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ABSTRACT

Marine operations are a significant expense for offshore wind
farms, representing up to one third of total project costs. An im-
proved understanding of the variation of met-ocean conditions
across a wind farm site offers the potential to reduce weather
downtime and associated costs. This work employs a machine
learning approach utilising a surrogate wave model trained on
the relationship between the wave conditions at discrete mea-
surement locations to wave conditions across the entire model
domain. The surrogate model can then be run with real-time
data inputs from the discrete measurement locations to provide a
spatial dataset for waves, without the high computational power
needed to run the physics-based wave model itself. This new
method enhances the accessibility of met-ocean data to allow
more informed decision making for the installation, operation,
and maintenance of offshore wind farms.

The approach has already proven successful with fixed mea-
surement buoys, and work is ongoing to adapt the modelling
framework to use satellite-derived wave data as an input. With
freely available global coverage, satellite data is a useful comple-
mentary data source to wave buoy data. Several Earth Observa-
tion satellite missions host radar altimeters that report significant
wave height along the satellite’s ground track. The first step to-
wards utilising radar altimeter data with the machine learning
framework is assessing the impact of using only significant wave
height data as measurement inputs. This paper compares the
model outputs from running the model with wave height, period,
and direction data, and with wave height data only. The results
show that running the model with wave height data only produces
a small reduction in the accuracy of output wave predictions in
coastal areas.
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1. INTRODUCTION

Expanding the use of renewable energy technologies is a
crucial component in our race to net-zero carbon emissions and in
the global agreement to limit the rising temperature of the planet
to combat catastrophic climate change. Electricity produced by
offshore wind turbines already contributes to this, meeting energy
demands from renewable sources of power, and the industry is
gearing up for global growth.

Characterisation of the met-ocean conditions in which the
wind turbines operate is crucial information required throughout
the life cycle of an offshore wind energy project. As projects
are developed in deeper waters, further from shore, and occupy-
ing larger areas, understanding the spatial variation of the wave
conditions across a site becomes more important.

At present, met-ocean conditions are derived from numeri-
cal wave models that represent the physics of ocean wave energy
transfer. These models can be on global, regional, or local scales,
and use various methods of data assimilation to incorporate in-
situ and remotely sensed measurements to produce hindcasts (es-
timates of past conditions), nowcasts (estimates of current con-
ditions), and forecasts (estimates of future conditions) for waves.
The high computational power required to run these models lim-
its the frequency with which the resulting forecasts are available
for making decisions in the marine environment.

Chen et al. [1] developed a new machine learning framework
for nowcasting and forecasting waves for marine renewable en-
ergy applications called MaLCOM: Machine Learning for Low-
Cost Offshore Modelling (hereby referred to as MaLCOM). This
modelling framework uses a random forest algorithm to learn the
spatial relationships between wave conditions at defined locations
within a wave hindcast to wave conditions across the entire do-
main of the model. In implementation, it can then predict wave
conditions across the area using only concurrent data at the dis-
crete input locations. The output predictions were found to be of
similar accuracy to traditional nowcasts and forecasts, and when
compared to a hindcast model offered significant improvements
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in accuracy; enabling a low-computational cost nowcast method-
ology for wave modelling. As the surrogate wave model does
not have the high computational demands of the numerical wave
model, it can be run on any computer, more frequently, updating
based on real-time measured conditions within the domain.

Whilst wave buoys provide continuous data, the single point
location limits the geographical spread of measurements available
as input to the MaLCOM framework. Mounet et al. [2] explored
the advantages of incorporating wave data measured by ships
to expand the spatial coverage of input data. Satellite-derived
wave data presents another potentially useful and complementary
source of measurements to input into the framework and would
enable immediate application of the method globally. Satellite
data provides consistent coverage and is freely available to the
public in many cases. In a review of satellite data for the offshore
renewable energy sector by Medina-Lopez et al. [3], the current
limited use of satellite-derived measurements in the offshore wind
energy industry was identified, along with numerous possibilities
to employ this data for much-needed cost reductions in the sector.

The primary method of measuring wave heights from satel-
lites is radar altimetry, a widely applied and verified remote sens-
ing technique celebrating 30 years of research and development
this year. Though initially designed to measure sea surface height,
the return signal from the radar pulse can be processed to yield
wave height, providing a data point approximately every 7 km
along the ground track of the satellite. This track is repeated
in accordance with the revisit cycle of the satellite, for example,
approximately every 10 days for Jason-3 ([4], and every 27 days
for Sentinel-3 ([5]). The distance between successive ground
tracks of each satellite varies in accordance with the latitude of
the ground area in question. At the equator, the ground track
separation of these two examples is 315 km for Jason-3 and 104
km for Sentinel-3 ([4], [5]), which translates to ground track
separation distances in the case study area of the Southwest UK
of around 180 km for Jason-3 and 120 km for Sentinel-3. Evi-
dently, satellite-derived wave measurements offer consistent and
regular spatial coverage, but coverage that introduces significant
spatial and temporal gaps when investigating wave conditions for
a specific site, in particular for marine operations where regular
updates at a specific location are desirable.

Furthermore, radar altimeter-derived wave data is princi-
pally a measure of significant wave height (𝐻𝑠). Algorithms
to derive a wave period from satellite data have been published
(e.g [6–8]), and some newer remote sensing instruments, such
as CFOSAT’s radar scatterometer SWIM (Surface Waves Inves-
tigation and Monitoring) have the ability to capture additional
information. However, it is 𝐻𝑠 from radar altimeters that is cur-
rently the most consistent and widely available satellite-derived
wave data set.

It follows that key initial considerations of utilising satellite-
derived wave data in a MaLCOM style setup are: how to opti-
mise the benefits from the varying locations and times at which
the data reports and; how much impact only receiving 𝐻𝑠 will
have on the machine learning model training and operation. This
paper focuses on the second of those challenges. Using a limited
implementation of a MaLCOM framework, it evaluates the im-
pact of using only 𝐻𝑠 to train the surrogate by directly comparing

an ’all parameter’ model, using 4 wave parameters (significant
wave height, peak period, mean period, and mean direction) to
train the surrogate model (referred to as Model_all) and a single
parameter, ’𝐻𝑠 only’, model (referred to as Model_single). The
outputs from these two models are compared to assess the impact
of running the method with only wave height data, towards the
long term goal of implementing the MaLCOM framework with
radar-altimeter 𝐻𝑠 data.

2. METHOD
2.1 Case Study Area

The waters around the county of Cornwall, the westernmost
part of the Southwest Peninsula of the UK, are used as the case
study area in this paper (1). The total area of the model domain
is bounded by 49°N to 51°N and 4°W to 7°W, extending up to
around 100 km offshore from the Cornish coastline. The previ-
ous work conducted to develop the MaLCOM framework [1] also
used this area as a case study. The Northern and Western area
of the domain is within the Celtic Sea, a region currently prepar-
ing for the commercial development of up to 4.5 GW of floating
offshore wind energy capacity as established in The Crown Es-
tate’s Offshore Wind Leasing Round 5 [9]. Therefore, the area is
attracting significant attention to substantially contribute towards
national targets to deliver 5 GW of floating offshore wind energy
capacity by 2030 [10].

FIGURE 1: MAP OF THE UK WITH MODEL DOMAIN AREA SHOWN
IN RED.

2.2 Model Set Up
As outlined in the introduction, this study uses the MaL-

COM modelling framework which is fully described by Chen et
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al. [1]. The approach employs a random forest machine learn-
ing algorithm to train the surrogate model. Firstly, the surrogate
is trained on a physics-based wave hindcast to learn the spatial
relationships between wave conditions at three set locations to
wave conditions across the model domain. Secondly, the trained
surrogate predicts a spatial nowcast for the domain using time-
series data from wave buoys located at the three set locations as
input. This model execution process is referred to as ’inference’
in machine learning parlance.

In the original MaLCOM method, 4 wave parameters from
the hindcast were used to train 4 spatial surrogate models, all of
which were then combined to produce the estimates in inference,
resulting in a spatial nowcast for all 4 parameters. These parame-
ters were significant wave height (𝐻𝑠), mean wave period (𝑇𝑚02),
peak wave period (𝑇𝑝) and wave direction (𝑀𝑑𝑖𝑟 ). For the present
study, this is termed the ’all parameter model’ and referred to as
’Model_all’. To understand the impact of only using the 𝐻𝑠 mea-
surements as input into the MaLCOM method, the second case
was run that uses only 𝐻𝑠 data from the hindcast to train a single
𝐻𝑠 only surrogate model. In inference, only the 𝐻𝑠 data from the
buoys is then used to make the predictions, resulting in a spatial
nowcast for 𝐻𝑠 only. This arrangement is represented by the flow
chart in Figure 3.

2.3 Input Data
The two MaLCOM-approach models created for this paper

were trained using the UK Met Office European North West Shelf
Wave Physics Reanalysis product, hosted by the Copernicus Ma-
rine Service [11]. This offers a long term hindcast, of which 1
year of hindcast data (2018) has been used in this work. Three
Channel Coastal Observatory (CCO) wave buoys [12] that are
operational within the domain were used to run and test the sur-
rogate models. All three are Datawell Directional Wave Rider
Mk III buoys which are located in Penzance, Perranporth, and
Looe Bay (Figure 2). Each of these buoys is configured to report
integrated wave parameters every 30 minutes. Data from 01 Jan-
uary 2019 to 31 December 2020 were used in inference to run the
models, producing a spatial nowcast for the same period.

The MaLCOM methodology for spatial modelling with the
inputs and outputs for the two model cases in this study are
outlined in Figure 3.

3. RESULTS AND DISCUSSION
3.1 Analysis Conducted

The analysis conducted first compares the outputs from the
four parameter model (Model_all) and the single parameter model
(Model_single) against one another to assess the spatial perfor-
mance of the 𝐻𝑠 only implementation. Secondly, data from the
CCO wave buoy at Porthleven for the concurrent time period was
used as an evaluation site to assess the model outputs with data
distinct from that used to run the model. Comparing the nowcasts
produced from these two cases contributes towards evaluating the
limitations of using radar altimeter data, by determining the im-
pact of running a MaLCOM-style model with 𝐻𝑠 data only.

3.2 Spatial Comparison
The annual average 𝐻𝑠 as predicted by both models present a

similar spatial pattern (Figure 4). Both maps indicate the expected

FIGURE 2: MAP OF THE CASE STUDY AREA SHOWING WAVE
BUOY LOCATIONS AND AVERAGE SIGNIFICANT WAVE HEIGHT
FOR 2018 ACCORDING TO THE WAVE HINDCAST. RED CIRCLES
MARK WAVE BUOYS USED TO RUN THE MODELS. THE RED
CROSS MARKS THE WAVE BUOY USED TO ASSESS THE MODEL
OUTPUTS.

FIGURE 3: FLOWCHART TO SHOW THE MALCOM FRAMEWORK
IMPLEMENTATION FOR THE TWO MODEL CASES IN THIS STUDY.

larger waves in the exposed area in the southwest of the domain,
with more sheltered areas experiencing smaller average wave
height, particularly in the coastal areas on the south coast of the
Cornwall peninsula.

Direct comparison of the results in the form of the average
value of Δ𝐻𝑠 = 𝑀𝑜𝑑𝑒𝑙_𝑎𝑙𝑙_𝐻𝑠 − 𝑀𝑜𝑑𝑒𝑙_𝑠𝑖𝑛𝑔𝑙𝑒_𝐻𝑠 when cal-
culated on a record-by-record basis shows that the differences are
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FIGURE 4: TIME-AVERAGED HS DURING 2019-2020, AS PRE-
DICTED BY THE ALL PARAMETER MODEL (A) AND THE SINGLE
PARAMETER (HS ONLY) MODEL (B)

greatest towards the northeast of the domain and in the slightly
sheltered coastal area on the far southwest coast of Cornwall.
These differences indicate that Model_single is slightly under-
predicting wave heights, with a maximum difference less than 6
cm. The smallest differences were in the more exposed, open ar-
eas of sea to the west of the domain, where Model_single slightly
over-predicted wave heights compared to Model_all. These dif-
ferences are shown in Figure 5.

For a relative comparison not affected by the size of the
waves, Figure 6 shows the average percentage difference in the
results from the two models. This is calculated as the mean of
(𝑀𝑜𝑑𝑒𝑙_𝑎𝑙𝑙_𝐻𝑠 − 𝑀𝑜𝑑𝑒𝑙_𝑠𝑖𝑛𝑔𝑙𝑒_𝐻𝑠)/𝑀𝑜𝑑𝑒𝑙_𝑎𝑙𝑙_𝐻𝑠 at each
time step. This result retains a broadly similar pattern to Fig-
ure 5, although it highlights the largest under-prediction by

Model_single occurs in areas close to the southern coast.

FIGURE 5: MEAN HS DIFFERENCE FOR THE TWO MODEL CASES,
MEAN OF MODEL_ALL_HS −MODEL_SINGLE_HS

FIGURE 6: AVERAGE PERCENTAGE DIFFERENCE FOR HS

FOR THE TWO MODELS, MEAN OF (MODEL_ALL_HS −

MODEL_SINGLE_HS )/MODEL_ALL_HS

3.3 Temporal Comparison
The results were compared against in-situ buoy data recorded

at Porthleven (Figure 2), a location that was was not included in
the training and is not used to run the model. As such, model
output at this location is used as an independent dataset to analyse
the accuracy of the model, whilst buoy data is treated as ground
truth for the purpose of this analysis.

While both models predict the general temporal patterns of
𝐻𝑠 values, they both under-predict larger values of 𝐻𝑠 when
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compared to the buoy data (Figure 7). This is evident in the
scatter diagram (Figure 8), although it appears that Model_single
has a slightly lower under-prediction at higher 𝐻𝑠 values than
Model_all. Some of the under-prediction is a product of the
under-prediction in the hindcast (that was used in model training)
at this particular location when compared to the buoy measure-
ments, as seen in Figure 9. Additionally, Figure 10 shows the
model outputs over-predicting at small wave heights and under-
predicting at large wave heights for this location when evalu-
ated against the hindcast. The combined impact of both under-
predictions at larger values of 𝐻𝑠 (Figure 9, Figure 10) leads to
the under-prediction of the models evident in both Figure 7 and
Figure 8.

FIGURE 7: TIME SERIES DATA FOR PORTHLEVEN FROM A WAVE
BUOY AND THE TWO MODELS

FIGURE 8: HS SCATTER PLOT TO SHOW MODEL PREDICTIONS
AT PORTHLEVEN AGAINST WAVE BUOY OBSERVATIONS

To assess the error between the buoy data and the model
results, three statistics were calculated: Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and the Coefficient of De-
termination (𝑅2). RMSE and MAE are scale-dependent, whilst
𝑅2 is scale-independent. The three error metrics were calculated
by Equation (1), Equation (2), and Equation (3), where 𝑛 is the
number of predicted values, 𝑦𝑖 the buoy observation representing
the ’true’ value, 𝑦̂ the model prediction, and 𝑦̄ the mean of the

FIGURE 9: HS SCATTER PLOT TO SHOW HINDCAST VALUES AT
PORTHLEVEN AGAINST WAVE BUOY OBSERVATIONS FOR HS

FIGURE 10: HS SCATTER PLOT TO SHOW HS VALUES FOR
PORTHLEVEN FROM MODEL PREDICTIONS AGAINST HINDCAST
VALUES

buoy observation ([13]. Table 1 shows the comparison of these
metrics.

Both RMSE and MAE are increased in the 𝐻𝑠 only model
and the 𝑅2 is also decreased. This indicates greater variability and
a less accurate prediction when using 𝐻𝑠 only. The differences
observed are relatively small compared to the overall accuracy of
the surrogate model predictions, which is in agreement with the
results shown in Figure 7.
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Porthleven to Model_all Porthleven to Model_single

RMSE 0.3184 0.3434
MAE 0.2164 0.2488
𝑅2 0.8616 0.8427

TABLE 1: ERROR STATISTICS COMPARING THE Hs PREDICTIONS
FROM MODEL_ALL AND MODEL_SINGLE AGAINST PORTHLEVEN
WAVE BUOY OBSERVATIONS.

RMSE =

⌜⎷
1
𝑛

𝑛∑︂
𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)2 (1)

MAE = 𝑀𝐴𝐸 =
1
𝑛

𝑛∑︂
𝑖=1

|𝑦𝑖 − 𝑦̂𝑖 | (2)

𝑅2 = 1 −
∑︁𝑛

𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)2∑︁𝑛
𝑖=1 (𝑦𝑖 − 𝑦̄)2 (3)

4. CONCLUSION
This work has used a case study in the Celtic Sea to demon-

strate that running a MaLCOM style surrogate model, as initially
described in Chen et al. [1] that uses only significant wave height
(𝐻𝑠) produces a working model that can spatially predict signif-
icant wave height values across a model domain. Running with
𝐻𝑠 only (Model_single) compared to running with 4 parameters
(Model_all) reduces accuracy of the model predictions, but that
reduction is small relative to the overall accuracy of operational
wave models.

The differences introduced by omitting wave period and di-
rection parameters were most pronounced in coastal areas on the
south coast of the Cornwall peninsula. In these zones, the 𝐻𝑠

only model (Model_single) under-predicts wave heights, poten-
tially due to the reduced learning power of wave refraction and
shoaling that are dependent on wavelength and direction.

Both surrogate models matched in-situ measurements but
under-predicted higher wave heights. This zone is an area where
both surrogate models have relatively low accuracy and although
the 𝐻𝑠 only model (Model_single) had a slightly lower under-
prediction, it is not possible to conclude that this is more accu-
rately representing conditions, rather that there is a general issue
with prediction of larger wave states in this area from the surro-
gate model procedure. The hindcast used to train the surrogate
model also under-predicts for large wave heights at the evaluation
site, contributing to the models lower accuracy here.

This work demonstrates the feasibility of running surrogate
models using 𝐻𝑠 only, while allowing analysis of the expected
uncertainties both in terms of spatial changes and the absolute
uncertainty values. It provides a key step towards deploying a
MaLCOM style model using radar-altimeter derived significant
wave height (𝐻𝑠) data. Further work must focus on the potential
for improvements on the results displayed, by using the full spatial
coverage available from these data sets.
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