 2.5 and 3.5% (Fig. 4). The class-based Rrs(λ)
uncertainties were generally <7%, though the range in red bands for HyperSAS, RAMSES-A
and -B were up to ∼15%, nevertheless the 75th percentile was much less (Fig. 4).

For the HyperCP sensor-specific processing, the differences in Ed(λ) for all systems were <2%
compared to the mean, except for HyperSAS and pySAS were slightly higher at 412 and at 681
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Fig. 6. Percentage propagated uncertainties for Ed(λ), Lsky(λ), Lt(λ) and Rrs(λ) computed
using HyperCP in sensor-specific mode for HyperSAS (A., E., I., M.), pySAS (B., F., J., N.)
RAMSES-A (C., G., K., O) and RAMSES-B (D., H., L., P.).

nm reaching 2.5% (Fig. 5(a)–(d)). For the sensor-specific processing, the difference in Lsky(λ) for
HyperSAS, RAMSES-A and -B were <2% and within the uncertainties, except for RAMSES-A
at 620 nm which was slightly higher (Fig. 5(e)–(h)). For pySAS, the differences from 442 to 560
nm were similar, but at 412 nm were <3% and at red bands were 4 to 6% and higher than the
uncertainties (dashed lines in Fig. 5(b)). For sensor-specific processing of Lt(λ), the differences
were generally <1%, except for pySAS from 400 to 442 nm which were <2% (Fig. 5(i)–(l)). The
differences in sensor-specific Rrs(λ) for RAMSES-A and -B compared to the mean of the systems
were <1%, for HyperSAS were <2% and for pySAS were <6% due to the higher residuals in
Lsky(λ) and Lt(λ)(Fig. 5(m)–(p)).

The sensor-specific uncertainties in Ed(λ) for the systems were <2% at all bands, except
RAMSES-A at 400 and 412 nm which were slightly higher (Fig. 6(a)–(d)). The sensor-specific
Lsky(λ) uncertainties for all systems and bands were also generally <2%, though HyperSAS and
pySAS at red bands were <3% (Fig. 6(e)–(h)). For Lt(λ), sensor-specific uncertainties were
between 1 and 2% (Fig. 6(i)–(l)). For Rrs(λ), the sensor-specific values were <3% from 490 to
560 nm, and <7.5% at blue and red bands (Fig. 6(m)–(p)).

Using HyperCP for class-based versus sensor-specific processing of Ed(λ), the differences
were generally <5% though there were exceptions to this for some systems at specific bands
(Fig. 7(a)–(d)). HyperSAS Ed(λ) at 400 nm was just above 5% (Fig. 7(a)), whilst for RAMSES-B
Ed(λ) at both 400 and 412 nm the differences were 7 and 6%, respectively (Fig. 7(d)). Similarly,
the differences between class-based versus sensor-specific processing of Lsky(λ) using HyperCP
were also <5% for all systems (Fig. 7(e)–(l)). The differences for pySAS and RAMSES-B Lsky(λ)
were notably lower than the other systems, and <2% (Fig. 7(f),(h)). For Lt(λ), the differences
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Fig. 7. Differences in Ed(λ), Lsky(λ), Lt(λ) and Rrs(λ) processed using HyperCP in
class-based and sensor-specific mode for HyperSAS (A., E., I., M.), pySAS (B., F., I., N.),
RAMSES-A (C., G., J., O.) and RAMSES-B (D., H., K., P.).

were generally <2%, except for HyperSAS at 400 and 412 nm which were ∼2.5% (Fig. 7(i)–(l)).
The differences in Rrs(λ) between class-based and sensor-specific HyperCP processing were
generally <5% across all bands, though for RAMSES-A at 400 and 412 nm the differences
were slightly higher (Fig. 7(m)–(p)). The percentage differences in uncertainties between the
class-based versus sensor-specific uncertainties for each radiometric quantity was far more evident
(Fig. 8). The differences were greatest for Ed(λ), which were lower at blue bands varying from
1.5% for HyperSAS and 2.5% for RAMSES-B, and higher for red bands varying from ∼3% to
3.5% for HyperSAS and pySAS (Fig. 8(b)). By comparison, the differences in uncertainties for
Lsky(λ) and Lt(λ) for all systems were generally <1.5% across most wavebands (Fig. 8(e)–(l)).

The differences in uncertainties for pySAS for both Lsky(λ) and Lt(λ) were slightly higher and
<2%. For Rrs(λ), the differences between class and sensor-specific uncertainties for all systems
were <2.5% and lower (<1%) in blue and red bands (Fig. 8(m)–(p)).

3.3. Intercomparison of Ed(λ), Lsky(λ), Lt(λ) and Rrs(λ) between HyperSAS, RAMSES
and pySAS, processed using individual lab processors and HyperCP

The difference between individual lab processors (IP) and HyperCP class-based processing of
Ed(λ) for all systems were <1% (Fig. 9(a)–(d)). As expected, due to the similar processing,
pySAS was closest to HyperCP and the differences across nearly all bands, except 400 nm, was
minimal (Fig. 9(a)). Class-based Lsky(λ) were within 1% of the IP for all systems, though the
range in the individual values for RAMSES-A and -B were greater than for HyperSAS and pySAS
(Fig. 9(e)–(h)). The differences between IP and HyperCP class-based Lt(λ) were also generally
<1%, except for RAMSES-A and RAMSES-B at red bands which were <4% (Fig. 9(k),(l)), due
to differences in spectral outlier removal for pronounced capillary glitter (see Section 2.9). For the
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Fig. 8. Percentage differences in uncertainties between the class-based (given in Fig. 4)
and sensor-specific (given in Fig. 6) uncertainties for Ed(λ), Lsky(λ), Lt(λ) and Rrs(λ)
processed using HyperCP in class-based and sensor-specific mode for HyperSAS (A., E., I.,
M.), pySAS (B., F., I., N.), RAMSES-A (C., G., J., O.) and RAMSES-B (D., H., K., P.).

comparison of Rrs(λ) computed using class-based HyperCP and IP, the difference for HyperSAS
and pySAS were small and typically <1% (Fig. 6(i)–(l)). The differences for RAMSES-A and -B
were higher and especially at red bands were <7%. This is likely to result from differences in the
RAMSES IP processing solutions and input parameters (e.g., ρ).

3.4. Comparison of HyperCP (M99NN & Z17SS) Lwn(λ) for HyperSAS, RAMSES,
pySAS against independent measurements

The HyperCP offers different processing options that include glint and NIR corrections for the
computation of Lwn(λ), as described in Section 2.9. For this, Lwn(λ) from RAMSES, HyperSAS
and pySAS processed using no NIR correction with the Mobley [1] correction (M99NN) was
compared against SeaPRiSM (Fig. 10), and HyperPRO II (Fig. 11). In these figures the residuals
are defined with respect to an independent reference system and therefore enable separate
assessment of Lwn(λ). This differs from the calculated residuals for the other radiometric
quantities in Figs. 3 and 5, which quantified the internal consistency of the measurements. Results
indicate that all systems were within or near to the expected 5% of SeaPRiSM at blue and green
bands, but greater than this in the red (Fig. 10). The uncertainties in Lwn(λ) for RAMSES,
HyperSAS and pySAS were <5% from 442 to 560 nm, and <7% at 412, 620 and 665 nm
(Fig. 10). By comparison, using HyperPro II as an independent source, the magnitude and range
of the differences in the above-water systems processed using M99NN were generally higher and
<10% (Fig. 11), but for red bands the differences were >25%. The associated uncertainties for
RAMSES, HyperSAS and pySAS processed using sensor-specific characteristics and M99NN
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Fig. 9. Differences between individual processors and HyperCP for Ed(λ) Lsky(λ), Lt(λ)
and Rrs(λ) run in class-based mode for HyperSAS (A., E., I., M.), pySAS (B., F., J., N.)
RAMSES-A (C., G., K., O) and RAMSES-B (D., H., L., P.).

were ≤5% at 442 to 560 nm, but <7.5% at 412, 620 and 665 nm (Fig. 11(e)–(h)). Lwn(λ) from
RAMSES, HyperSAS and pySAS were also computed using Zhang et al. [2], with sim spec NIR
correction (Z17SS). Compared against HyperPro II, the differences were lower and generally

Fig. 10. Percent residuals of Lwn(λ) for the above- water systems HyperSAS, RAMSES-
A, RAMSES-B, pySAS computed with the Mobley (1999) glint correction and no NIR
correction in sensor-specific mode against SeaPRiSM (A., B., C., D.). The residuals at
each wavelength are calculated from each system as [(Lwn – LR

wn)/LR
wn]*100, where LR

wn is
the reference value for SeaPRiSM. Percentage uncertainties for Lwn(λ) computed using
HyperCP in sensor-specific mode for HyperSAS, pySAS, RAMSES-A and RAMSES-B
compared to SeaPRiSM (E., F., G., H.).
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Fig. 11. Percent residuals of Lwn(λ) for the above- water systems HyperSAS, RAMSES-A,
RAMSES-B, pySAS computed with Mobley (1999) glint correction and no NIR correction
in sensor-specific mode against HyperPro II (A., B., C., D.) and the percentage uncertainties
for Lwn(λ) (E.,F.,G.,H.). Percent residuals of Lwn(λ) for each above- water system computed
with Zhang et al. (2017) and sim spec NIR correction against HyperPro II (I., J., K., L.) and
the percentage uncertainties for Lwn(λ) (M.,N.,O.,P.). The residuals at each wavelength are
calculated from each system as [(Lwn – LR

wn)/LR
wn]*100, where LR

wn is the reference value for
HyperPro II.

<4% for blue and most green bands, but were higher at 560 nm and at red bands (Fig. 11(i)–(l)).
The associated uncertainties were significantly reduced using Z17SS compared to M99NN at

blue wavelengths. For example, at 412 nm, median uncertainties were reduced from ∼8% to
∼4% (Fig. 11(m)–(p)).

4. Discussion

4.1. Need for an open source radiometric community processor

The quantification and reduction of uncertainties for in situ measurements is a fundamental
requirement for ocean color scientists [29]. An uncertainty threshold of 5% was originally
defined as a mission requirement for satellite Lwn(λ) at blue bands for SeaWiFS (EOSAT/NASA
SeaWiFS Working Group, 1987), in order to achieve <35% uncertainty in OC chl in oligotrophic
waters [30]. Subsequent OC missions adopted this as the target threshold, regardless of the
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wavelength. From this, the need to improve the uncertainties in in situ optical radiometry data has
repeatedly been highlighted [29]. Field inter-comparisons are a necessary step in the traceability
chain of FRMs to ensure that radiometric measurements made by a single laboratory converge to
independent quality controlled reference measurements. Since the launch of SeaWiFS, a range of
radiometric inter-comparisons have been conducted, each of which resulted in a reduction in the
differences and uncertainties between radiometric systems due to a consensus on protocols and
methods as well as improvements in sensor calibration and characterization [e.g., 31,32]. The use
of a wide range of instruments, methods and laboratory practices may only add to the uncertainty
of satellite OC products. To improve on differences among laboratories, a number of studies have
advocated the use of a single community processor to reduce the differences and uncertainties
in radiometric quantities [6,7]. Tilstone et al. [7] showed that for TriOS-RAMSES systems,
differences in Rrs(λ) for individual instruments and processors were 3.5% in the blue and 11%
for red bands, which were reduced to ∼2% in the blue and 8% in the red if a single processor
was used. Of the radiometric inter-comparisons conducted to date, only one, also carried out
at the AAOT, reported the uncertainties for each system [6]. The study highlighted that there
was <5.5% difference in Ed(λ) at blue, green and red wavebands between two RAMSES sensors
and the in-water WiSPER, but for Ed(λ) specifically, the uncertainties were not reported [6].
Similarly, a comparison of Ed(λ) between three RAMSES and two HyperSAS instruments at the
same site showed that there was <6% between them, though one system not included in the mean
exhibited a systematic bias due to a poor cosine response and Ed(λ) uncertainties for all systems
were not reported [7].

In the current study, by using the same processor there was <1% difference in Ed(λ) between
two RAMSES and two HyperSAS sensors (Fig. 5). For Rrs(λ), Zibordi et al. [6] found that the
difference between two RAMSES and the WiSPER system using similar number of QC casts
(N= 28), was between 3 and 5% and the associated uncertainties for the RAMSES instruments
were 6.3, 3.5 and 4.5% at 443, 555 and 665 m, respectively. The differences arise partly from
environmental variability, and also from nuances in processing the radiometric data. Zibordi et
al. [11] reported a large variation in inherent optical properties and associated biogeochemical
quantities at the AAOT as it is influenced by both the open sea and coastal waters, with occasional
significant riverine run-off from regional rivers, wind or tidal mixing. On an annual basis,
approximately 60% of the Rrs(λ) spectra are reported to be case-1 type waters and 40% case-2
type [33]. The Rrs(λ) spectra observed in this study during the campaign (Fig. 2), captured
these changes in the optical water types. The differences in Rrs(λ) for RAMSES and HyperSAS
sensors computed using class-based characteristics were <5% at all bands except for pySAS at
the red bands, which was <7.5% (Fig. 3) and these were further reduced using sensor-specific
characteristics in the processing (Fig. 5). The differences between class-based and sensor-specific
processing were greater for RAMSES-A at blue bands compared to RAMSES-B, which indicates
higher instrument related correction were applied for RAMSES-A based on sensor-specific
characterization files.

In summary, by using the same common processor and settings, differences between Ed(λ),
Lsky(λ) and Lt(λ) and the associated uncertainties were reduced compared to previous inter-
comparisons to at least <3%, over the entire spectral range (except pySAS in the red) when
sensor-specific characteristics were used for the data processing. For Rrs(λ), the differences
were <5% from 442 to 560 nm, which is the target over the blue to green spectral range. The
differences in Rrs(λ) for 400, 412 and 620 to 681 nm were <7.5% (Fig. 6).

4.2. Computation of uncertainties in radiometric measurements

Numerous databases exist that contain radiometric data for the validation of remotely sensed
OC data products [34]. As the accuracy of satellite sensors have evolved through improvement
in signal to noise ratios of sensors and in atmospheric correction models, there is an on-going
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demand for an increase in the accuracy of in situ radiometric measurements for satellite OC
validation. In SeaBASS however, there are few radiometric data that include uncertainties. The
NASA EOS project established uncertainties through detailed absolute radiometric calibration.
For NASA PACE validation, radiometric data now has to be submitted with the associated
uncertainties. Assessment of uncertainties for the principle radiometric systems deployed on
stationary platforms for use in radiometric vicarious calibration and validation of OC satellites
are well documented. The Marine Optical BuoY (MOBY), deployed in the Pacific Ocean off
Hawaii is the principle in situ radiometric capacity used for system vicarious calibration of NASA
and NOAA OC satellites. It has a combined uncertainty in upwelling radiance Lu(λ) measured
in surface waters lower than 3% over most MODIS bands [35], excluding contributions from
environmental variability. For BOUSSOLE, which deployed underwater fixed-depth Satlantic
OCR-200-series radiometers also targeting the vicarious calibration of satellite ocean color
sensors, uncertainties of <4% over the blue and green spectral range and ∼5% in the red have
been estimated [36]. For AERONET-OC SeaPRiSM CIMEL CE-318 9-band sun photometers
that are deployed at an array of stable platforms in coastal waters in the global ocean as the
principle source of OC satellite validation data, the median relative combined uncertainties
are 5% in blue and green bands ∼7% for red bands [37]. For the newer SeaPRiSM CIMEL
CE-318 T model, these are <5% at blue and green bands and 8% in the red [38]. Currently,
many radiometric systems used in the field for satellite ocean color validation, uncertainties are
not documented. This lack of information is even more pronounced for hyperspectral systems
that require more complex and comprehensive radiometric characterization. For example, an
average uncertainty of ∼10% in Lwn(λ) in blue bands and ∼15% in the red is reported for Seabird
HyperSAS and TriOS-RAMSES sensors deployed along an Atlantic Meridional Transect [14,39].
Similarly, for the DALEC system deployed on a meridional transect in the Pacific Ocean off
Western Australia, uncertainties of 10 to 15% for λ< 600 nm are reported based on comparison
with coincident Seabird HyperPro II deployments [40].

Uncertainties in Rrs(λ) arise from: A.) Instrument characterization and absolute calibration;
B.) Deviations from recommended data acquisition protocols impacting quality assurance; C.)
Environmental perturbations and different measurement conditions, such as optical water types,
sky radiance distribution, cloudiness; D.) data reduction and processing. With careful and
traceable procedures followed for A.) and B.), to minimize the related uncertainties, still the
contributions from environmental variability and data processing methods can be large [29].
Building on former analyses, the need for more frequent comparisons and robust measurement
uncertainty propagation has been highlighted [41]. For some classes of instruments, factory
correction factors to compute uncertainties do not exist [40], and even calibration coefficients
are provided without associated uncertainties. The minimization of uncertainties can thus be
achieved through extensive laboratory characterizations, as there can be considerable variation
in these between instruments of a particular class [23]. Sensor-specific correction factors can
then be applied to calibration coefficients. These characterizations can only be carried out by
specific calibration laboratories and are expensive. Białek et al. [41] showed that sensor-specific
uncertainties in Ed(λ) for a RAMSES sensor at 442 nm were ∼7% but this was reduced to 1%
when sensor-specific characteristics were utilized. The question remains as to whether class-based
characterizations are sufficient to obtain uncertainties within desired ranges.

In this study, using sensor-specific characteristics, uncertainties <2% at OLCI bands in the
visible spectrum were determined for Ed(λ),< 3% for Lsky(λ),< 2% for Lt(λ) and between 2.5%
and 7.5% for Rrs(λ) (Fig. 6), in principle satisfying validation requirements for satellite data
products (as reviewed above). Using class-based characteristics, the uncertainties in Ed(λ) were
<5%,< 4% for Lsky(λ),< 3.5% for Lt(λ) and <7% for Rrs(λ) (Fig. 4). The reduction in percentage
uncertainties from class-based to sensor-specific processing were up to 3% for Ed(λ),< 2% for
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Lsky(λ) and Lt(λ) and <2.5% for Rrs(λ) (Fig. 8). The differences between class-based and sensor-
specific uncertainties arise from the application of corrections for the non-ideal performance of
individual radiometers, determined for each individual instrument (i.e., sensor-specific). The
principal differences in sensor characteristics between HyperSAS and RAMSES that contribute
to the uncertainties, are considered below.

For Ed(λ), the response of the radiometer to individual radiance contributions should theoreti-
cally be determined by the cosine of the incident angle. This is rarely the case and departure
from the cosine response has to be quantified and corrected for. Ideally this departure would
be characterized for each instrument, so that a correction for the effect can be applied, and
then only a residual uncertainty in that correction would be propagated [32]. Comparing the
characteristics of the sensors used in this study, the HyperSAS cosine collector is larger than that
of RAMSES sensors, which suggests that a better cosine response could be heuristically assumed
for HyperSAS. Consequently, differences between HyperSAS and RAMSES irradiance sensors
and the resulting Ed(λ), may arise from differences in the cosine response at blue bands. These
are ∼5% at 400 and 412% RAMSES and close to 0% for HyperSAS and pySAS (Fig. 3(a)–(d)).
If the non-ideal performance of individual instruments are characterized, the related effects are
reduced as can be clearly seen from the sensor-specific processing (Fig. 5(a)–(d)). When the
cosine response is accounted for, the maximum differences due to this could approach 1% [32].
Azimuthal differences in the cosine response of collectors were not accounted for in this study,
which should be a potential area of investigation in future inter-comparisons.

The diffuser material used in the construction of HyperSAS irradiance collectors however,
can cause a strong hysteresis in the instrument response associated with changes in temperature,
which is difficult to compensate for over ambient environmental conditions and can lead to
significant errors [42]. By comparison, the cosine error can account for ±10% of the uncertainty
[17], and is larger for RAMSES compared to HyperSAS [42]. Similarly the range in non-linearity
of RAMSES is greater than in HyperSAS, which undoubtedly contributes to further measurement
errors.

Temperature affects the optics, electronics, and mechanics of a radiometer and therefore
perturbs measurements. Temperature can also affect darks counts (i.e., implemented through a
shutter in HyperSAS and by shaded elements of the detector array in RAMSES). Additionally,
internal operational temperatures and temperature coefficients are required to minimize thermal
perturbations in radiometric measurements. HyperSAS has an internal temperature sensor, which
allows tracking variations in the internal temperature and correcting for it. Though temperature
responsivity was determined for RAMSES, its practical application is prevented by the lack of
an internal temperature sensor. The mean temperature coefficients for RAMSES varies from
-0.04× 10−2 °C−1 at 400 nm to 0.33× 10−2 °C−1 at 800 nm [43]. By comparison, the mean
temperature coefficients for HyperSAS varies from -0.15× 10−2 °C−1 to 0.2× 10−2 °C−1 over
the same temperature range [14]. These differences could lead up to a ∼1% difference in Rrs(λ)
between HyperSAS and RAMSES [17,14].

When sensor-specific characteristics are used in processing of the data, differences in these
between HyperSAS and RAMSES are minimized. Due to the magnitude of the reduction in
uncertainty, it is therefore recommended using HyperCP with sensor-specific correction factors
to compute the uncertainties to meet the mission requirement of 5% in blue bands. In this study,
using sensor-specific correction factors, the differences in Rrs(λ) between instruments was <5%
across all bands and the uncertainties were <5% in the green and <7% in blue and red bands. A
requirement for future studies is to determine which factors contribute most to the uncertainties,
so that these can be prioritized in the characterization of individual sensors.

For specific instruments, correction factors are often determined once and applied consistently
over the instrument lifetime, but in reality these may vary as the instrument ages [17]. The
responsivity drift in RAMSES and HyperSAS over the spectral range from 400 nm to 800 nm, is
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approximately −1% per year, though this depends on the use of the radiometers. To maintain
them, recalibration after each deployment is advised with a minimum repeat calibration of
a year to achieve FRM [42]. What is still unknown and requires further work is how much
sensor-specific characteristics change over the lifetime of an instrument and therefore how
frequently these need to be determined. Future studies should also focus on characterization
of other instruments deployed for OC validation, such as DALEC [40], for which detailed
sensor-specific characteristics currently do not exist.

4.3. Intercomparison of Lwn(λ) using independent above and in-water reference sys-
tems

Using a weighted mean value from above-water sensors for the inter-comparison can potentially
result in a bias. To reduce this, we used two separate systems as independent data sources for
comparisons. The first is the AERONET-OC SeaPRiSM CE-318 T 12 band system and the
second, the in-water Sea-Bird HyperPro II. The uncertainties of SeaPRiSM are well documented
[37], the AERONET-OC SeaPRiSM systems are recognized to produce high quality radiometric
products [12] and the data are therefore widely applied for the validation of OC products [26]. The
instrument has been characterized by NASA and NIST for linearity and calibrated for absolute
radiance responsivity with uncertainties of 1.88% [44]. A previous inter-comparison between
SeaPRiSM Lwn(λ) against RAMSES and HyperSAS systems showed that both systems tended to
underestimate Lwn(λ), which for RAMSES was <8.0% at 441 nm,< 6.0% at 551 nm and <9.5%
at 667 nm and for HyperSAS was -1.4 to 5.5% at 441 nm, -4 to -7.5% at 551 nm and <5.0%
at 667 nm [7]. However, there have been biases affecting SeaPRiSM measurements during a
specific deployment [12]. In the current analysis, the SeaPRiSM Lwn(λ) compared to RAMSES,
HyperSAS and pySAS values determined using M99NN were within or near to the expected 5%
in blue and green bands, but greater than this in the red except for pySAS. These differences may
be due to a potential underestimate of SeaPRiSM Lwn(λ) due to strict filtering criteria of Lt(λ)
values affected by glint perturbations [12].

HyperPro II (and variants thereof including LoCNESS, microNESS, SeaFall, SPRM) have
been providing high quality Lwn(λ) since the dawn of SeaWiFS [45]. Many inter-comparisons
with HyperPro II and above-water systems have been conducted. Of these, using a stable platform
from which the super-structure effects have been well characterized, Hooker et al. [31] compared
Lwn(λ) from SeaPRiSM and a HyperPro type instrument (microNESS) at the AAOT under Case-1
and Case-2 conditions, and reported a 9.1% difference with uncertainties of ∼3%. A series of
inter-comparisons between above-water and in-water systems have been made on ships at sea
where uncertainty from environmental perturbations and errors by super structure perturbations
may affect measurements. On a research cruise through the Mediterranean Sea and off the NW
coast of Africa, Hooker and Morel [46] compared Lwn(λ) between LoCNESS and SeaSAS (a
predecessor of HyperSAS). They reported large differences, even after strict QC after which only
half of the dataset was used to obtain a 5% difference, mainly because the ships superstructure
libedo was so high. Comparing the above-water HyperSAS and RAMSES systems against
SeaPRiSM, which is also an above water system, differences are lower than when comparing
against HyperPRO II in-water systems. There are inherent differences between in-water and
above-water systems. As well as being sensitive to meteorological conditions, above-water
radiometry requires the application of glint correction methods, which may not accurately
represent the actual measurement conditions. Conversely, in-water profiles of upwelling radiance
are not largely affected by sun-glint. In-water measurements of the upwelling radiance can
however, be effected by illumination changes over depth, perturbations in the deployment of the
sensor due to tilt, self-shading, super-structure or ship shadow, air bubbles and wave-induced
effects [47]. In this study, using HyperPro II as an independent source of data, the magnitude
and range of the differences were much higher than expected especially for red bands, which
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for HyperSAS and RAMSES were >25%. Though the inter-comparison was conducted in near
ideal conditions, both differences in environmental perturbations away from the platform may
have contributed to these differences. Also, the tilt of the Ed(λ) sensor operated on the boat was
not accounted for whilst HyperPro II was profiled through the water column, and Es(λ) outliers
were removed from the processing. A linear regression of the Ed(λ) values collected during the
cast, was used to average the data during the multi-cast. The above sources of errors and the low
values of the upwelling radiance in the red bands, most likely explain the differences observed.

4.4. Glint correction options for above-water radiometry in HyperCP

A correction to remove the surface-reflected light (arising from both sky and sun glint) from
Lt(λ), so that Lwn(λ) and Rrs(λ) that can be accurately computed, is essential [26]. The M99NN
method is widely used for above-water measurement systems, whereby the dependence of the sea
surface reflectance ρ on sky conditions, wind speed, solar zenith angle, and viewing geometry
was determined. For a viewing direction of 40° from the nadir and 135° from the sun, Mobley
[8] derived a ρ value of 0.028 for wind speeds <5ms−1 and when the sky is overcast, is used for
all wind speeds. For higher wind speeds, curves were derived for the determination of ρ as a
function of solar zenith angle and wind speed. The method assumes that ρ is spectrally constant,
but more recently it has been shown that ρ can vary spectrally, which can propagate large errors
in computing Rrs(λ) and Lwn(λ) [48]. To minimize the impact of sun glint on the derivation
of Lwn(λ) (or Rrs(λ)), Hooker et al. [31] and Zibordi et al. [14] devised a method of filtering
out the higher Lt(λ) values, which improved the derivation of Lwn(λ). A number of alternative
approaches for correcting surface-reflected light have therefore been proposed. The most widely
used assume that the near-infrared (NIR) water-leaving signal is zero, and thus Lt(λ) signal in the
NIR is entirely due to glint [31]. This is not the case in optically complex waters and a number
of alternative, spectrally dependent approaches have been derived. These include a spectral
optimization scheme [48] inversion algorithms based on inherent optical properties to correct
for glint [49] and a two-step procedure for correcting both unpolarized and polarized glint from
direct and diffuse sun light as a function of wind speeds, sun angles and aerosol concentrations
[2].

To illustrate the differences between M99NN and an alternative approach that accounts for
spectral variation in ρ (Z17SS), HyperSAS, pySAS and RAMSES Lwn(λ) were computed using
both methods and compared against HyperPro II (Fig. 11). The percent residuals in the blue and
green using the Zhang et al. [22] method, are reduced and the asymptotic spectral dependency of
the residuals disappears, but the differences still remain the same as for the M99NN method at
red bands. This further suggests that error compensations may drive inter-comparisons, which
often cannot lead to conclusions without extensive uncertainty analysis.

5. Summary

This field intercomparison illustrated that using the open-source HyperCP, the percentage
difference of the radiometric quantities compared to individual processors was very low and
generally <1%. These results could be, however, affected by error compensations, which are
difficult to address without a comprehensive uncertainty analysis. Because of this, the use of
HyperCP supporting the correction for biases due to the non-ideal performance of radiometers
(as determined through instrument characterizations) and additionally the quantification of the
related uncertainties, is a major advance. The differences between above-water systems processed
with HyperCP, using sensor-specific radiometric characteristics and M99NN, were 2% for Ed(λ),
Lsky(λ), Lt(λ) and 2.5% for Rrs(λ). The associated uncertainties were 1.5%, 2%, 1.5% and
5%, respectively. For class-based radiometric characteristics, differences in the radiometric
quantities were <5%, but the uncertainties, especially in Rrs(λ) were higher and were not
sufficient to keep the uncertainties to <5%. The uncertainties in the radiometric quantities could
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be appreciably reduced if sensor-specific rather than class-based correction factors were used.
When comparing HyperSAS and RAMSES Lwn(λ) processed using M99NN against SeaPRiSM,
the differences were <5% over all bands, and the uncertainties were <5% over blue and green
bands. Compared to HyperPro II, the magnitude and range of the differences in the above-water
systems processed using M99NN were higher and <10% for blue and green bands. For the
above water systems processed using Z17SS and compared to HyperPro II, the differences were
lower and generally <4% for blue and green bands. Processing data with the HyperCP using
sensor-specific characteristics is highly recommended to reduce the associated uncertainties,
ensure processing workflow compatibility with standard community consensus and practices,
and to produce the highest quality data for satellite OC validation.
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