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Abstract

Early detection and rapid response are critical to the successful management of non-indigenous spe-
cies (NIS) and rely on effective surveillance programmes. Risk-based surveillance, where surveillance 
targets high risk locations, is the most efficient form of NIS surveillance. However, further research is 
required on the impact of different levels of emphasis on risk, in sampling designs and on surveillance 
efficacy. This study implements a theoretical surveillance simulator to model the relative merit of 
different surveillance strategies with different levels of focus on NIS risk for NIS detection at one or 
more sites. Three potential surveillance scenarios were modelled: random, risk-based and heavy risk-
based surveillance, each with three distributions of combined NIS risks of introduction and establish-
ment: exponential, random and uniform. An example analysis using model derived NIS risk data is 
also provided. Sensitivity and elasticity analyses were conducted to identify variables which influence 
model outputs. The interaction between sampling method detection probability and changes in NIS 
abundance was modelled. It was found that NIS risk distribution influences the relative performance 
of different surveillance strategies and that risk- and heavy risk-based surveillance have lower times to 
detections and, generally, higher surveillance probabilities of detection compared to random surveil-
lance at more skewed NIS risk distributions. However, there was a trade-off between short detection 
time and detection failure in risk-based and particularly heavy risk-based surveillance. Therefore, an 
over-emphasis on risk-based surveillance could provide suboptimal NIS detection. Sensitivity and 
elasticity analysis showed that the number of NIS seed sites, mean site visit rate and method detec-
tion probability had the largest effects on detection time, highlighting the complexity of designing 
surveillance programmes. In conclusion, the optimal surveillance strategy is conditional on the risk 
distribution and this study highlights the value of model-based simulators to guide decision-making 
in the design of NIS surveillance programmes.
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Introduction

Non-indigenous species (NIS) are species which have spread to new regions out-
side their natural biogeographical range with the aid of human actions (Essl et al. 
2018). Some NIS can have substantial environmental impacts and are referred to 
as invasive NIS: they are the second largest driver of species extinction (Bellard et 
al. 2016), can reduce species genetic diversity (Vera-Escalona et al. 2019) and may 
have substantial ecological impacts (Gallardo et al. 2016; Guy‐Haim et al. 2018), 
resulting in negative effects on ecosystem services (Vilà et al. 2010; Castro‐Díez et 
al. 2019). They may also pose a direct threat to human health (Mazza et al. 2014) 
and have cost the global economy a minimum of 1.288 trillion US dollars from 
1970 to 2017. This cost is rising every year (Diagne et al. 2021).

NIS introductions occur via various pathways. Five key pathways in the ma-
rine environment are commercial shipping, recreational boating, movement of 
aquaculture stock, the aquarium trade and natural dispersal (Ricciardi and Ras-
mussen 1998; Molnar et al. 2008; Acosta and Forrest 2009; Katsanevakis et al. 
2013). Given multiple introduction pathways, the interception of all potentially 
invasive NIS is unrealistic. Prevention, early detection and rapid response are 
therefore critical to the successful management of NIS (Pyšek and Richardson 
2010; Koch et al. 2020). This is particularly the case in the marine environment, 
where high environmental connectivity, via the water column, makes contain-
ment and eradication very challenging (Giakoumi et al. 2019). However, early 
detection can be difficult given that, when NIS arrive and become established, 
they are often initially rare (Hulme 2006; Koch et al. 2020). Early detection 
and rapid response rely on effective surveillance programmes. However, despite 
multiple legislative drivers (Wood et al. 2024), most European countries lack 
dedicated marine NIS surveillance programmes and NIS often receive limited 
attention in existing biological monitoring initiatives (Wood et al. 2021; Stæhr 
et al. 2022; Katsanevakis et al. 2023). Within the UK, the limited dedicated 
monitoring which does occurs at marinas, remains spatially, temporally and tax-
onomically patchy (Bishop et al. 2015; Wood et al. 2017). In fact, the detec-
tion of NIS often occurs incidentally in more general environmental monitoring 
surveys (e.g. the detection of Pink Salmon, Oncorhynchus gorbuscha, in the Tees 
Estuary in northern England, UK, Gibson et al. (2024)).

Early detection and rapid response rely on effective surveillance programmes 
which must be in place prior to NIS arrival to allow early detection (Mastin et al. 
2020). Risk-based surveillance, where surveillance targets high risk locations (e.g. 
where introduction pathway activity is high, Stärk et al. (2006); Tidbury et al. 
(2016)), is the most cost-effective form of hazard surveillance (Mastin et al. 2020; 
Stæhr et al. 2022). Risk-based surveillance may incorporate variation in establish-
ment risk as well as introduction risk, given that the establishment risk of NIS 
varies spatially, based on parameters such as habitat suitability (Leidenberger et 
al. 2015; Richgels et al. 2016; Zhang et al. 2019). Risk-based surveillance confers 
efficiency by narrowing the survey sampling frame (Koch et al. 2020) and its use 
has been recommended for the early detection of colonising aquatic NIS based on 
empirical data (Harvey et al. 2009). However, risk-based surveillance is not always 
applied in practice. For example, in Europe and the UK, there is currently limited 
sampling at high-risk locations, for example, ports, marinas and aquaculture sites 
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for marine NIS (Stæhr et al. 2022; Wood et al. 2024). Therefore, further work is 
required to develop and apply risk-based surveillance methods. Risk-based sur-
veillance is, however, a broad term, with surveillance strategies taking many forms 
with respect to the sampling effort used to monitor high-risk sites, relative to low-
risk sites (i.e. the level of risk focus). Therefore, studying the effect of different 
levels of risk focus during sampling on NIS detection is a useful exercise when 
designing surveillance programmes.

Computer simulations which compare the effect of using simulated risk-based 
surveillance designs to random and other surveillance designs, on parameters 
which are of importance to NIS surveillance, such as time to detection or detec-
tion probability, provide a useful method to address this knowledge gap. These 
models vary in their sophistication and have been used in research into invasive 
plant pathogens (Parnell et al. 2014; Martinetti and Soubeyrand 2019; Mastin 
et al. 2020). While more general network models can evaluate the likely level of 
success of regional NIS management using multilayer network analysis (Garrett 
2021), these models may have substantial species-specific data requirements (Mar-
tinetti and Soubeyrand 2019; Mastin et al. 2020). There is, thus, a requirement 
for the continued development of simple models which can be used to provide 
information for early warning surveillance of unanticipated new arrivals, where 
detailed information, underpinning prediction of their likelihood of spreading, is 
lacking (Parnell et al. 2014). This situation may apply to newly-introduced marine 
species. In fact, a lack of data on occurrence and distribution is a limiting factor in 
the response to marine NIS in the UK (Wood et al. 2024).

This study develops and implements a theoretical model, referred to as a 
surveillance simulator, to assess the relative merit of different surveillance strat-
egies, which differ in their level of risk focus, for NIS detection. Although 
developed for early warning monitoring of marine NIS, where the species is 
established at a relatively small number of sites, the simulator is generic and 
can be applied to any terrestrial or aquatic organisms while requiring a mini-
mal amount of species-specific data. The simulator calculates the time to NIS 
detection across multiple simulations, following the introduction and estab-
lishment of a NIS at one or more sites. The survey probability of detection, 
over time, is also calculated across simulations. Differential risk of introduc-
tion and establishment between sites is incorporated. Surveillance is simulated 
under three potential scenarios: random surveillance, risk-based surveillance 
and heavy risk-based surveillance. For risk-based surveillance, the visit rate is 
increased by the relative risk of NIS introduction and establishment. For heavy 
risk-based surveillance, this relative increase is enhanced for the highest risk 
sites. The simulator also incorporates the interaction between the detection 
probability of a method and changes in the abundance of NIS. Sensitivity and 
elasticity analyses are performed to determine the effect of changes in selected 
parameters on time to NIS detection and the failure to detect NIS. Findings 
are discussed in the context of optimisation of surveillance for NIS and the 
operation of the model rather than providing detailed differences between the-
oretical scenarios. Application of the model is further illustrated using NIS 
risk scores for 10,249 sites, derived from model predictions based on empirical 
data, for three scenarios focused on: risk of introduction, risk of spread and 
risk of impact and representing three different risk distributions.
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Methods

Simulator structure

The simulator was developed in the statistical software R v.4.1.2 (R Core Team 
2021). The simulator has several core components: functions which establish the 
NIS risk at each site (from the introduction and establishment probability) and 
which calculate the site visit rate based on surveillance strategy, the surveillance 
simulator function (run separately for each strategy) and functions which imple-
ment optional sensitivity and elasticity analyses (Fig. 1). Additional supporting 
functions process outputs and create graphs. The user inputs the following pa-
rameters: introduction and establishment probability distribution, mean annual 
visit rate, number of survey sites, the method detection probability, a minimum 
and maximum detection probability for the method and the detection dynamic. 
The detection dynamic indicates if the method detection probability remains 
constant or changes with NIS abundance at a site. The user specifies starting 
abundance changes according to a growth model with user-controlled parame-
ters. The user may also specify the number of seed sites (sites at which NIS are 
introduced and become established) and the way in which detection outputs 
from multiple sites are summarised. The surveillance time period (in years) and 
number of simulations to run are also set. Definitions for parameters and other 
terms are in Table 1.

User-specified parameters

The input parameters are controlled via the config_sim.yaml file. The user specifies 
the number of sites and a probability of introduction (getIntroProbability) and 
establishment per site (getEstablishProbability). The distributions from which to 
randomly draw probabilities of introduction and establishment are either: an equal 
uniform distribution which requires a user specified probability value, random 
uniform distribution, truncated normal distribution (bounded by 0 and 1), trun-
cated exponential (bounded by 0 and 1) or lognormal distribution (bounded by 
0 and 1). Example distributions, used in the later simulator application example, 
are shown in Fig. 2. An overall NIS risk probability per site (Nrs) is calculated: Nrs 

= Pis, where Pis is the probability of introduction per site and Pes is the probability 
of establishment per site.

A mean site visit rate is defined by the user and used to calculate the visit 
rate for each individual site. Under random surveillance, the visit rate for each 
individual site is identical. Under risk-based surveillance, the risk-based visit 
rate for each site (Vrs) is calculated as: Vrs = Vs ∙ (Nrs / Nrx-

), where Vs is the visit 
rate per site and Nrx- is the overall mean NIS risk probability across sites. Un-
der heavy risk-based surveillance, the visit rate for each site (Vhrs) is calculated 
in the same manner, but the site NIS risk and mean NIS risk across all sites 
are raised to the power of three: Vhrs = Vs ∙ (Nrs

3 / Nrx-
3). Therefore, under the 

risk-based surveillance scenarios, the simulator assigns a relatively higher visit 
rate to those sites with greater NIS risk. Higher visit rates at high-risk sites are 
further enhanced under heavy risk-based surveillance. See Fig. 3 for a concep-
tual example of the relationship between NIS risk and site visits under differ-
ent surveillance scenarios. If NIS abundance is included in the simulation, 
for a single site, a user-defined starting abundance value is set. For multiple 
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sites, abundance starting values are set by the user or randomly drawn from a 
Poisson distribution with a user-specified mean. Abundance at each time step 
is determined by an exponential (Suppl. material 1: eqn. 1) or logistic growth 
model (Suppl. material 1: eqn. 2; Rockwood and Witt (2015)) with user-de-
fined parameters (GetAbundance). This allows populations at site(s) to grow, 
decline or maintain at carrying capacity throughout the simulation.

Figure 1. Schematic of the overall simulator structure showing key inputs and outputs and the role of the elasticity and sensitivity analysis, 
around the core surveillance simulation. The detailed structure of the surveillance simulations is given in Fig. 4.
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Table 1. Glossary of key terms.

Parameter/ Term Description*

Risk-Based Surveillance Surveillance strategy where the site visit rate is biased towards higher risk sites.

Heavy Risk-Based Surveillance Surveillance strategy where the site visit rate is heavily biased towards higher risk sites.

Introduction risk probability distribution The statistical distribution which determines the probability of NIS introduction at a site.

Establishment risk probability distribution The statistical distribution which determines the probability of NIS establishment at a site.

NIS risk The probability of NIS introduction and establishment at a site, calculated by multiplying the 
introduction and establishment probability together.

Surveillance time period The maximum time period (in years) over which a simulation may run.

Seed site(s) A site(s) into which a NIS becomes introduced and established based on its relative 
NIS risk during a simulation.

Mean site visit rate The mean number of times which a site is visited in a year.

Method detection probability The probability of detecting a NIS at a site when it is searched during a simulation.

Survey probability of detection The probability of detecting NIS at a site(s), at a given time point by a simulation, as calculated using 
all simulations in a simulator run.

Detection dynamic The relationship between method detection probability and the abundance of a NIS. Either fixed, 
threshold or linear.

Detection summary Method used to summarise the time to detection if multiple seed sites are used in a simulation.

*For further details, refer to text.

Figure 2. NIS risk distributions of the probability of NIS becoming introduced and established at a site, showing exponential (A), 
random uniform (B) and equal uniform (C) risk distributions used in the simulator application example.
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The method detection probability defines the probability of the sampling meth-
od detecting the NIS during a site visit. The method detection probability may be 
fixed or vary with NIS abundance linearly or in a threshold manner. Under a lin-
ear relationship, the user defines the abundance required to change the detection 
probability by 0.01. Under a threshold relationship, the user defines a threshold 
abundance value and two detection probabilities to use when abundance is below, 
above or equal to the threshold value.

Introductions at multiple seed sites, up to the number of sites in the simulation, 
may also be selected by the user. If abundance is required, values for multiple sites 
are either set by the user or randomly drawn from a Poisson distribution with a 
user specified mean. For multiple sites, the user must select the detection summary 
method, i.e. how the time to detection is summarised over multiple seed sites in 
that simulation (ProcessMultipleResults). Time to detection may be taken from 
the first seed site to be detected or the last seed site.

Simulation process

The simulation is run by the function runSurveillanceSimulation (Fig. 4). At the 
starting time point, a site is selected with its relative NIS risk used as a probability 
weighting to bias random selection to higher NIS risk sites (base R function: sam-
ple) and seeded with a NIS (Fig. 3). For simulations which include multiple (n) 
seed sites, this process is repeated n times (once for each seed site). The simulator 
time step (in days) is calculated by dividing the user-defined number of visits per 
year by 365, assuming that the total visits each year is equal to the sum of visit 
rates across all sites. The time counter is increased, based on the average time taken 
to visit one site assuming that the total visits each year is equal to the sum of visit 
rates across all sites.

At each time step, a single site is selected to be visited dependent on the 
mean visit rate (Fig. 3). At each site visit, detection of the NIS is determined 
by drawing a value from a random binomial distribution with a success rate 

Figure 3. A conceptual example of the relationship between the relative NIS risk at each site (numbers within hexagons, assuming an 
exponential distribution) and the site visit rate assuming random, risk-based and heavy risk-based surveillance, over three site visits (blue 
outline) during a model run. The highest risk hexagons in this example represent two port sites, one seeded with a NIS at the beginning 
of the simulation (orange fill). Under random surveillance three sites are visited with no relationship to risk, under risk-based, three high 
risk sites are visited and under heavy risk-based surveillance, the highest risk site, only, is visited three times.
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defined by the method detection probability. If the seed site is visited and the 
NIS is successfully detected, the simulation stops and the time to detection is 
recorded. When NIS are seeded at multiple sites and when NIS is detected at a 
seeded site, the time is stored and the simulation continues until NIS is found 

Figure 4. Schematic of the surveillance simulation showing key steps and outputs, as defined by the runSurveillanceSimulation function.
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at all sites. The multi-site simulation will run until NIS are detected at all 
seeded sites or the surveillance period elapses. If the simulation period elapses 
prior to the NIS being detected, the run is stored as a ‘detection failure’ (and 
internally stored as time to detection = 1000). The results for multiple seed 
sites are then summarised by the function ProcessMultipleResults, for each 
simulation. The default detection summary method, used in this study, is used 
to output the time at which the last seed site was detected. This means that 
the results of multiple seed sites are counted as a detection failure when NIS 
remain undetected at even just one of the seeded sites within the timeframe. 
Other detection summary options can output the mean, median or first time 
to detection across seed sites or the time taken to detect a user-specified num-
ber of sites. The simulator repeats according to the number of simulations set. 
The outputs are time to detection and proportion of total simulations which 
are classed as ‘detection failures’ (across all simulations). This second output 
is also used to calculate the survey probability of detection over all sites across 
time. Outputs across all surveillance simulations are generated by the report-
NIS-intro-detect-sim.Rmd markdown file.

Sensitivity and elasticity analysis

Sensitivity analysis determines the impact that absolute changes in each model 
parameter have on the output, i.e. time taken to detect NIS and forms a com-
ponent of the surveillance simulator. Sensitivity analysis can be implemented for 
the number of sites, number of years, mean visit rate, method detection probabil-
ity and number of seed sites (makeSensitivityParamsTable). The simulator runs 
iteratively (runSurveillanceSensitivity; results formatted by formatSensitivityRe-
sults), incrementally altering input parameters, one at a time, by a user-defined 
interval within a specified range and plotting the results. Summary statistics such 
as number of times a NIS was detected/not detected and the mean, maximum 
and minimum time to detection are output for each parameter. Outputs are 
generated by the report-NIS-intro-detect-sensitivity.Rmd R Markdown file and 
other helper functions.

Elasticity analysis is also included in the simulator. Elasticity (ξ) is proportional 
sensitivity, it estimates the effect of a proportional change in a parameter on the 
proportional change in the output, i.e. time taken to detect NIS (Benton and 
Grant 1999; Teixeira Alves et al. 2021). Elasticity is dimensionless and indepen-
dent of the parameter scale, allowing comparison between parameters. Elasticity 
analysis can be implemented and compared with sensitivity analysis to better un-
derstand the impact of changes in model parameters on outputs. Users define the 
default parameter values and the proportion (between 0 to 1) by which to change 
each parameter (defined in the config_sim.yaml file; makeElasticityParamsTable). 
The simulator is run iteratively, with one parameter varied at a time (using runSur-
veillanceSensitivity; results formatted by summariseElasticityResults). Elasticity is 
calculated (Suppl. material 1: eqn. 3; Teixeira Alves et al. (2021)) and plotted for 
each parameter (by report-NIS-intro-detect-elasticity.Rmd and other helper func-
tions). Elasticity values below 1 indicate a parameter is inelastic. Elasticity values 
above 1 indicate the parameter is elastic, i.e. changes in elastic parameters have the 
greatest impact on outputs (Teixeira Alves et al. 2021).
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Simulator application

Theoretical risk distributions

Three different NIS introduction and establishment risk distributions were imple-
mented for each surveillance strategy (random, risk-based and heavy risk-based). 
These risk distributions were equal uniform (probability: 0.8), random uniform 
and exponential. The equal uniform distribution was selected to provide a default 
example with no variation in risk. The random uniform distribution provided a 
scenario where risk varied between sites, whereas the exponential distribution was 
used to represent a situation where most sites are of no or low risk and a small 
number of sites are of high risk (Wood et al. 2021). All other parameters were kept 
constant between runs. The number of seed sites was 1. This was used for baseline 
comparisons because the aim of the simulator is to optimise detection of NIS early 
after arrival. The number of years was set to 30, to allow the majority of simula-
tions to detect the NIS and, therefore, provide valid comparisons between detec-
tion times. All other parameters were selected according to the authors’ knowledge 
of sampling programmes. Specifically, the number of survey sites was 100, mean 
visit rate was 1 and method detection probability was 0.8. The number of simu-
lations in each run was set to 10,000 as experimentation showed that simulator 
outputs were consistent between identical runs at this number of simulations.

Sensitivity and elasticity analysis

For sensitivity and elasticity analysis, the exponential risk distribution was used as, 
under this risk distribution, the largest differences between sampling programmes 
were seen. For the sensitivity analysis, the number of seed sites, survey sites, years, 
mean visit rate and detection probability were run with selected parameters de-
fined, based on the authors’ knowledge of sampling programmes (Table 2). For the 
elasticity analysis, the default parameters ± 25% for the number of sites, number 
of years, mean visit rate and method detection probability from the sensitivity 
analysis were used (Table 2), as they were considered practically sensible and al-
lowed clear comparison between parameters. The number of seed sites was not 
included in the elasticity analysis as it was difficult to generate proportional in-
creases in the default number of seed sites (i.e. 1 seed site), which would have an 
impact on the simulations.

Detection dynamic

The effect of dynamic detection (where the method detection probability is linked 
to NIS abundance) was explored using an exponential risk distribution and with 
seed site set to 1 and 10. The abundance model parameters assumed a starting 
population of 1, intrinsic growth rate of 1.5 with logistic growth and a population 
carrying capacity at each site of 100,000 individuals. For a linear relationship be-
tween abundance and detection method sensitivity, the starting detection method 
sensitivity was set to 0.1 with an increase of 0.01 per abundance increase of 500, 
up to 0.8. For a threshold relationship between abundance and detection method 
sensitivity, an abundance threshold of 10,000 was set such that method detection 
sensitivity below and above this threshold was 0.1 and 0.8, respectively. Parameter 
values were arbitrarily selected to demonstrate the functionality of the simulator.
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‘Site Prioritisation Tool’ derived marine NIS risk distributions

As a practical example, the surveillance simulator was used to assess the relative 
performance of random, risk-based and heavy risk-based surveillance for three ma-
rine NIS introduction and spread scenarios created by a model to prioritise surveil-
lance activities for NIS species for the UK coastline (the ‘Site Prioritisation Tool’ 
or SPT model, Cefas, in prep.). This hierarchical model was developed to provide 
information for surveillance programmes by scoring and ranking 10,249/5 km × 
5 km grid squares representing the UK coastline. Empirical data for a range of risk 
parameters was grouped into pathways, distributed amongst four risk categories: 
Introduction risk (pathways: intentional introduction, shipping, recreational boat-
ing, fishery and aquaculture release), Establishment risk (temperature, salinity and 
substrate), Impact risk (environment and industry) and Spread risk (recreation-
al boating, fishery and aquaculture release; Suppl. material 1: table S1). Separate 
weighting factors were assigned to each parameter, theme and category to reflect 
their relative importance and determine their contribution to risk scores. Result-
ing risk scores are standardised (between 0 and 1) at each level of the SPT mod-
el (parameter, pathway, category) to provide comparable relative values between 
pathways and categories. Risk scores were output for three scenarios: Scenario A, 
monitoring weighted towards sites at greatest risk of introduction through the 
shipping pathway (e.g. species introduction via ballast water and hull fouling); 
Scenario B, monitoring weighted towards sites where spread risk is greatest; and 
Scenario C, monitoring weighted towards sites where the impact of NIS is likely to 
be greatest (Suppl. material 1: fig. S1). The simulator was run with NIS risk scores 
from each scenario (Fig. 5), with the per cell risk data from the SPT model used 
to provide the overall NIS risk probability per site (Nrs). The simulator was run 
for 1000 simulations, at 10,249 sites (grid cells), to determine time to detection 
assuming a constant detection dynamic with all other parameters as default (as in 
section Theoretical risk distributions).

Results

The risk distribution

Comparison of the time to detection between different risk distributions showed 
that results varied with surveillance strategy (Table 3; Fig. 6). For an equal-uniform 
distribution, there was almost no variation in time to detection or survey probabil-
ity of detection between surveillance strategies. In addition, all NIS were detected 
regardless of surveillance strategy (Table 3; Fig. 6C). With a random uniform risk 
distribution, the median time to detection was 0.89 years for random surveillance 

Table 2. Sensitivity and elasticity parameters.

Parameters
Sensitivity Values Elasticity Values

Minimum Maximum Interval Default 25% Decrease 25% Increase

Number of Seed Sites 1 100 10

Number of Survey Sites 50 200 25 100 75 125

Number of Years 10 50 5 30 22.5 37.5

Mean Visit Rate 0.25 4 0.25 1 0.75 1.25

Method Detection Probability 0.1 1 0.1 0.8 0.6 1.0
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and decreased to 0.56 years for risk-based surveillance and 0.52 years for heavy 
risk-based surveillance. Probability of detection at 1 year was highest for risk-based 
surveillance (0.68) and was progressively lower for heavy risk-based (0.61) and 
random surveillance (0.54). However, heavy risk-based surveillance had the low-
est detection probability after 5 years (Table 3; Fig. 6B). Under an exponential 
risk distribution, median time to detection was longest under random surveillance 
(0.85 years) and was shortest under risk-based surveillance (0.41 years), but the 
time to detection under heavy risk-based surveillance was marginally longer than 
risk-based surveillance (0.47 years). Probability of detection at 1 year showed risk-
based surveillance to have the highest survey probabilities of detection (0.75) and 
random and heavy risk-based surveillance to have similar lower scores (0.56 and 
0.57). However, heavy risk-based surveillance had the lowest detection probability 
after 5 years (Table 3; Fig. 6A). For risk-based and heavy risk-based surveillance, 
time to detection progressively fell from an equal uniform, random uniform to an 
exponential risk distribution (Table 3). Risk-based surveillance showed a progres-
sive increase in probability of detection, but heavy risk-based surveillance showed a 
limited change across distributions. For random surveillance, the time to detection 
and probability of detection remained the same across risk distributions and NIS 
were always detected (Fig. 6; Table 3). Under exponential and random uniform 

Figure 5. Risk distributions of the combined probability of marine NIS becoming introduced and established at a site, spread from that 
site and the site being negatively impacted. Scores generated using the SPT model (Cefas, in prep.) for Scenario A shipping risk weighted, 
Scenario B spread risk weighted and Scenario C impact risk weighted.
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risk distributions, NIS are not always detected within 30 years using risk-based 
and heavy risk-based surveillance. Under a random uniform risk distribution, 
0.15% of simulations ended with no NIS detected with risk-based surveillance 
and this increased to 7.5% under heavy risk-based surveillance (Table 3). For an 
exponential risk distribution, 0.28% of simulations ended with detection failure 
for risk-based surveillance and this increased to 10.68% of simulations for heavy 
risk-based surveillance (Table 3).

Sensitivity analysis

Assuming an exponential risk distribution, an increase in the number of seed sites 
from 1 to 20 led to an increase in median time to detection across surveillance 
scenarios: from 0.87 to 3.6 years for random surveillance, 0.35 to 4.11 years for 
risk-based surveillance and 0.43 to 17.61 years for heavy risk-based surveillance 
(Fig. 7A), although there was substantial variability in the results. At 30 seed sites 
or greater, time to detection decreased across surveillance scenarios from 3.69 years 
for random surveillance, 3.82 years for risk-based surveillance and 17.02 years for 
random surveillance to 1.25 years at 100 seed sites across all scenarios (Fig. 7A). 
This decrease was the consequence of the adaptive sampling design where sites 
were not revisited after NIS detection, thereby creating a smaller pool of sites from 
which to sample at each step, therefore reducing the time to detect all sites with a 

Table 3. Model outputs for variable risk distributions.

Model 
Run

Distribution
Detection 
Dynamic

Number of 
Seed Sites

Scenario
Detection Time (Years)

Detection 
Failure (%)

Survey Probability of 
Detection at Time (Years)

Median 
Detection Time

Interquartile 
Range

1 5 10 30

Run 1 Exponential Constant 1 Random 0.85 1.34 0.00 0.56 0.98 1.00 1.00

Risk-Based 0.41 0.85 0.28 0.75 0.96 0.99 1.00

Heavy Risk-Based 0.47 1.86 10.68 0.57 0.78 0.83 0.89

Run 2 Random 
Uniform

1 Random 0.89 1.39 0.00 0.54 0.98 1.00 1.00

Risk-Based 0.56 1.01 0.15 0.68 0.97 0.99 1.00

Heavy Risk-Based 0.52 1.45 7.49 0.61 0.84 0.88 0.93

Run 3 Equal 
Uniform

1 Random 0.87 1.39 0.00 0.54 0.98 1.00 1.00

Risk-Based 0.86 1.36 0.00 0.56 0.98 1.00 1.00

Heavy Risk-Based 0.88 1.35 0.00 0.55 0.98 1.00 1.00

Run 4 Exponential Linear 1 Random 6.03 4.39 0.00 0.09 0.40 0.97 1.00

Risk-Based 3.34 5.03 0.50 0.20 0.63 0.95 0.99

Heavy Risk-Based 3.55 6.70 12.48 0.24 0.49 0.76 0.88

Run 5 10 Random 8.79 1.78 0.00 0.00 0.00 0.78 1.00

Risk-Based 8.31 3.51 3.02 0.00 0.02 0.68 0.97

Heavy Risk-Based 14.52 11.25 68.87 0.00 0.00 0.08 0.31

Run 6 Exponential Threshold 1 Random 6.29 4.23 0.00 0.09 0.39 0.97 1.00

Risk-Based 3.20 5.20 0.29 0.21 0.63 0.96 1.00

Heavy Risk-Based 3.63 6.54 12.39 0.24 0.49 0.76 0.88

Run 7 10 Random 8.61 1.79 0.00 0.00 0.00 0.81 1.00

Risk-Based 8.14 3.54 3.16 0.00 0.01 0.69 0.97

Heavy Risk-Based 14.71 11.45 67.67 0.00 0.00 0.09 0.32
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NIS. This effect was most pronounced where all 100 sites used in the simulation 
were seeded with NIS. Relative differences in median detection time showed heavy 
risk-based surveillance performed extremely poorly with more than one seed site, 
whereas random and risk-based scenarios both showed much lower and compara-
ble median times to detection (Fig. 7A). The percentage of simulations from which 
the NIS was not detected was much higher for heavy risk-based surveillance com-
pared to risk-based surveillance, but risk-based surveillance showed a similar rela-
tive trend to heavy risk-based surveillance in changes to detection failures with the 
number of seed sites (Fig. 7A). For example, with 20 seed sites, heavy risk-based 
surveillance failed to detect NIS in 89.2% of simulations, whereas this number was 
only 2.2% for risk-based surveillance.

The number of sampling sites had little impact on the median time to detection 
or the detection failure of random or risk-based surveillance (Fig. 7B). Heavy risk-
based surveillance showed some small effect of number of sampling sites on medi-
an time to detection and detection failure (Fig. 7B). The number of sampling years 
had no influence on the median time to detection or detection failure of random 
surveillance (Fig. 7C). However, there was an increase in the number of simula-
tions which were long time to detection outliers in both risk and heavy risk-based 
surveillance as the number of sampling years increased (Fig. 7C). Comparably, 
detection failure fell slightly across risk and heavy risk-based surveillance as the 
number of sampling years increased (Fig. 7C). Increases in mean visit rate, from 

Figure 6. The overall survey detection probability of NIS over time, calculated across 10,000 simulations, assuming an exponential (A), 
random uniform (B) and equal uniform (C) risk distribution.
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Figure 7. The results of the sensitivity analysis, assuming an exponential risk distribution, for the parameters: number of seed sites (A), 
number of sampling sites (B), number of sampling years (C), mean visit rate (D) and method detection probability (E), showing their 
effect on median time to detection (left hand column) and the percentage of simulations in each model run where no NIS was detected 
(right hand column).
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0.25 to 1 visits per year, caused a decline in median time to detection across scenar-
ios, for risk-based (from 1.25 to 0.30 years), heavy risk-based (1.68 to 0.64 years) 
and random surveillance (3.49 to 0.88 years, Fig. 7D). Time to detection contin-
ued to decline with increasing visit rates above one per year, though this was less 
pronounced for risk-based surveillance (Fig. 7D). There were overall declines in 
detection failure across surveillance scenarios as mean visit rate increased, although 
this relationship was non-linear (Fig. 7D). This was particularly evident for heavy 
risk-based surveillance (Fig. 7D). For random surveillance, an increase in method 
detection probability from 0.1 to 0.5 caused the median time to detection to fall 
from 6.49 to 1.40 years (Fig. 7E). Detection failure under random surveillance also 
fell from 4.7% at detection probability 0.1, to 0.0% at detection probability 0.3 
(Fig. 7E). Under risk-based surveillance a similar, but more subtle, decline for me-
dian time to detection occurred over the same range (2.93 to 0.67 years, Fig. 7E). 
Detection failure also decreased, but never reached zero. Median time to detection 
under heavy risk-based surveillance showed little response to method detection 
probability between 0.1 to 0.5 (1.51 to 0.75 years, Fig. 7E). However, detection 
failure decreased overall as method detection probability increased (Fig. 7E).

Elasticity analysis

Assuming an exponential distribution, the elasticity of median time to detection 
and detection failure varied between surveillance scenarios, parameters and the 
direction of change in parameter values (Fig. 8). Under random surveillance, no 
change in detection failure was seen over the parameter ranges; therefore, elasticity 
was not calculated (Fig. 8B). Median time to detection was generally inelastic and 
only elastic to increases in the number of sites sampled under risk-based surveil-
lance (ξ = 1.07, Fig. 8A). Under heavy risk-based surveillance, the detection failure 
was elastic to a decrease (ξ = 2.32) and increase (ξ = 1.15) in the number of sites 
sampled (Fig. 8B). Median time to detection was generally inelastic to changes 
in the number of years, but was elastic to an increase (ξ = 1.05) and decrease (ξ 
= 1.20) in the number of simulation years under risk-based and heavy risk-based 
surveillance, respectively (Fig. 8A). Detection failure generally showed an elastic 
response to the number of simulation years, though an increase in the number of 
years was inelastic under risk-based surveillance (Fig. 8B). Median time to detec-
tion generally showed an elastic response to mean visit rate, in particular under 
heavy risk-based surveillance, where time to detection showed strong elasticity to 
reductions in mean visit rate (ξ = 2.21, Fig. 8A). However, time to detection was 
inelastic to an increase in mean visit rate under random surveillance (Fig. 8A). 
Detection failure was elastic to increases in mean visit rate under risk-based sur-
veillance (ξ = 1.70, Fig. 8B). Median time to detection was generally inelastic to 
changes in the method detection probability, except under risk-based surveillance 
where it was elastic to increases in the method detection probability (ξ = 1.55) 
and under random surveillance where it was elastic to decreases in the method 
detection probability (ξ = 1.33, Fig. 8A). Detection failure was generally elastic 
to changes in the method detection probability, particularly to a reduction in de-
tection probability under risk-based surveillance (ξ = 2.55, Fig. 8B). Under heavy 
risk-based surveillance, detection failure was inelastic to an increase in method 
detection probability (Fig. 8B).
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Detection dynamic

Assuming an exponential risk distribution, inclusion of a linear relationship be-
tween method detection probability and NIS abundance (i.e. a linear detection 
dynamic), which grew logistically, resulted in a similar pattern of median time 
to detection and detection failure, between surveillance scenarios, for one seed 
site (model run 4; Table 3) compared to when the relationship with NIS abun-
dance was excluded (model run 1; Table 3). However, median times to detection 
were much longer for all scenarios (random: 6.03 vs. 0.85 years, risk-based: 
3.34 vs. 0.41 years and heavy risk-based surveillance: 3.55 vs. 0.47 years) when 
a linear relationship was included vs. excluded (Table 3). In addition, detection 
failure was marginally higher for risk-based (0.50 vs. 0.28%) and heavy risk-
based surveillance (12.48 vs. 10.68%). Survey probability of detection had a 
different relationship when a linear detection dynamic was included: at 1 and 5 
years, random surveillance had the lowest value, with detection probability be-
ing higher in risk- and heavy risk-based surveillance (Table 3, Fig. 9A). Howev-
er, this changed over time, when, at 10 years, heavy risk-based surveillance had 
the lowest probability of detection (Table 3, Fig. 9A). When 10 seed sites were 
included with a linear detection dynamic, median time to detection lengthened 
for all surveillance scenarios (model run 5; Table 3). Risk-based surveillance 
had the shortest time to detection as before (8.31 years), but heavy risk-based 
surveillance had a much longer median time to detection (14.52 years) com-
pared to random surveillance (8.79 years), in contrast to model runs 4 and 1 
(Table 3). Heavy risk-based surveillance had a higher detection failure (68.87%) 
compared to risk-based surveillance (3.02%, Table 3). Survey probability of de-
tection was at or near zero for all scenarios at 1 and 5 years. It remained low for 
heavy risk-based surveillance at 10 and 30 years, but increased for random and 
risk-based surveillance, with random surveillance having the highest value from 
10 years (Table 3, Fig. 10B).

Figure 8. The elasticity of the median time to detection (years; A) and the detection failure (%; B) to a 25% increase and decrease in the 
default values of mean visit rate, number of sampling sites, number of years and method detection probability in each model run, assuming 
an exponential risk distribution.
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Figure 9. The survey probability of detection of NIS at a site, or all sites, over time, assuming an exponential NIS risk distribution, calcu-
lated across 10,000 simulations, for a linear (panels A and B) and threshold detection dynamic (panels C and D) between NIS abundance 
and method detection probability for one (left hand panels) and ten seed sites (right hand panels).

Figure 10. The overall survey detection probability of NIS over time, calculated across 1000 simulations, assuming the risk distribution 
in the combined probability of NIS becoming introduced and established at a site, spread from that site and the site being negatively 
impacted. Scores generated using the ‘Site Prioritisation Tool’ (Cefas, in prep.) for Scenario A shipping risk weighted, Scenario B spread 
risk weighted and Scenario C impact risk weighted.
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Assuming a threshold detection dynamic between method detection probability 
and NIS abundance, simulations with one seed site (model run 6) produced sim-
ilar median times to detection and detection failure to a linear detection dynamic 
with one site (model run 4), across surveillance scenarios (Table 3). Similarly, when 
10 seed sites (model run 7) were included using a threshold detection dynamic, 
the results were similar to those with a linear detection dynamic with 10 seed 
sites (model run 5), in that heavy risk-based surveillance had the longest time to 
detection (14.71 years) and highest detection failure (67.67%, Fig. 9; Table 3). 
Detection probabilities showed a similar pattern across scenarios and simulations 
to those for a linear detection dynamic (Fig. 9C, D).

‘Site Prioritisation Tool’ derived marine NIS risk distributions

The time to detection and other outputs varied between surveillance strategies for 
each SPT modelled site risk distribution (Table 4; Fig. 10). For Scenario A (shipping 
risk weighted), the median time to detection was shortest for risk-based surveillance 
(0.25 years) and progressively longer for heavy risk-based (0.37 years) and random 
surveillance (0.93 years, Table 4). The survey probability of detection at Year 1 was 
also highest for risk-based surveillance (0.90) compared to heavy risk-based (0.70) 
and random (0.53) surveillance (Table 4, Fig. 10A). Heavy risk-based surveillance, 
however, had the highest detection failure (4.40%) compared to risk-based and ran-
dom surveillance (both 0.00%, Table 4). Scenario B (spread risk weighted) had over-
all similar relative results to Scenario A: risk-based surveillance had the shortest de-
tection time (0.34 years) and highest survey probability of detection at Year 1 (0.81, 
Table 4, Fig. 10B). However, risk-based surveillance also showed detection failure 
(0.30%), whereas random surveillance did not (0.0%, Table 4). For Scenario C (im-
pact risk weighted), median time to detection was shortest for heavy risk-based sur-
veillance (0.27 years), compared to risk-based (0.34 years) and random surveillance 
(0.78 years, Table 4). Similar to the other scenarios, detection failure was highest for 
heavy risk-based surveillance (7.70%) compared to risk-based (0.10%) and random 
surveillance (0.00%, Table 4). Similarly, the survey probability of detection at Year 
1 was also highest for risk-based surveillance (0.80) followed by heavy risk-based 
(0.74) and random surveillance (0.58, Table 4, Fig. 10C).

Table 4. Model outputs from empirically derived risk distributions.

Model Run Surveillance Scenario
Detection Time (Years)

Detection 
Failure (%)

Survey Probability of Detection at 
Time (Years)

Median 
Detection Time

Interquartile Range 1 5 10 30

Scenario A Random 0.93 1.47 0.00 0.53 0.98 1.00 1.00

Shipping Risk Weighted Risk-Based 0.25 0.47 0.00 0.90 0.99 1.00 1.00

Heavy Risk-Based 0.37 0.94 4.40 0.70 0.89 0.93 0.96

Scenario B Random 0.95 1.36 0.00 0.52 0.98 1.00 1.00

Spread Risk Weighted Risk-Based 0.34 0.66 0.30 0.81 0.97 0.99 1.00

Heavy Risk-Based 0.52 1.85 8.10 0.56 0.83 0.87 0.92

Scenario C Random 0.78 1.33 0.00 0.58 0.99 1.00 1.00

Impact Risk Weighted Risk-Based 0.34 0.68 0.10 0.80 0.96 0.98 1.00

Heavy Risk-Based 0.27 0.63 7.70 0.74 0.86 0.89
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Discussion

Variation in the risk of NIS introduction and establishment between survey sites 
(NIS risk distribution) and the level of risk focus which the surveillance strate-
gy adopts have important implications for optimising NIS detection. This study 
shows that the relative performance of surveillance strategies changes with NIS risk 
distributions derived both theoretically and with model estimates from the SPT 
model. Generally, under risk- and heavy risk-based surveillance, time to detection 
was shorter and survey probability of detection was greater than random surveil-
lance for sites with random or exponential NIS risk distributions. For example, 
assuming an exponential risk distribution, risk-based surveillance detected NIS 
twice as fast as random surveillance. Risk-based surveillance also had a substan-
tially higher survey probability of detection after 1 year compared to random and 
heavy risk-based surveillance. This observation generally held for risk and heavy 
risk-based surveillance for the marine NIS risk distributions derived from the SPT 
model, with risk-based and heavy risk-based surveillance having the shortest detec-
tion times and highest detection probabilities after 1 year across all three scenarios. 
This is comparable to the performance between risk-based and random surveillance 
in other studies (Parnell et al. 2014; Martinetti and Soubeyrand 2019; Mastin et al. 
2020). There was, however, a trade-off between short detection time and detection 
failure in some risk-based simulations, particularly for heavy risk-based surveillance 
for both theoretical and SPT model-derived risk distributions. Heavy risk-based 
surveillance over-samples the highest risk sites, rapidly detecting NIS at high-risk 
sites, but failing to detect NIS at lower risk sites, which, while less likely, can occur. 
This surveillance method could, therefore, allow NIS to spread undetected at lower 
risk sites. Heavy risk-based surveillance also had a poor survey probability of detec-
tion compared to risk-based surveillance at 1 year and had smaller increases over the 
long term for both theoretical and SPT model-derived risk distributions. However, 
trade-offs depend on the risk distribution so that it is conceivable that heavy risk-
based surveillance may be advantageous at certain risk distributions. For example, 
heavy risk-based surveillance performed relatively well for the bimodal risk distri-
bution from the SPT model associated with Scenario C (Impact Risk Weighted). 
One advantage of the simulator is that the effect of any risk distribution can be 
tested, which was showcased by the SPT model-derived distributions used here.

An over-emphasis on the highest risk sites can, in some instances, lead to a 
failure to detect NIS with little benefit in terms of reduced detection time. Con-
centrating on a small number of sites has also been shown to be detrimental by 
a spatially-explicit plant pathogen model (Mastin et al. 2020). Inclusion of de-
tection dynamics which varied with NIS abundance had little effect on overall 
detection time for an exponential risk distribution, suggesting conclusions around 
the optimum risk focus to reduce the detection time were robust to changes in 
method detection probability over time. Comparably, probability of detection for 
heavy risk-based surveillance was similar to risk-based surveillance at year 1, but 
performed relatively poorly to risk-based and then random surveillance at longer 
time periods, with the exact relationship changing with the detection dynamic. 
This suggests the relative performance of different surveillance strategies can vary 
over time. Overall, for the most likely risk distributions, risk-based surveillance 
provides the best balance between short detection rates, success in detecting NIS 
and high probability of detection over the short term.
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The model assumes that the risk distribution of sites can be effectively quantified 
to guide surveillance. Typically, this information is uncertain, particularly for new-
ly-recorded and poorly-understood NIS. However, there is often enough data for 
effective survey design (Koch et al. 2020). Site introduction risk is often driven by 
assessment of introduction pathway activity level (e.g. Tidbury et al. 2016, 2021). 
However, for many NIS, attribution of introduction to a particular pathway with 
certainty is not possible; rather the link between a species and introduction path-
way is based on species biological traits, historical introduction events or introduc-
tion events in very different locations, as well as expert opinion. Site establishment 
risk assessment involves consideration of many factors including environmental 
suitability (Copp et al. 2016 Davidson et al. 2017). In addition, if ‘risk’ is based on 
impact on native species, spread between sites or a combination of factors (e.g. in 
the SPT model-derived risk distributions used here), then there is a requirement to 
consider other factors. Impact risk factors may include NIS life history traits and 
potential NIS impacts on native species via predation, competition, transmission 
of disease, as well as site-specific factors, such as the presence of vulnerable or pro-
tected species (Blackburn et al. 2014). However, translating NIS occurrence into 
impact is challenging and understanding of NIS impact is a significant evidence 
gap (Crystal-Ornelas and Lockwood 2020). It should be noted that further work 
is required to fully integrate this broader concept of risk into the surveillance sim-
ulator. When applying the simulator to SPT model-derived site risk distributions, 
we assumed that the combined risk of introduction, establishment, spread and 
impact would influence the occurrence of NIS. However, factors driving NIS risk 
of impact are likely to differ from, or lack spatial correlation with, those affecting 
introduction and establishment. To better implement this in the model, the option 
to define different distributions for the risk of introduction and establishment and 
the combined risk of other factors, on which basis sites are sampled, is required. 
More generally, the fact that the optimal NIS surveillance strategy varied with risk 
distribution highlights the importance of improving our understanding of NIS 
risk and the factors which influence it, whether these be introduction, establish-
ment, impact or potential for spread, at different sites.

Sensitivity and elasticity analyses were performed in parallel to allow both the 
absolute effect of parameter changes on outputs to be examined and the impact of 
parameter changes to be compared across parameters. These analyses highlighted 
the key factors which should be considered when designing a surveillance strategy 
and the utility of the simulator to explore different approaches. For an exponential 
risk distribution, the number of seed sites, mean visit rate and method detection 
probability had the strongest effect on detection time, whereas the effects of all 
parameters on detection failure were more variable. Differential responses of sur-
veillance strategies occurred between risk distributions. When seed site numbers 
were greater than one, heavy risk-based surveillance performed poorly for time to 
detection and detection failure, relative to risk-based and random surveillance. 
It is possible for NIS to establish at multiple sites early in an invasion (Herborg 
et al. 2003), such that risk-based surveillance would be effective at ensuring NIS 
detection over multiple sites. The analyses indicated the minimum desirable visit 
rate was once per year because time to detection and detection failure increased 
substantially at lower visit rates. At one or more visits per year, heavy risk-based 
surveillance generally had the most variable detection times and highest levels of 
detection failure, suggesting that risk-based surveillance would be more efficient at 
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visit rates greater than one. The sensitivity and elasticity analyses also allow the im-
pact of changes in sampling effort, potentially linked to funding/resource chang-
es, to be determined. For example, a fall in visit rate from once per year to once 
every two years, would increase the median detection time from 0.3 to 0.7 years 
and increase detection failure from 0.3% to 1.1%. Method detection probabilities 
below 0.5 were associated with long times to detection and high detection failures 
for random and risk-based surveillance, suggesting that this was the minimum 
desirable method detection probability. However, at or below a method detection 
probability of 0.3, heavy risk-based surveillance had the shortest detection times, 
suggesting heavy risk-based surveillance may be advantageous with low detection 
probability methods. The need for greater focus on a small number of high-risk 
sites when using low detection probability methods has been shown in spatially-ex-
plicit models (Mastin et al. 2020). The details of sampling methods at individual 
sites, for example, number of sampling replicates, were not modelled in detail here, 
but variations in protocols and the method used are likely to change the probabili-
ty of detection. Detection probability can be calculated statistically (MacKenzie et 
al. 2002) and high detection probability for marine NIS is achievable using eDNA 
methods (Fonseca et al. 2023). Overall, these results support the assertion that 
risk-based surveillance would outperform heavy risk-based surveillance. However, 
this is conditional on the risk distribution, the default parameters and the out-
comes which are most important to the survey objectives. These can be varied to 
be most suitable to the purpose of the surveillance programme using the simulator.

The simulator is an efficient and valuable tool for planning surveillance pro-
grammes. While outside the scope of the current study, several opportunities exist 
for further development into the future. For example, a spatially-explicit model, 
incorporating NIS distribution and spread of NIS over time, would allow study of 
how the spatial distribution of sampled sites influences the utility of risk-based sur-
veillance. Spatially-explicit models of pathogen entry and spread have shown that 
spatial correlations in risk can make it suboptimal to focus on the highest risk sites 
and a geographic spread of resources to cover all areas of risk is desirable (Mastin et 
al. 2020). The rationale for not including a spatially-explicit model of NIS spread 
was that this model is focused on supporting early warning monitoring, when a 
NIS is likely only present at a small number of sites (but see Herborg et al. (2003)). 
This is valid given the likelihood of NIS eradication or successful local manage-
ment is increased when a NIS is detected quickly after introduction, when the 
population is localised within a small area (Simberloff 2001; Anderson 2005; Ole-
nin et al. 2011). The risk of spread may differ to the risk of introduction, with po-
tentially different risk factors and should be calculated independently (Oidtmann 
et al. 2011; Thrush et al. 2017). This study focuses on exploration of the impact 
of overall risk distribution on efficacy of surveillance under different risk-based 
sampling designs. The simulator allows both the introduction and establishment 
risk to be defined (and can be extended to include other risk components such as 
impact and spread). In our illustrative application, we assume that sites have the 
same risk in terms of introduction and establishment. However, differences may be 
expected which, depending on the specific scenario, could impact the conclusion 
as to which sampling strategy would be optimal. Extending functionality of the 
temporal component to include different months or seasons would allow incorpo-
ration of temporal variation in NIS risk and detection probability. NIS risk may 
change temporally with seasons (Faulkner et al. 2016) or socio-economic changes 
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impacting risk pathways, for example, changes in shipping activity (Ojaveer et al. 
2017). Detection probability may vary over time with a species life cycle and sam-
pling should be targeted to periods where detection is most likely (Harvey et al. 
2009), although this is challenging when designing a multi-species detection pro-
gramme if species differ in their life-history and are associated with different path-
ways. In this study, it was assumed that only a single species was being sampled. Al-
though this is not unrealistic for a targeted species-specific surveillance programme 
(Gust and Inglis 2006), NIS surveillance campaigns may also be multi-species, 
particularly as eDNA methods allow the targeting of multiple species of interest 
from the same sample via metabarcoding using generic primers or multiplex PCR 
(Fonseca et al. 2023). Incorporation of multiple introduction and establishment 
of risk distributions into the simulator will allow output for multiple species to 
be created, enabling exploration as to whether risk-based approaches, based on 
average multi-species NIS risks, are appropriate for sampling all species. Finally, 
the current study is only a theoretical framework and would benefit from further 
validation. Although we have provided a first step in this direction by parameter-
ising the model with model-derived risk distributions for marine NIS around the 
UK coastline, further work is required using species occurrence data to determine 
empirical risk distributions and detailed statistical analysis of model outputs would 
allow full testing of the robustness of this model.

Conclusion

In conclusion, variation in the risk of NIS introduction and establishment and the 
level of risk focus of surveillance programmes interact to influence the efficacy of 
surveillance regimes. Assuming a skewed risk distribution, an over-emphasis on 
sampling high risk sites will be outperformed by a more balanced focus on high 
as well as lower risk sites. However, the optimum approach is dependent on the 
NIS risk distribution. The relative risk of sites and other survey parameters, has to 
be quantified for the optimal surveillance design to be selected. Overall, this study 
highlights the utility of model-based simulators to guide decision-making in the 
design of the surveillance of NIS and other hazards.
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